
Application of Evolutionary Optimization in Task 

Mapping and Scheduling for Heterogeneous 

Mobile-Edge Computing 
 

Nikolina Frid, Marko Đurasević   

University of Zagreb Faculty of Electrical Engineering and Computing, Zagreb, Croatia 

nikolina.frid@fer.hr  

 

 
Abstract — The growing demand for computational power 

in mobile and Internet of Things (IoT) applications, 

particularly in real-time contexts like autonomous driving, 

requires efficient task offloading to the cloud. However, 

challenges arise due to the need for stable internet connectivity 

and uncertainties in cloud responsiveness, especially in real-

time systems. To overcome these challenges, partial task 

offloading to edge devices, which are placed between mobile or 

IoT devices and the cloud, is employed. This paper investigates 

task mapping and scheduling within a heterogeneous mobile-

edge-cloud architecture with limited connectivity between 

nodes, and constrained task executability at the mobile and 

edge layers. Based on similarities with challenges in 

heterogeneous multiprocessor embedded systems, the paper 

explores the application of NSGA-II-based algorithms that 

were previously successfully applied in task mapping and 

scheduling for sparsely connected heterogeneous 

multiprocessor platforms. The algorithms are evaluated in the 

heterogeneous mobile-edge-cloud setting, and based on their 

results, possibilities for optimizing computational task 

allocation are discussed.  

Key words – mobile-edge computing, evolutionary 

algorithms, optimization, scheduling  

I.  INTRODUCTION 

The classical cloud architecture is increasingly being 
replaced by the Mobile Edge Cloud (MEC) architecture, 
primarily due to numerous IoT systems that require data 
processing closer to the data source [1]-[3]. MEC 
applications span across various sectors, such as healthcare, 
augmented and virtual reality, multi-player gaming, 
interactive multimedia, video analytics, smart environments, 
industrial control systems, vehicular communications, and 
road traffic monitoring [4]. However, a significant problem 
arises as data generated by mobile devices, wearables, 
sensors, and IoT devices is often sent to remote clouds for 
processing and storage [5][6]. With the anticipated data 
generation from IoT devices projected to reach 79.4 
zettabytes by 2025 [7], traditional cloud architecture can 
impair applications and degrade Quality of Service (QoS). 

The challenge of processing time (real-time or near-real-
time, as in autonomous driving [8]) and data transfer remains 
crucial due to its impact on costs and energy consumption, 
particularly for battery-powered IoT devices. The solution 
involves bringing computing resources closer to devices and 
sensors, potentially distributing them across Mobile/IoT, 
edge, and cloud layers [9]. However, edge resources differ 

from cloud ones, being resource-constrained, 
heterogeneous, and subject to varying workloads.  

Managing resources in fog and edge computing poses a 
significant challenge, as traditional heuristic approaches 
struggle with diverse and dynamic workloads [10]-[12]. 
Hence, the utilization of AI/ML techniques to optimize 
resource management becomes necessary [13]-[15]. In this 
context, the problem of task mapping and scheduling can be 
compared to the mapping and scheduling problem in 
heterogeneous embedded computing systems [16][17]. 
Therefore, this paper aims to examine several algorithms 
that have proven successful in that domain and explore the 
possibilities and limitations of their application in mobile-
edge-cloud architecture. 

The rest of this paper is organized as follows. Section 2 
reviews the relevant literature on scheduling and mapping in 
both MEC architecture and heterogeneous multiprocessor 
embedded systems. In Section 3, we define the problem, 
covering task and platform models, along with the 
optimization problem formulation and algorithm 
descriptions. Section 4 provides the evaluation, including 
test cases, results, and discussions. The paper concludes in 
Section 5, summarizing key insights and contributions. 

II. RELATED WORK 

Task mapping and scheduling within the Mobile Edge 
Cloud architecture is an active research area. Typically, 
researchers optimize the total task execution time, deadline 
violation, and energy consumption [18]. However, due to the 
complexity of this problem, many studies tend to simplify 
the inherent heterogeneity of this architecture by modeling 
the edge and the cloud as a single entity, overlooking its 
individual nodes [19].  

Moreover, existing works often assume a simplified 
connection model where all elements are fully 
interconnected and between each two elements there is a 
single connection, without exploring the possibilities of 
multiple connections between two elements with varying 
speeds or the lack of connection between two elements [20]-
[22]. Additionally, these studies tend to make assumptions 
such as considering the mobile component incapable of 
executing any tasks [20][21], or assuming that every node 
can execute all tasks, albeit at different speeds [19][22]. 
However, none of these works consider the case where an 
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element is able to execute some but not all tasks from the 
taskset.  

The study conducted in [23] tackles the issue of task 
mapping and scheduling for clustered heterogeneous 
multiprocessor embedded platforms characterized by 
limitations in execution capabilities and connectivity. These 
limitations manifest in scenarios where certain processors 
are unable to execute specific tasks, and not every pair of 
processors is interconnected. Consequently, these 
constraints give rise to infeasible solutions within the design 
space, wherein a solution is deemed infeasible when a task 
is mapped to a processor either incapable of executing the 
task or disconnected from processors where the task's 
predecessors or successors are executed. In this study, 
several new algorithms based on the Non-dominated Sorting 
Genetic Algorithm II (NSGA-II) meta-heuristic [24] are 
introduced and achieve nearly 100% success rate in finding 
feasible solutions. Due to the significant constraints in such 
a problem caused by reduced connectivity and the 
incapability of heterogeneous elements to execute all tasks, 
which results in the very large number of infeasible solutions 
in the design space, finding a feasible solution is a success 
in itself [25][26].  

As stated earlier, parallels can be drawn between 
mapping and scheduling problems in the embedded 
heterogeneous systems and the Mobile Edge Cloud 
architecture. Hence, this paper will explore how these 
algorithms can be applied to a Mobile Edge Cloud 
architecture in which there are different nodes, also grouped 
in clusters, and there is a certain limit to interconnectivity, 
albeit a little more relaxed than in the case explored for 
embedded systems described in the original paper.  

III. METHODOLOGY 

In this section a comprehensive problem definition that 
encompasses application models, platform models, and the 
formulation of the optimization problem is presented. 
Furthermore, within this section, the algorithms applied to 
the scheduling and mapping problem within the context of 
Mobile Edge Cloud architecture are described. 

A. Problem definition 

The application which is executed on the MEC 

architecture is modelled as a set of tasks connected in a 

Directed Acyclic Graph (DAG), 𝐴𝐺 = (𝑇, 𝐶ℎ) . Graph 

vertices 𝑡 ∈ 𝑇  represent application tasks, while edges 

connected to each vertex t, 𝐶ℎ𝑡 ⊆ 𝐶ℎ represent 

communication between tasks. Edge weight, given by a 

weight function:  

 wCh : 𝐶ℎ → ℝ (1) 
is the amount of data exchanged (in KB) between two 

tasks. 

The platform architecture is modelled as an undirected 

graph 𝑃𝐺 = (𝑃, 𝐿) . Node Pp represents a processing 

element and 𝑙 ∈ 𝐿 represents a link between two processors. 

The weight on an edge, given by a weight function: 

 →L
l

w :  ℝ (2) 

represents communication speed between two 

processors in both directions (read and write operations are 

assumed to be the same).  For every p, a set of execution 

times of each task from AG is defined as Tp = {T0, … Tn}.  

If a task cannot be executed on a certain processing element, 

then its execution time is set to infinity. It is assumed that a 

processor can execute one task at a time, and there is no pre-

emption. 

The platform is generally divided into three layers: 

Mobile/IoT, Edge, and Cloud, as shown in Figure 1. 

Accordingly, we consider three main types of nodes. 

Mobile/IoT node represents a single IoT or mobile phone 

node that represents the endpoint from which the taskset 

originates and that collects the results after the entire task 

set has finished execution. It is assumed that this node type 

can have certain limitations in its ability to execute certain 

tasks from the taskset. For example, certain tasks might be 

implemented using specific libraries (e.g. signal operations, 

or graphic manipulations) that cannot be executed on 

general purpose mobile and embedded processors without 

significant redesign [26][27].  

 

In the Edge layer, there is a certain number of edge 

nodes. Each edge node can internally consist of multiple 

cores. Cores inside the edge node are fully interconnected 

with a high-speed connection. Edge nodes are connected to 

Mobile/IoT nodes, to each other, and to the Cloud. Each of 

these connections can have different throughout. In general, 

connections to Cloud and adjacent edge nodes are 

considered to be faster than connections to Mobile/IoT and 

other distant edge nodes. Finally, the Cloud is viewed as a 

unit containing multiple processing cores with high-speed 

connections between cores. 

Given the application model (T,Ch)AG =  and a 

platform model 𝑃𝐺 = (𝑃, 𝐿), a valid mapping is a pair of 

unique assignments (mt : T →P; mCh : Ch→L). For each task 

assigned to a processor, an execution schedule is created. 

The goal of mapping and scheduling is to minimize two 

objectives: total execution time (makespan) 𝐶𝑚𝑎𝑥 and total 

number of hops between layers 𝑁𝑚𝑎𝑥 . The second objective 

is introduced in such form because it would not be 

beneficial to just count the number of cores used, because 

the is no real downside to using multiple cores inside one 

edge node or inside the cloud, but when sending data 

between layers, it must be transferred over internet which 

can incur costs, and it can also be unreliable or unstable, so 

 
 

Figure 1 Platform graph 
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the general idea is to minimize the use of internet. 

The multiobjective optimization problem can finally be 

expressed as  

𝑚𝑖𝑛{𝐶𝑚𝑎𝑥(𝑥), 𝑁𝑚𝑎𝑥(𝑥)}          (3) 

where 𝐶𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥  are conflicting objective 

functions 𝑓𝑖 ∶  ℝ𝑛  → ℝ  to be minimized simultaneously. 

B. Optimization algorithms 

Four algorithms, SDSE, N-SDSE, C-SDSE and CN-
SDSE, were employed to address the previously outlined 
multi-objective problem, initially introduced in papers [17] 
and [23]. All these algorithms are based on the NSGA-II 
evolutionary metaheuristic, with adjustments made to the 
search process and fitness evaluation methods to suit the 
specific complexities of task mapping and scheduling in 
heterogeneous systems. Originally designed to optimize 
makespan and total elements used, these algorithms were 
adapted for this study. While makespan remains the primary 
objective, the secondary objective was adjusted to minimize 
the number of hops between layers, aligning with the unique 
requirements of the considered heterogeneous system.  

SDSE is an algorithm specifically designed for task 
mapping and scheduling within heterogeneous 
multiprocessor embedded systems featuring multiple 
communication paths between two processors [17]. 
Moreover, the algorithm's search process is customized to 
address a common challenge in embedded and IoT systems, 
where processors cannot execute all types of tasks. It is 
designed to entirely circumvent mapping tasks to processors 
that lack the capability to execute them, thus preventing the 
creation of infeasible solutions and ensuring a more effective 
convergence of the search process. However, in scenarios 
where all processors are not fully interconnected, meaning 
there is no path between certain pairs of processors, the 
algorithm may not completely avoid such mappings. In such 
case, it will attempt to prune them from the search space by 
setting their objectives to infinity. 

While the SDSE algorithm treats all infeasible solutions 
uniformly, making no distinction between cases with only a 
few instances of consecutive procedures mapped to 
unconnected processors and those with many such instances, 
the N-SDSE algorithm [23] introduces a penalty system. 
This modification aims to create the gradation of “bad” 
solutions, which is one of the most popular constraint-
handling techniques [28][29]. In this modified approach, the 
objective values of infeasible solutions are no longer infinite. 
Instead, when it is impossible to find a feasible mapping for 

a task, a large penalty is added to each objective value. This 
modification intends to provide solutions with fewer 
infeasible connections, which may potentially evolve into 
viable options through various crossovers and/or mutations, 
a higher chance to advance to the next generation compared 
to solutions with more substantial penalties and more 
infeasible mappings. 

The C-SDSE and CN-SDSE algorithms [23] introduce a 
specific modification tailored for sparsely connected 
clustered platforms. This modification implements a two-
stage task mapping approach: initially assigning tasks to 
clusters and subsequently mapping each task to a processor 
within the pre-assigned cluster. Cluster detection on the 
platform occurs in advance, using a straightforward heuristic 
where any group of processors connected to the same 
memory is regarded as a cluster. For the study presented in 
this paper, the definition of clusters extends to include cores 
within each Edge Node, cores within Cloud, and Mobile/IoT 
Node with Edge Nodes to which it has connections. 
Additionally, in the C-SDSE algorithm, all infeasible 
solutions have their objective values set to infinity, while in 
the CN-SDSE algorithm, infeasible solutions are penalized 
in the same way as it is done in the N-SDSE algorithm. 

IV. EVALUATION 

The performance of the four algorithms was tested on 80 
test cases. These cases were designed using four task graphs 
and four platform models, which were combined and 
evaluated for each of the five different Communication to 
Computation Ratios (CCRs), a standard metric used in the 
synthesis of artificial test cases in which the application is 
given as DAG [30]. The test cases and the results obtained 
are presented in the remainder of this section. 

A. System models 

Test cases were built based on four task graphs given in 
Figure 2, each comprising 30 tasks. The maximum number 
of concurrent tasks ranges from 7 to 10 in each graph, and 
loops are not present. The complexity of predecessor-
successor connections is the lowest in A1 and the highest in 
A4.  

Furthermore, four platform models P1-P4, all based on 
the layout depicted in Figure 1, were used. Across all 
models, three node types are present: Mobile/IoT, Edge, and 
Cloud. The Mobile/IoT node features a single processing 
core and is exclusively linked to two Edge nodes. There are 
a total of four Edge nodes (EN), each equipped with four 

 

  A1    A2   A3   A4 

Figure 2 Application models 
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cores (EC). Internally, the connection speed between cores 
within an Edge node is 100 times faster than that between 
IoT and Edge. The connection speed between adjacent Edge 
nodes is four times faster than that between IoT and Edge, 
and the connection speed between non-adjacent nodes is 
twice as fast. 

Edge nodes are connected to the Cloud, which is 
represented as a network of ten fully connected cores (CC), 
each operating 16 times faster than a basic Mobile/IoT node. 
The connection speed between Edge nodes and the Cloud is 
10 times faster than that between Mobile/IoT and Edge, and 
the connection speed between cores within the cloud is 1000 
times faster. 

The four models differed in the characteristics of the 
Mobile/IoT node and the speed of its connection to the Edge 
layer. For the first model, P1, the Mobile/IoT Node can 
execute only 50% of tasks from each task graph and is the 
slowest. In the second model, P2, the Mobile/IoT Node can 
execute 75% of tasks and is twice as fast as the first model. 
In the third model, P3, the Mobile/IoT Node can execute all 
tasks and is four times faster than the first model. In the 
fourth model, P4, the Mobile/IoT node is eight times faster 
than the first model, and its connection speed to Edge nodes 
is two times faster than in previous models. A concise 
summary of these specifications is presented in Table 1. 

TABLE 1 NODE CHARACTERISTICS AND CONNECTION SPEEDS ACROSS 

FOUR MODELS 

Processor 

type 

Execution 

speed 
Connected to : Connection speed 

Mobile/IoT1 1 EN : 1  

Mobile/IoT2 2 EN : 1 

Mobile/IoT3 4 EN : 1 

Mobile/IoT4 8 EN : 2 

EN 8 

IoT : 1  

EN (same Edge Node) : 100 

EN (adjacent Edge Node) : 4 
EN (non-adjacent Edge Node) : 2 

CN 16 
EN : 10 

CN : 100000 

 

For each combination of task graph and platform model, 
we considered five different CCR values: 0.01, 0.1, 1, 10, 
and 100. 

Regarding the computation of the two objectives 𝐶𝑚𝑎𝑥 
and 𝑁𝑚𝑎𝑥 , the makespan 𝐶𝑚𝑎𝑥 , is calculated as the time 
required to execute all tasks in a taskset for a given mapping. 

The second objective, 𝑁𝑚𝑎𝑥  , quantifies the number of data 
transfers between distinct nodes, and its value is increased 
by 1 when data is transferred between IoT and Edge, and by 
0.5 when it is transferred between two edge nodes or 
between edge and cloud.  

B. Results and Discussion 

All four algorithms have been tested across all 
combinations of the task graphs, platform models, and 
CCRs detailed in the previous section, resulting in a total of 
80 test cases. 

Basic algorithm parameters such as the population size, 
stopping criteria, and genetic operators were the same for 
all algorithms and all test cases, as follows: 

• Initial population: 100 randomly generated 
chromosomes 

• Termination criteria: Algorithm halts after 105 
generations 

• Genetic operators employed: 1x, 2x, ux, sbx, spx, 
pcx, undx, pm, and um 

• Each test case underwent 30 repetitions. 

All four algorithms are compared based on the 
Hypervolume (HV) metric and the values of both objectives 
𝐶𝑚𝑎𝑥  and  𝑁𝑚𝑎𝑥 . The HV metric assesses two critical 
aspects of an approximation: convergence and diversity 
[31][32]. Convergence measures the closeness of an 
approximation to the true Pareto Optimal Front (POF), 
while diversity reflects the uniformity and extensiveness of 
the approximation. Calculated as the volume of hyperspace 
between the algorithm’s POF and the nadir point, the worst 
solution from the unified set of all solutions with a delta 
added to the extremes for contribution to HV computation. 
Higher HV indicates superior performance in comparison. 
For problems with two objectives, HV represents the 
quadratic surface area between points in the POF and Nadir 
point. 

In Figure 3, the HV metric scores for each platform 
model (P1-P4) and application model (A1-A4) are 
presented. The results demonstrate that in each test case the 
SDSE algorithm consistently outperforms all other 
algorithms. While C-SDSE and N-SDSE exhibit somewhat 
similar HV values in most cases, CN-SDSE consistently 
ranks the lowest. Notably, the CN-SDSE algorithm shows 
the least success in finding feasible solutions, with instances 
where no feasible solution was found at all.  

 
 

   
(a) P1    (b) P2         (c) P3              (d) P4 

 

Figure 3 Hypervolume metric scores for platform models P1-P4 and application models A1-A4 
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Figures 4 and 5 depict the range of minimal values of 
objectives 𝐶𝑚𝑎𝑥  and  𝑁𝑚𝑎𝑥  identified by each algorithm. 
The analysis is segmented by each CCR value.  Regarding 
the 𝐶𝑚𝑎𝑥objective, although the SDSE algorithm remains 
superior overall, the minimal execution times obtained by 
each algorithm become comparable as CCR increases. 
Upon closer examination of the values of the 
𝐶𝑚𝑎𝑥  objective, notably high for CCR values 10 and 100, it 
becomes evident that all algorithms perform poorly in this 
case. In such instances, the optimal solution would involve 
utilizing a maximum of two nodes (provided the 
IoT/Mobile node cannot execute all tasks), as any other 
solution would significantly prolong the total makespan due 
to extensive data exchange between nodes. This suggests 
that for high CCRs, it may be worth considering further 
refining the search process, considering only smaller 
subsets of nodes and prioritizing assigning consecutive 
tasks to the same processors. 

Regarding the 𝑁𝑚𝑎𝑥 objective, the SDSE algorithm 
consistently outperforms others irrespective of CCR 
changes, with minimal 𝑁𝑚𝑎𝑥 values consistently falling 
within the range of 5-15 across all test cases. This 
underscores SDSE's superior capability in minimizing 
traffic between different node types, even in the absence of 
direct cluster detection support. These findings, coupled 
with SDSE's strong performance for lower CCRs, suggest 
that fewer constraints on design space exploration yield 
better results for this problem. Furthermore, treating all 
infeasible solutions as equally bad, assigning them an 
infinite value, proves most effective, as any gradation 
causes converging around non-optimal points, which 
provides inferior results. This observation also aligns with 
previous research on sparsely connected heterogeneous 
embedded systems. 

 

CONCLUSION 

This paper explored the problem of task mapping and 
scheduling within a heterogeneous mobile-edge-cloud 
architecture where nodes have limited connections and 
constrained task processing capabilities. By adapting four 
NSGA-II-based algorithms known for handling similar 
issues in sparsely connected heterogeneous multiprocessor 
platforms, the study evaluated 80 different scenarios, testing 
various application and platform models along with different 
communication-to-computation ratios. The results 
emphasize the importance of keeping constraints minimal 
for better outcomes. Additionally, treating all infeasible 
solutions equally, by giving them an infinite value, proves 
most effective. Any gradation of infeasible solutions leads to 
convergence around sub-optimal points, resulting in poorer 
results. These findings reveal important strategies for 
improving task mapping and scheduling in complex setups, 
paving the way for further research and practical 
implementations.  
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