
YOLO-Based Face Mask Detection on Low-End
Devices Using Pruning and Quantization

Benedetta Liberatori*, Ciro Antonio Mami*, Giovanni Santacatterina*,
Marco Zullich**, and Felice Andrea Pellegrino**

*Department of Mathematics and Geosciences, University of Trieste, Italy
{benedetta.liberatori, ciroantonio.mami, giovanni.santacatterina}@studenti.units.it

**Department of Engineering and Architecture, University of Trieste, Italy
marco.zullich@phd.units.it, fapellegrino@units.it

Abstract—Deploying Deep Learning (DL) based object
detection (OD) models in low-end devices, such as single
board computers, may lead to poor performance in terms
of frames-per-second (FPS). Pruning and quantization are
well-known compression techniques that can potentially lead
to a reduction of the computational burden of a DL model,
with a possible decrease of performance in terms of detection
accuracy. Motivated by the widespread introduction of face
mask mandates by many institutions during the Covid-
19 pandemic, we aim at training and compressing an
OD model based on YOLOv4 to recognize the presence
of face masks, to be deployed on a Raspberry Pi 4. We
investigate the capability of different kinds of pruning and
quantization techniques of increasing the FPS with respect
to the uncompressed model, while retaining the detection
accuracy. We quantitatively assess the pruned and quantized
models in terms of Mean Average Precision (mAP) and FPS,
and show that with proper pruning and quantization, the
FPS can be doubled with a moderate loss in mAP. The results
provide guidelines for compression of other OD models
based on YOLO.

Keywords—Deep Learning; Object Detection; YOLO;
TinyML; Face mask detection; Pruning; Quantization.

I. INTRODUCTION

As modern deep neural networks grow more complex,
their computation and memory requirements emerge as
an obstacle, preventing their deployment on resource-
constrained embedded and mobile devices. Vision has
become an important part of many smart embedded
systems. Object Detection (OD), in particular, is a visual
task linked to many real-word applications, such as video
surveillance and autonomous driving. Current state-of-
the-art OD models have millions of parameters, which
renders their implementation on low-end or embedded
devices quite a challenge. Since the World Health Or-
ganization stated that medical masks are effective in pre-
venting the spread of Covid-19, it has become important,
and in some cases even mandatory, to wear them in public
areas. Thus, a reliable and fast AI solution for detecting
whether people in a specific area are or are not wearing
a face mask could be of great use, given the difficulty to
manually monitor each individual. Moreover, considering
the hardware and power limitations of the devices which
are usually employed for video surveillance tasks, the
need to ensure that the OD pipeline runs with enough
speed on such equipment arises. Our aim is to train an

object detector to reliably perform face mask detection
on a low-end device. It follows that the accuracy of the
model is not our sole performance indicator; rather, we
look for a good compromise between detection accuracy
and speed of execution. We wish our model to be run
reliably even on some devices with low computational
capability and no Graphics Processing Unit (GPU). We
start from a lightweight implementation of YOLOv4 [1]
introduced in [2]; we apply filter pruning [3] in order
to achieve the aforementioned objective. Filter pruning
operates a sparsification of the Artificial Neural Network
(ANN) parameters via the removal of entire convolutional
filters according to a given criterion, speeding up the
computation. After pruning, we also perform quantization
(i.e., reduction of the number of bits used to represent
each parameter), obtaining an additional improvement in
the speed of inference, at the cost of a small reduction in
detection accuracy. We deploy the model on a Raspberry
Pi 4, achieving fast inference and satisfactory accuracy
results. The adoption of this device is motivated by the
necessity of using a low-cost device, such as a single-
board computer which has the capability of running
ANN-based Computer Vision tasks. The Raspberry Pi
4 has a widespread usage, as indicated by the exten-
sive literature reporting applications of such a device in
various technical and scientific fields (see for instance
[4] and the references therein). This enables the detector
to potentially be used in a wide number of real-world
applications where high-end systems or constant human
surveillance would be unavailable or incongruous, such
as in shops or offices. In order to assess the performance
of our model, we take into consideration two indicators:
Mean Average Precision (mAP), measuring the detection
accuracy, and frames-per-second (FPS), measuring the
number of images (frames) that the model is able to pro-
cess at inference time. We record FPS on the Raspberry
Pi 4. The goal is the following: we wish to optimize the
FPS, without losing too much mAP. While the original
YOLOv4-based model achieves 0.99 FPS with a mAP
of 0.618, we are able to effectively prune and quantize
the model, reaching 1.97 FPS—improving this metric by
99%—and 0.574 mAP—a 7% decrease with respect to
the original model. We point out that, in the present

MIPRO 2022/CIS-AIS 1039

work, we do not introduce technical novelties, neither
we operate architectural modifications of the ANN we
make use of. Instead, given a pre-existing architecture,
we showcase that, with the application of pruning and
quantization, it is possible to record a large increase
in FPS without hurting mAP too much, thus aiding
the deployment of the model on low-end devices. We
release the code of our implementation to the following
GitHub repository: https://github.com/benedettaliberatori/
Modified-Yolov4Tiny-RaspberryPi/.

II. RELATED WORK

A. Object Detection (OD)

OD consists of identifying and locating instances of
objects from a particular class within a video or image.
The locations of said objects are roughly determined, and
a bounding shape is drawn around each object. There ex-
ists a handful of ANN-based architectures for performing
OD: RCNN [5] and its variants, YOLO [6] and its vari-
ants, RetinaNet [7], and more recent transformer-based
architectures like SWIN Transformers [8]. Despite the
latter having recorded state-of-the-art results on common
OD benchmarks, YOLO-based solutions find widespread
applicability due to having lower computational require-
ments, while still recording acceptable levels of detection
accuracy [9, 10]. These models, despite being very fast
if compared to their alternatives, are still not suited to
be ran on inexpensive single-board computers, such as
Raspberry Pi’s. For this reason, lightweight versions of
YOLO have been developed, like [2, 11], by operating
tweaks in their architecture, e.g., decreasing the number
of detecting heads, i.e., number of different scales at
which predictions are made, or lowering the depth of
convolutional layers. As a result, the running speed is
significantly increased but detection accuracy is reduced.

1) Face mask detection: Recently, due to the Covid-
19 pandemic, many works have been published devoted to
the automatic recognition of face masks. There does not
seem to exist, though, a de-facto dataset for benchmarking
the task of OD applied to face masks. A handful of
existing datasets, along with their pros and cons, have
been reported in [12]; some works cited in the present
paper employ their own dataset, which is sometimes not
even publicly accessible (as in [13]). We are not aware
of other works using the same dataset as ours. A large
body of work in this area is targeting high levels of
accuracy, disregarding the computational requirements of
the proposed solutions [12, 13, 14, 15], or assessing
the speed of inference on high-end hardware [16, 17],
overlooking deployment on low-end devices. Kong et al.
[18] proposed the solution which, to the best of our
knowledge, comes closer to ours when the objectives
of the work are concerned: they developed a two-stage
lightweight model for first operating face detection, then
performing classification within the predicted bounding
boxes to determine the presence or absence of the face
mask on the identified face. They also deploy their model
on a Raspberry Pi 4, as we do, although they enhance

the device with a Neural Compute Stick to speed-up the
tensor operations, which we do not do.

B. ANN compression

Some Machine Learning models have large memory
requirements [19]. Pruning and quantization—which we
make use of in the present work—are possible solutions
for reducing these requirements, but knowledge distilla-
tion [20] and tensor/matrix decomposition [21] are also
viable alternatives.

ANN pruning acts by setting to zero individual pa-
rameters of the model. Specifically, it can be divided
into structured and unstructured pruning [22]. The latter
prunes parameters without concern for the geometry of
the layers, while the former removes whole groups of
weights, such full convolutional filters in the case of Con-
volutional Neural Networks (CNNs). In this last case, we
can also talk of filter pruning. Structured pruning can lead
to increased inference speed without needing required
libraries or hardware [23], thus it can be used to produce
lightweight ANNs for deployment on non-specialized
low-end devices, like the aforementioned Raspberry Pi’s.
A widely used technique for filter pruning introduced by
Li et al. [3] consists of pruning filters which, after a first
pre-training phase, exhibit a small L1 norm compared to
the other filters within the layer(s). The rationale behind
it is that filters with a lot of small-magnitude parameters
may be unimportant to the production of accurate predic-
tions: this is an example of magnitude-based post-train
pruning. In this context, immediately after the pruning
step, the CNN often records sub-par accuracy, which calls
for a re-training phase. This gives way to an iterative
application of pruning [24], in which a training phase is
followed by pruning, which is followed by re-training,
and so on. The re-training is called fine-tuning when it
is performed for a smaller number of epochs than the
original training [25]. In the literature, it has not yet been
established whether fine-tuning or full re-training leads
to the best results in terms of accuracy, with somehow
inconsistent conclusions [23, 25, 26, 27]. For that reason,
in this work, we will be using fine-tuning, as it requires
fewer iterations with respect to full re-training.

ANN quantization [28] consists in using a lower-
bit representation of the parameters to store real-valued
weights and activations. Most ANNs are trained using
floating-point double precision (FP32), which in some
cases can be more than needed: accurate results can
be obtained also by employing half-precision floating-
point (FP16) [29] or integer arithmetic (INT16 to INT4)
[30]. This approach can be used both at training time
(quantization-aware training), and at inference time (post-
training quantization) [31].

III. MATERIALS AND METHODS

For the task of face mask detection, we seek a good
trade-off between computational speed and accuracy, thus
resorting to YOLO, specifically its version 4 [1]. YOLO
divides the input image into an S × S grid. Each cell
within the grid outputs a prediction at different scales. The

1040 MIPRO 2022/CIS-AIS

dimensions of the predicted bounding boxes are biased
towards some pre-computed values, which are referred
to as anchor boxes. In the present work, we use the
YOLOv4-tiny variant introduced by Jiang et al. [2]. They
replaced the two CSPBlock [32] modules of YOLO-
v4 with two ResBlock-D modules [33], which require
much fewer floating-point operations to compute, and
introduced the Convolutional Block Attention Module,
which is used to realize spatial-wise and channel-wise
attention. The loss function is composed of four parts:

Loss = λboxLbox + λno-objLno-obj + λobjLobj + λclassLclass.
(1)

The Lbox loss is a mean squared error loss which
measures, for each prediction, how different the predicted
box and its corresponding ground truth are. The Lno-obj,
Lobj, and Lclass loss are all based on the Binary Cross-
Entropy (BCE) function and are used to guide the model
to correctly predict the presence or absence of an object
and to drive said prediction to the correct class.

We train the model using the Rectified-Adam (RAdam)
[34] optimizer, designed to tackle the fact that, with regu-
lar Adam [35], the adaptive learning rate in general suffers
from high variance in the early stages, thus requiring
expensive warm-up phases.

A. ANN pruning

We employ the method proposed in [3], which consists
in pruning less relevant filters in CNNs. It is a structured
technique which determines the parameters to be pruned
by ranking the filters within each layer according to their
L1-norm. Then, a fixed number of low-norm filters is
deleted from each layer. The number of filters to be
pruned is determined by a hyperparameter which is called
pruning rate.

B. Conversion to TFLite and Quantization

We train our model on Python using PyTorch [36]
version 1.8. Subsequently, we convert the model to Ten-
sorflow using ONNX1, and finally to Tensorflow Lite
(TFLite) [37], a DL framework which allows for translat-
ing the model from Python to C++ for the purpose of de-
ployment into ARM-based CPU-only devices such as our
Raspberry Pi 4. TFLite comes along with several tools for
quantization. We experiment with (a) static quantization
to integer with 8-bit precision with floating-point fallback,
and (b) dynamic-range quantization [31]. Both parameters
and data are quantized to integer precision. In (a), the data
are converted to INT8 according to a fixed pre-computed
range, while in (b), the range is re-calculated for each
inference cycle. This can result in a lower inference speed
(due to the recalculation of ranges), but may provide
more accurate models, as the data conversion to INT8
is less prone to distortions. The keyword floating-point
fallback2, refers to the possibility that some computations

1https://onnx.ai
2https://www.tensorflow.org/lite/performance/post_training_

quantization

may still be ran on floating-point precision when they do
not have an equivalent integer-arithmetic implementation
within the library.

IV. EXPERIMENTAL SETTINGS AND RESULTS

A. Dataset

For our experiments, we used a publicly available
dataset called “Mask-Detection-Dataset”3, composed of
images containing various examples of people with and
without face masks. The dataset is built in such a way that
the people appear at different scales and in different sce-
narios. The training set and test set contain, respectively,
5448 and 1318 frames. We computed the candidate an-
chor boxes starting from the bounding boxes dimensions
found within the ground truth of the dataset. We did so
via k-means clustering, with k = 6 number of centroids,
using intersection-over-union (IoU) as distance metric.
Thus, six different boxes are obtained: three for each
scale. We then resized the input frames to the resolution
of 416 × 416 pixels and performed data augmentation,
applying random rotation (with probability 0.5) between
[−20°, 20°] and horizontal flipping (still with probability
0.5). Moreover, we operated a preprocessing step aiming
at degrading the quality of the images by down-scaling by
a factor of 75%, then applying motion blur4 with kernel
size uniformly sampled between 3 and 7.

B. Training

The model was pre-trained for 100 epochs, with learn-
ing rate (LR) of 2 × 10−4 , β1 = 0.9, and β2 = 0.999.
Moreover, we employed weight decay with a coefficient
of 0.005 and used a batch size of 32. Loss parameters
λbox, λnoobj, λobj and λclass from Equation (1) were re-
spectively set to 1, 5, 10 and 1. In order to optimize the
LR, we ran a grid search over the values 0.001, 5×10−4 ,
2 × 10−4 , and 1 × 10−4 , obtaining best results for the
value 2×10−4 , which, coincidentally, is very close to the
ratio, suggested in [38], between the default LR of 0.001
and the square root of the batch size. As previously stated,
the model was implemented in Pytorch version 1.8 and
trained using an NVidia V100 GPU.

C. Pruning and Quantization

We experimented with two different structured prun-
ing procedures: (a) one-shot pruning with fine-tuning,
and (b) iterative pruning with learning rate rewind [25]
coupled with fine-tuning. As stated in Section III, we
selected filters to be pruned with respect to their L1-norm,
retraining for 50 epochs in the one-shot setting and for
5 in the iterative one, with 7 iterations. The pruning rate
is tuned between 0.5, 0.6, 0.7, 0.8 and 0.9 for the one-
shot case, while in the iterative case we experiment with
0.1 and 0.2. After pruning, we selected the best model
according to mAP and FPS and proceeded with applying
post-training quantization. We experimented with both
static and dynamic quantization.

3https://github.com/archie9211/Mask-Detection-Dataset
4Using the augmentation.transforms.MotionBlur method

from the Pyhton library “albumentations” (www.albumentations.io).

MIPRO 2022/CIS-AIS 1041

TABLE I: NUMBER OF PARAMETERS, FRAMES-PER-SECOND (FPS),
AND MEAN AVERAGE PRECISION (MAP) FOR EACH OF THE MOD-
ELS AFTER PRUNING IS APPLIED. THE UNPRUNED YOLOV4-TINY
MODEL IS INDICATED AS “BASELINE”. NAMING CONVENTION AS IN
SECTION IV-D2.

model # parameters FPS mAP

baseline 9.1M 0.99 0.618
one-shot0.5 3.1M 1.59 0.584
one-shot0.6 2.5M 1.67 0.587
one-shot0.7 2.1M 1.80 0.489
one-shot0.8 1.8M 1.93 0.446
one-shot0.9 1.5M 2.07 0.233
iterative0.1 3.0M 1.51 0.601
iterative0.2 1.8M 1.93 0.511

D. Results

1) Evaluation metrics: The various models are eval-
uated according to two different metrics: (a) Mean Av-
erage Precision (mAP) at IoU5 threshold of 0.5, and
(b) frames-per-second (FPS). In other references6, mAP
is also called APIoU=0.50. It measures the detection ac-
curacy taking into account both the correctness of the
predicted class and the overlap between the predicted
and the ground truth boxes. FPS, instead, measures the
inference speed by counting how many single frames are
sequentially elaborated by the model during execution on
a given machine. We record the FPS on the Raspberry Pi
4.

2) Pruning: In Table I, we report the results in terms of
mAP and FPS for the unpruned and the pruned models.
The unpruned model is referred to as “baseline”, while
the pruned models are named according to pruning tech-
nique employed, i.e., “one-shot” or “iterative”, followed
by the pruning rate written in subscript. For instance,
one-shot0.5 refers to a model sparsified with one-shot
pruning (see Section IV-C) with a pruning rate of 0.5. We
report the mAP after the application of the pre-processing
pipeline (“degradation”) reported in Section IV-A in an
attempt to reproduce the low-fidelity regime in which the
model is supposed to be deployed.

Our best result in terms of FPS (2.07) is achieved
after a one-shot pruning applied with a 90% pruning
rate (one-shot0.9), at the expense of a considerable
decrease in mAP with respect to the baseline. The
model one-shot0.6, despite not behaving as well as
one-shot0.9 in terms of FPS, achieves an acceptable
compromise between mAP (0.587) and FPS (1.67). We
thus deem one-shot0.6 to be the best pruned model
and proceed to apply quantization to it.

3) Quantization: Table II presents the results in terms
of FPS and mAP for one-shot0.6 after post-training
quantization. We keep the naming convention introduced
in Table I, appending “st-q” for indicating static quan-
tization and “dyn-q” for dynamic quantization. We can
witness how dynamic quantization, despite leaving the
mAP almost unchanged, loses in FPS with respect to

5The IoU quantifies the overlap between the predicted and the
ground trouth bounding boxes: it is calculated as the ratio between the
intersection of the areas of the two bounding boxes and their union.

6https://cocodataset.org/#detection-eval

TABLE II: NUMBER OF PARAMETERS, MODEL SIZE IN MB, FPS AND
MAP FOR “BASELINE” MODEL (UNPRUNED AND UNQUANTIZED),
ONE-SHOT0.6 BEFORE AND AFTER QUANTIZATION. STATIC QUANTI-
ZATION WITH FLOATING-POINT FALLBACK IS REFERRED TO AS “ST-
Q”, WHILE DYNAMIC QUANTIZATION IS CALLED “DYN-Q”. NAMING
CONVENTION AS IN SECTION IV-D2.

model # params. model size (MB) FPS mAP

baseline 9.1M 36.5 0.99 0.618
one-shot0.6 2.5M 12.3 1.67 0.587
one-shot0.6 dyn-q 2.5M 2.7 1.48 0.586
one-shot0.6 st-q 2.5M 2.7 1.97 0.574

the pruned model. This is most likely due to the fact
that the recalculation of dynamic ranges introduces a
large computational overhead. On the other hand, static
quantization records a small decrease in mAP (from 0.587
to 0.574), with a large increase in FPS (from 1.67 to 1.97).
Moreover, quantization sensibly reduces the model size of
the pruned model, from 12.3 to 2.7 MB. Thus, we select
one-shot0.6 with static quantization as the final model
for solving the task of face mask detection.

In Figure 1 we showcase the behavior of one-shot0.6

with static quantization on a set of on-the-wild images,
pointing out both strengths and weaknesses of our model.
A complete comment on that is present in Section V-A.

V. CONCLUSION

We proposed a lightweight Object Detection (OD) solu-
tion for the detection of face masks on people. In order for
our pipeline to be exploited in many real-life scenarios,
we wanted our model to have very small computational
requirements, so as to enable its implementation on low-
end devices. Our solution considered as a baseline a
variant of YOLOv4-Tiny, originally introduced in [2].
We trained it on a publicly available dataset (“Mask-
Detection-Dataset”). We then operated filter pruning,
with several re-training strategies, and two techniques
for quantization. After having applied (a) one-shot filter
pruning with pruning rate 0.6 and (b) static quantization
with integer fallback, we obtained a much faster model
(1.97 frames-per-second—FPS—compared to 0.99 FPS
of the baseline) at the cost of a smaller detection accu-
racy (0.574 Mean Average Precision—mAP—compared
to 0.618 mAP of the baseline); a good trade-off between
these two metrics was the target of our work, as stated in
Section I.

A. Discussion

A work with similar objectives as ours is [18]: it targets
deployment on low-end devices and it tackles the prob-
lem of image degradation due to the extremely limited
resources of these computers; however, it does not employ
YOLO and, instead, makes use of a two-stage pipeline of
face detection + face mask classification. A performance
comparison with this work is, though, unfeasible as (a) the
authors did not release their code publicly, and (b) FPS
are reported on a Raspberry Pi 4 enhanced with a neural
compute stick, which we do not employ, thus rendering
impossible a direct comparison of their reported results

1042 MIPRO 2022/CIS-AIS

(a) (b) (c) (d) (e) (f)

Fig. 1: Output of our final ANN one some on-the-wild images, showcasing strengths and weaknesses of this model. Preprocessing not applied for
clarity.

with ours. Other works reported in the present document
do not target an implementation on low-end device—
their objectives are substantially different from ours—
thus we deem a comparison with their solutions to be
out of the scope of our project. We can notice, though,
that the mAP reported in some other works seems to be
comparable with the one we obtained. For instance, Roy
et al. [17] report a mAP of 0.5627, while Kong et al. [18]
report a mAP of 0.645, both using YOLOv3. Kumar et al.
[12] communicate a mAP of 0.57 using YOLOv4. These
values seem to be in line with our reported mAP of 0.574
using the final quantized model.
In Figure 1, we can observe some strengths and weak-
nesses of our model deployed on-the-wild. First, we can
notice that it struggles with small or close objects (see
(1d), the female on the left to the correctly identified
male), or when faces are close to the edge of the image
(1c). These are common YOLO letdowns, already noted
in the literature (e.g., see [39]). Moreover, the model tends
to struggle when faces are positioned in profile (1b). On
the other hand, we can see that occluding one’s mouth
with a hand is not fooling the model (1a), while occlusion
with objects with a color similar to that of a face-mask,
e.g., a paper sheet, may produce wrong predictions (1e).
Finally, the model achieves mixed results when the mask
is worn incorrectly: in (1c) it correctly identifies that the
male in the center is wearing the mask under his nose;
conversely, in (1f) it does not. This weakness is certainly
due to the dataset, which lacks images of incorrectly-worn
masks, thus the model does not know how to behave in
these situations. Kumar et al. [12], Degadwala et al. [13]
have solved this issue by designing datasets whose labels
include a third category—mask incorrectly worn.
Ideas for future work include (a) extension to other,
more comprehensive datasets, and (b) experimenting with
more computationally-expensive pruning techniques, like
learning-rate rewind with full retraining [25], or more
recent filter pruning ones, like those proposed in [40] or
[41].

REFERENCES

[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,
“Yolov4: Optimal speed and accuracy of object
detection,” arXiv preprint arXiv:2004.10934, 2020.

[2] Z. Jiang, L. Zhao, S. Li, and Y. Jia, “Real-time object
detection method based on improved yolov4-tiny,”
ArXiv, vol. abs/2011.04244, 2020.

[3] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning filters for efficient convnets,” 2017.

[4] A. A. Süzen, B. Duman, and B. Şen, “Benchmark
analysis of jetson tx2, jetson nano and raspberry
pi using deep-cnn,” in 2020 International Congress
on Human-Computer Interaction, Optimization and
Robotic Applications (HORA), 2020, pp. 1–5.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
“Rich feature hierarchies for accurate object de-
tection and semantic segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object de-
tection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp.
779–788.

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dol-
lár, “Focal loss for dense object detection,” in Pro-
ceedings of the IEEE international conference on
computer vision, 2017, pp. 2980–2988.

[8] Z. Liu et al., “Swin transformer: Hierarchical vision
transformer using shifted windows,” arXiv preprint
arXiv:2103.14030, 2021.

[9] V. Kharchenko and I. Chyrka, “Detection of air-
planes on the ground using yolo neural network,” in
2018 IEEE 17th international conference on mathe-
matical methods in electromagnetic theory (MMET).
IEEE, 2018, pp. 294–297.

[10] L. Tan, T. Huangfu, L. Wu, and W. Chen, “Com-
parison of retinanet, ssd, and yolo v3 for real-time
pill identification,” BMC medical informatics and
decision making, vol. 21, no. 1, pp. 1–11, 2021.

[11] W. Fang, L. Wang, and P. Ren, “Tinier-yolo: A
real-time object detection method for constrained
environments,” IEEE Access, vol. 8, pp. 1935–1944,
2020.

[12] A. Kumar, A. Kalia, K. Verma, A. Sharma, and
M. Kaushal, “Scaling up face masks detection with
yolo on a novel dataset,” Optik, vol. 239, p. 166744,
2021.

[13] S. Degadwala, D. Vyas, U. Chakraborty, A. R.
Dider, and H. Biswas, “Yolo-v4 deep learning model
for medical face mask detection,” in 2021 Inter-
national Conference on Artificial Intelligence and
Smart Systems (ICAIS), 2021, pp. 209–213.

[14] J. Yu and W. Zhang, “Face mask wearing detection

MIPRO 2022/CIS-AIS 1043

algorithm based on improved yolo-v4,” Sensors,
vol. 21, no. 9, p. 3263, 2021.

[15] S. Abbasi, H. Abdi, and A. Ahmadi, “A face-mask
detection approach based on yolo applied for a
new collected dataset,” in 2021 26th International
Computer Conference, Computer Society of Iran
(CSICC), 2021, pp. 1–6.

[16] S. Asif, Y. Wenhui, Y. Tao, S. Jinhai, and K. Amjad,
“Real time face mask detection system using transfer
learning with machine learning method in the era
of covid-19 pandemic,” in 2021 4th International
Conference on Artificial Intelligence and Big Data
(ICAIBD), 2021, pp. 70–75.

[17] B. Roy, S. Nandy, D. Ghosh, D. Dutta, P. Biswas,
and T. Das, “Moxa: a deep learning based unmanned
approach for real-time monitoring of people wearing
medical masks,” Transactions of the Indian National
Academy of Engineering, vol. 5, no. 3, pp. 509–518,
2020.

[18] X. Kong et al., “Real-time mask identification for
covid-19: An edge computing-based deep learning
framework,” IEEE Internet of Things Journal, pp.
1–1, 2021.

[19] J. O. Neill, “An overview of neural network com-
pression,” arXiv preprint arXiv:2006.03669, 2020.

[20] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani,
“N2n learning: Network to network compression
via policy gradient reinforcement learning,” arXiv
preprint arXiv:1709.06030, 2017.

[21] J. Xue, J. Li, and Y. Gong, “Restructuring of deep
neural network acoustic models with singular value
decomposition.” in Interspeech, 2013, pp. 2365–
2369.

[22] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and
A. Peste, “Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural
networks,” arXiv preprint arXiv:2102.00554, 2021.

[23] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell,
“Rethinking the value of network pruning,” in Inter-
national Conference on Learning Representations,
2019.

[24] S. Han, J. Pool, J. Tran, and W. Dally, “Learning
both weights and connections for efficient neural
network,” in Advances in Neural Information Pro-
cessing Systems 28, 2015, pp. 1135–1143.

[25] A. Renda, J. Frankle, and M. Carbin, “Comparing
rewinding and fine-tuning in neural network prun-
ing,” arXiv preprint arXiv:2003.02389, 2020.

[26] M. Zullich, E. Medvet, F. A. Pellegrino, and A. An-
suini, “Speeding-up pruning for artificial neural net-
works: introducing accelerated iterative magnitude
pruning,” in 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE, 2021, pp. 3868–

[28] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE

3875.
[27] S. Liu et al., “Sparse training via boosting pruning

plasticity with neuroregeneration,” arXiv preprint
arXiv:2106.10404, 2021.
transactions on information theory, vol. 44, no. 6,
pp. 2325–2383, 1998.

[29] P. Micikevicius et al., “Mixed precision training,” in
International Conference on Learning Representa-
tions, 2018.

[30] B. Jacob et al., “Quantization and training of neural
networks for efficient integer-arithmetic-only infer-
ence,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp.
2704–2713.

[31] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang,
“Pruning and quantization for deep neural network
acceleration: A survey,” Neurocomputing, vol. 461,
pp. 370–403, 2021.

[32] T. Wang, R. M. Anwer, H. Cholakkal, F. S. Khan,
Y. Pang, and L. Shao, “Learning rich features at
high-speed for single-shot object detection,” in Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 1971–1980.

[33] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and
M. Li, “Bag of tricks for image classification with
convolutional neural networks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 558–567.

[34] L. Liu et al., “On the variance of the adaptive
learning rate and beyond,” 2020.

[35] D. P. Kingma and J. Ba, “Adam: A method
for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[36] A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in
Neural Information Processing Systems, vol. 32,
2019.

[37] P. Warden and D. Situnayake, Tinyml: Machine
learning with tensorflow lite on arduino and ultra-
low-power microcontrollers. O’Reilly Media, 2019.

[38] S. Jastrzębski et al., “Three factors influencing min-
ima in sgd,” arXiv preprint arXiv:1711.04623, 2017.

[39] M. C. Arya and A. Rawat, “A review on yolo (you
look only one)-an algorithm for real time object
detection,” Journal of Engineering Science, 2020.

[40] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and
M. Jaggi, “Dynamic model pruning with feedback,”
in International Conference on Learning Represen-
tations, 2020.

[41] L. Cai, Z. An, C. Yang, and Y. Xu, “Softer pruning,
incremental regularization,” in 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR),
2021, pp. 224–230.

1044 MIPRO 2022/CIS-AIS

