
Application of Evolutionary Optimization in Task

Mapping and Scheduling for Heterogeneous

Mobile-Edge Computing

Nikolina Frid, Marko Đurasević

University of Zagreb Faculty of Electrical Engineering and Computing, Zagreb, Croatia

nikolina.frid@fer.hr

Abstract — The growing demand for computational power

in mobile and Internet of Things (IoT) applications,

particularly in real-time contexts like autonomous driving,

requires efficient task offloading to the cloud. However,

challenges arise due to the need for stable internet connectivity

and uncertainties in cloud responsiveness, especially in real-

time systems. To overcome these challenges, partial task

offloading to edge devices, which are placed between mobile or

IoT devices and the cloud, is employed. This paper investigates

task mapping and scheduling within a heterogeneous mobile-

edge-cloud architecture with limited connectivity between

nodes, and constrained task executability at the mobile and

edge layers. Based on similarities with challenges in

heterogeneous multiprocessor embedded systems, the paper

explores the application of NSGA-II-based algorithms that

were previously successfully applied in task mapping and

scheduling for sparsely connected heterogeneous

multiprocessor platforms. The algorithms are evaluated in the

heterogeneous mobile-edge-cloud setting, and based on their

results, possibilities for optimizing computational task

allocation are discussed.

Key words – mobile-edge computing, evolutionary

algorithms, optimization, scheduling

I. INTRODUCTION

The classical cloud architecture is increasingly being
replaced by the Mobile Edge Cloud (MEC) architecture,
primarily due to numerous IoT systems that require data
processing closer to the data source [1]-[3]. MEC
applications span across various sectors, such as healthcare,
augmented and virtual reality, multi-player gaming,
interactive multimedia, video analytics, smart environments,
industrial control systems, vehicular communications, and
road traffic monitoring [4]. However, a significant problem
arises as data generated by mobile devices, wearables,
sensors, and IoT devices is often sent to remote clouds for
processing and storage [5][6]. With the anticipated data
generation from IoT devices projected to reach 79.4
zettabytes by 2025 [7], traditional cloud architecture can
impair applications and degrade Quality of Service (QoS).

The challenge of processing time (real-time or near-real-
time, as in autonomous driving [8]) and data transfer remains
crucial due to its impact on costs and energy consumption,
particularly for battery-powered IoT devices. The solution
involves bringing computing resources closer to devices and
sensors, potentially distributing them across Mobile/IoT,
edge, and cloud layers [9]. However, edge resources differ

from cloud ones, being resource-constrained,
heterogeneous, and subject to varying workloads.

Managing resources in fog and edge computing poses a
significant challenge, as traditional heuristic approaches
struggle with diverse and dynamic workloads [10]-[12].
Hence, the utilization of AI/ML techniques to optimize
resource management becomes necessary [13]-[15]. In this
context, the problem of task mapping and scheduling can be
compared to the mapping and scheduling problem in
heterogeneous embedded computing systems [16][17].
Therefore, this paper aims to examine several algorithms
that have proven successful in that domain and explore the
possibilities and limitations of their application in mobile-
edge-cloud architecture.

The rest of this paper is organized as follows. Section 2
reviews the relevant literature on scheduling and mapping in
both MEC architecture and heterogeneous multiprocessor
embedded systems. In Section 3, we define the problem,
covering task and platform models, along with the
optimization problem formulation and algorithm
descriptions. Section 4 provides the evaluation, including
test cases, results, and discussions. The paper concludes in
Section 5, summarizing key insights and contributions.

II. RELATED WORK

Task mapping and scheduling within the Mobile Edge
Cloud architecture is an active research area. Typically,
researchers optimize the total task execution time, deadline
violation, and energy consumption [18]. However, due to the
complexity of this problem, many studies tend to simplify
the inherent heterogeneity of this architecture by modeling
the edge and the cloud as a single entity, overlooking its
individual nodes [19].

Moreover, existing works often assume a simplified
connection model where all elements are fully
interconnected and between each two elements there is a
single connection, without exploring the possibilities of
multiple connections between two elements with varying
speeds or the lack of connection between two elements [20]-
[22]. Additionally, these studies tend to make assumptions
such as considering the mobile component incapable of
executing any tasks [20][21], or assuming that every node
can execute all tasks, albeit at different speeds [19][22].
However, none of these works consider the case where an

108 MIPRO 2024/AIS

mailto:nikolina.frid@fer.hr

element is able to execute some but not all tasks from the
taskset.

The study conducted in [23] tackles the issue of task
mapping and scheduling for clustered heterogeneous
multiprocessor embedded platforms characterized by
limitations in execution capabilities and connectivity. These
limitations manifest in scenarios where certain processors
are unable to execute specific tasks, and not every pair of
processors is interconnected. Consequently, these
constraints give rise to infeasible solutions within the design
space, wherein a solution is deemed infeasible when a task
is mapped to a processor either incapable of executing the
task or disconnected from processors where the task's
predecessors or successors are executed. In this study,
several new algorithms based on the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) meta-heuristic [24] are
introduced and achieve nearly 100% success rate in finding
feasible solutions. Due to the significant constraints in such
a problem caused by reduced connectivity and the
incapability of heterogeneous elements to execute all tasks,
which results in the very large number of infeasible solutions
in the design space, finding a feasible solution is a success
in itself [25][26].

As stated earlier, parallels can be drawn between
mapping and scheduling problems in the embedded
heterogeneous systems and the Mobile Edge Cloud
architecture. Hence, this paper will explore how these
algorithms can be applied to a Mobile Edge Cloud
architecture in which there are different nodes, also grouped
in clusters, and there is a certain limit to interconnectivity,
albeit a little more relaxed than in the case explored for
embedded systems described in the original paper.

III. METHODOLOGY

In this section a comprehensive problem definition that
encompasses application models, platform models, and the
formulation of the optimization problem is presented.
Furthermore, within this section, the algorithms applied to
the scheduling and mapping problem within the context of
Mobile Edge Cloud architecture are described.

A. Problem definition

The application which is executed on the MEC

architecture is modelled as a set of tasks connected in a

Directed Acyclic Graph (DAG), 𝐴𝐺 = (𝑇, 𝐶ℎ) . Graph

vertices 𝑡 ∈ 𝑇 represent application tasks, while edges

connected to each vertex t, 𝐶ℎ𝑡 ⊆ 𝐶ℎ represent

communication between tasks. Edge weight, given by a

weight function:

 wCh : 𝐶ℎ → ℝ (1)
is the amount of data exchanged (in KB) between two

tasks.

The platform architecture is modelled as an undirected

graph 𝑃𝐺 = (𝑃, 𝐿) . Node Pp represents a processing

element and 𝑙 ∈ 𝐿 represents a link between two processors.

The weight on an edge, given by a weight function:

 →L
l

w : ℝ (2)

represents communication speed between two

processors in both directions (read and write operations are

assumed to be the same). For every p, a set of execution

times of each task from AG is defined as Tp = {T0, … Tn}.

If a task cannot be executed on a certain processing element,

then its execution time is set to infinity. It is assumed that a

processor can execute one task at a time, and there is no pre-

emption.

The platform is generally divided into three layers:

Mobile/IoT, Edge, and Cloud, as shown in Figure 1.

Accordingly, we consider three main types of nodes.

Mobile/IoT node represents a single IoT or mobile phone

node that represents the endpoint from which the taskset

originates and that collects the results after the entire task

set has finished execution. It is assumed that this node type

can have certain limitations in its ability to execute certain

tasks from the taskset. For example, certain tasks might be

implemented using specific libraries (e.g. signal operations,

or graphic manipulations) that cannot be executed on

general purpose mobile and embedded processors without

significant redesign [26][27].

In the Edge layer, there is a certain number of edge

nodes. Each edge node can internally consist of multiple

cores. Cores inside the edge node are fully interconnected

with a high-speed connection. Edge nodes are connected to

Mobile/IoT nodes, to each other, and to the Cloud. Each of

these connections can have different throughout. In general,

connections to Cloud and adjacent edge nodes are

considered to be faster than connections to Mobile/IoT and

other distant edge nodes. Finally, the Cloud is viewed as a

unit containing multiple processing cores with high-speed

connections between cores.

Given the application model (T,Ch)AG = and a

platform model 𝑃𝐺 = (𝑃, 𝐿), a valid mapping is a pair of

unique assignments (mt : T →P; mCh : Ch→L). For each task

assigned to a processor, an execution schedule is created.

The goal of mapping and scheduling is to minimize two

objectives: total execution time (makespan) 𝐶𝑚𝑎𝑥 and total

number of hops between layers 𝑁𝑚𝑎𝑥 . The second objective

is introduced in such form because it would not be

beneficial to just count the number of cores used, because

the is no real downside to using multiple cores inside one

edge node or inside the cloud, but when sending data

between layers, it must be transferred over internet which

can incur costs, and it can also be unreliable or unstable, so

Figure 1 Platform graph

MIPRO 2024/AIS 109

the general idea is to minimize the use of internet.

The multiobjective optimization problem can finally be

expressed as

𝑚𝑖𝑛{𝐶𝑚𝑎𝑥(𝑥), 𝑁𝑚𝑎𝑥(𝑥)} (3)

where 𝐶𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥 are conflicting objective

functions 𝑓𝑖 ∶ ℝ𝑛 → ℝ to be minimized simultaneously.

B. Optimization algorithms

Four algorithms, SDSE, N-SDSE, C-SDSE and CN-
SDSE, were employed to address the previously outlined
multi-objective problem, initially introduced in papers [17]
and [23]. All these algorithms are based on the NSGA-II
evolutionary metaheuristic, with adjustments made to the
search process and fitness evaluation methods to suit the
specific complexities of task mapping and scheduling in
heterogeneous systems. Originally designed to optimize
makespan and total elements used, these algorithms were
adapted for this study. While makespan remains the primary
objective, the secondary objective was adjusted to minimize
the number of hops between layers, aligning with the unique
requirements of the considered heterogeneous system.

SDSE is an algorithm specifically designed for task
mapping and scheduling within heterogeneous
multiprocessor embedded systems featuring multiple
communication paths between two processors [17].
Moreover, the algorithm's search process is customized to
address a common challenge in embedded and IoT systems,
where processors cannot execute all types of tasks. It is
designed to entirely circumvent mapping tasks to processors
that lack the capability to execute them, thus preventing the
creation of infeasible solutions and ensuring a more effective
convergence of the search process. However, in scenarios
where all processors are not fully interconnected, meaning
there is no path between certain pairs of processors, the
algorithm may not completely avoid such mappings. In such
case, it will attempt to prune them from the search space by
setting their objectives to infinity.

While the SDSE algorithm treats all infeasible solutions
uniformly, making no distinction between cases with only a
few instances of consecutive procedures mapped to
unconnected processors and those with many such instances,
the N-SDSE algorithm [23] introduces a penalty system.
This modification aims to create the gradation of “bad”
solutions, which is one of the most popular constraint-
handling techniques [28][29]. In this modified approach, the
objective values of infeasible solutions are no longer infinite.
Instead, when it is impossible to find a feasible mapping for

a task, a large penalty is added to each objective value. This
modification intends to provide solutions with fewer
infeasible connections, which may potentially evolve into
viable options through various crossovers and/or mutations,
a higher chance to advance to the next generation compared
to solutions with more substantial penalties and more
infeasible mappings.

The C-SDSE and CN-SDSE algorithms [23] introduce a
specific modification tailored for sparsely connected
clustered platforms. This modification implements a two-
stage task mapping approach: initially assigning tasks to
clusters and subsequently mapping each task to a processor
within the pre-assigned cluster. Cluster detection on the
platform occurs in advance, using a straightforward heuristic
where any group of processors connected to the same
memory is regarded as a cluster. For the study presented in
this paper, the definition of clusters extends to include cores
within each Edge Node, cores within Cloud, and Mobile/IoT
Node with Edge Nodes to which it has connections.
Additionally, in the C-SDSE algorithm, all infeasible
solutions have their objective values set to infinity, while in
the CN-SDSE algorithm, infeasible solutions are penalized
in the same way as it is done in the N-SDSE algorithm.

IV. EVALUATION

The performance of the four algorithms was tested on 80
test cases. These cases were designed using four task graphs
and four platform models, which were combined and
evaluated for each of the five different Communication to
Computation Ratios (CCRs), a standard metric used in the
synthesis of artificial test cases in which the application is
given as DAG [30]. The test cases and the results obtained
are presented in the remainder of this section.

A. System models

Test cases were built based on four task graphs given in
Figure 2, each comprising 30 tasks. The maximum number
of concurrent tasks ranges from 7 to 10 in each graph, and
loops are not present. The complexity of predecessor-
successor connections is the lowest in A1 and the highest in
A4.

Furthermore, four platform models P1-P4, all based on
the layout depicted in Figure 1, were used. Across all
models, three node types are present: Mobile/IoT, Edge, and
Cloud. The Mobile/IoT node features a single processing
core and is exclusively linked to two Edge nodes. There are
a total of four Edge nodes (EN), each equipped with four

 A1 A2 A3 A4

Figure 2 Application models

110 MIPRO 2024/AIS

cores (EC). Internally, the connection speed between cores
within an Edge node is 100 times faster than that between
IoT and Edge. The connection speed between adjacent Edge
nodes is four times faster than that between IoT and Edge,
and the connection speed between non-adjacent nodes is
twice as fast.

Edge nodes are connected to the Cloud, which is
represented as a network of ten fully connected cores (CC),
each operating 16 times faster than a basic Mobile/IoT node.
The connection speed between Edge nodes and the Cloud is
10 times faster than that between Mobile/IoT and Edge, and
the connection speed between cores within the cloud is 1000
times faster.

The four models differed in the characteristics of the
Mobile/IoT node and the speed of its connection to the Edge
layer. For the first model, P1, the Mobile/IoT Node can
execute only 50% of tasks from each task graph and is the
slowest. In the second model, P2, the Mobile/IoT Node can
execute 75% of tasks and is twice as fast as the first model.
In the third model, P3, the Mobile/IoT Node can execute all
tasks and is four times faster than the first model. In the
fourth model, P4, the Mobile/IoT node is eight times faster
than the first model, and its connection speed to Edge nodes
is two times faster than in previous models. A concise
summary of these specifications is presented in Table 1.

TABLE 1 NODE CHARACTERISTICS AND CONNECTION SPEEDS ACROSS

FOUR MODELS

Processor

type

Execution

speed
Connected to : Connection speed

Mobile/IoT1 1 EN : 1

Mobile/IoT2 2 EN : 1

Mobile/IoT3 4 EN : 1

Mobile/IoT4 8 EN : 2

EN 8

IoT : 1

EN (same Edge Node) : 100

EN (adjacent Edge Node) : 4
EN (non-adjacent Edge Node) : 2

CN 16
EN : 10

CN : 100000

For each combination of task graph and platform model,
we considered five different CCR values: 0.01, 0.1, 1, 10,
and 100.

Regarding the computation of the two objectives 𝐶𝑚𝑎𝑥
and 𝑁𝑚𝑎𝑥 , the makespan 𝐶𝑚𝑎𝑥 , is calculated as the time
required to execute all tasks in a taskset for a given mapping.

The second objective, 𝑁𝑚𝑎𝑥 , quantifies the number of data
transfers between distinct nodes, and its value is increased
by 1 when data is transferred between IoT and Edge, and by
0.5 when it is transferred between two edge nodes or
between edge and cloud.

B. Results and Discussion

All four algorithms have been tested across all
combinations of the task graphs, platform models, and
CCRs detailed in the previous section, resulting in a total of
80 test cases.

Basic algorithm parameters such as the population size,
stopping criteria, and genetic operators were the same for
all algorithms and all test cases, as follows:

• Initial population: 100 randomly generated
chromosomes

• Termination criteria: Algorithm halts after 105
generations

• Genetic operators employed: 1x, 2x, ux, sbx, spx,
pcx, undx, pm, and um

• Each test case underwent 30 repetitions.

All four algorithms are compared based on the
Hypervolume (HV) metric and the values of both objectives
𝐶𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥 . The HV metric assesses two critical
aspects of an approximation: convergence and diversity
[31][32]. Convergence measures the closeness of an
approximation to the true Pareto Optimal Front (POF),
while diversity reflects the uniformity and extensiveness of
the approximation. Calculated as the volume of hyperspace
between the algorithm’s POF and the nadir point, the worst
solution from the unified set of all solutions with a delta
added to the extremes for contribution to HV computation.
Higher HV indicates superior performance in comparison.
For problems with two objectives, HV represents the
quadratic surface area between points in the POF and Nadir
point.

In Figure 3, the HV metric scores for each platform
model (P1-P4) and application model (A1-A4) are
presented. The results demonstrate that in each test case the
SDSE algorithm consistently outperforms all other
algorithms. While C-SDSE and N-SDSE exhibit somewhat
similar HV values in most cases, CN-SDSE consistently
ranks the lowest. Notably, the CN-SDSE algorithm shows
the least success in finding feasible solutions, with instances
where no feasible solution was found at all.

(a) P1 (b) P2 (c) P3 (d) P4

Figure 3 Hypervolume metric scores for platform models P1-P4 and application models A1-A4

MIPRO 2024/AIS 111

Figures 4 and 5 depict the range of minimal values of
objectives 𝐶𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥 identified by each algorithm.
The analysis is segmented by each CCR value. Regarding
the 𝐶𝑚𝑎𝑥objective, although the SDSE algorithm remains
superior overall, the minimal execution times obtained by
each algorithm become comparable as CCR increases.
Upon closer examination of the values of the
𝐶𝑚𝑎𝑥 objective, notably high for CCR values 10 and 100, it
becomes evident that all algorithms perform poorly in this
case. In such instances, the optimal solution would involve
utilizing a maximum of two nodes (provided the
IoT/Mobile node cannot execute all tasks), as any other
solution would significantly prolong the total makespan due
to extensive data exchange between nodes. This suggests
that for high CCRs, it may be worth considering further
refining the search process, considering only smaller
subsets of nodes and prioritizing assigning consecutive
tasks to the same processors.

Regarding the 𝑁𝑚𝑎𝑥 objective, the SDSE algorithm
consistently outperforms others irrespective of CCR
changes, with minimal 𝑁𝑚𝑎𝑥 values consistently falling
within the range of 5-15 across all test cases. This
underscores SDSE's superior capability in minimizing
traffic between different node types, even in the absence of
direct cluster detection support. These findings, coupled
with SDSE's strong performance for lower CCRs, suggest
that fewer constraints on design space exploration yield
better results for this problem. Furthermore, treating all
infeasible solutions as equally bad, assigning them an
infinite value, proves most effective, as any gradation
causes converging around non-optimal points, which
provides inferior results. This observation also aligns with
previous research on sparsely connected heterogeneous
embedded systems.

CONCLUSION

This paper explored the problem of task mapping and
scheduling within a heterogeneous mobile-edge-cloud
architecture where nodes have limited connections and
constrained task processing capabilities. By adapting four
NSGA-II-based algorithms known for handling similar
issues in sparsely connected heterogeneous multiprocessor
platforms, the study evaluated 80 different scenarios, testing
various application and platform models along with different
communication-to-computation ratios. The results
emphasize the importance of keeping constraints minimal
for better outcomes. Additionally, treating all infeasible
solutions equally, by giving them an infinite value, proves
most effective. Any gradation of infeasible solutions leads to
convergence around sub-optimal points, resulting in poorer
results. These findings reveal important strategies for
improving task mapping and scheduling in complex setups,
paving the way for further research and practical
implementations.

REFERENCES

[1] M. Aazam, S. Zeadally, and K. A. Harras, “Fog Computing
Architecture, Evaluation, and Future Research Directions,” IEEE
Communications Magazine, vol. 56, no. 5, pp. 46–52, May 2018, doi:
10.1109/MCOM.2018.1700707.

[2] J. Pan and J. McElhannon, “Future Edge Cloud and Edge Computing
for Internet of Things Applications,” IEEE Internet of Things
Journal, vol. 5, no. 1, pp. 439–449, Feb. 2018, doi:
10.1109/JIOT.2017.2767608.

[3] H. Atlam, R. Walters, and G. Wills, “Fog Computing and the Internet
of Things: A Review,” Big Data and Cognitive Computing, vol. 2,
no. 2, p. 10, Apr. 2018, doi: 10.3390/bdcc2020010.

[4] K. Bilal, O. Khalid, A. Erbad, S.U. Khan, Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and
micro data centers, Comput. Netw. 130 (2018) 94–120, doi:
10.1016/j.comnet.2017.10.002

(a) CCR=0.01 (b) CCR=0.1 (c) CCR=1 (d) CCR=10 (e) CCR=100

Figure 4 Minimal values of 𝐶𝑚𝑎𝑥 objective

a) CCR=0.01 (b) CCR=0.1 (c) CCR=1 (d) CCR=10 (e) CCR=100

Figure 5 Minimal values of 𝑁𝑚𝑎𝑥 objective

112 MIPRO 2024/AIS

[5] X. Dai et al., “Task Offloading for Cloud-Assisted Fog Computing
With Dynamic Service Caching in Enterprise Management
Systems,” IEEE Transactions on Industrial Informatics, vol. 19, no.
1, pp. 662–672, Jan. 2023, doi: 10.1109/TII.2022.3186641.

[6] C. K. Dehury, S. N. Srirama*, P. K. Donta, and S. Dustdar, “Securing
Clustered Edge Intelligence With Blockchain,” IEEE Consumer
Electronics Magazine, vol. 13, no. 1, pp. 22–29, Jan. 2024, doi:
10.1109/MCE.2022.3164529.

[7] A. Yousefpour et al., “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal
of Systems Architecture, vol. 98, pp. 289–330, Sep. 2019, doi:
10.1016/j.sysarc.2019.02.009.

[8] C. Zhao, M. Dong, K. Ota, J. Li, and J. Wu, “Edge-MapReduce-
Based Intelligent Information-Centric IoV: Cognitive Route
Planning,” IEEE Access, vol. 7, pp. 50549–50560, 2019, doi:
10.1109/ACCESS.2019.2911343.

[9] J. Vergara, J. Botero, and L. Fletscher, “A Comprehensive Survey on
Resource Allocation Strategies in Fog/Cloud Environments,”
Sensors, vol. 23, no. 9, p. 4413, Apr. 2023, doi: 10.3390/s23094413.

[10] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M.
Parashar, “Mobility-Aware Application Scheduling in Fog
Computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, Mar.
2017, doi: 10.1109/MCC.2017.27.

[11] V. Karagiannis, P. A. Frangoudis, S. Dustdar, and S. Schulte,
“Context-Aware Routing in Fog Computing Systems,” IEEE
Transactions on Cloud Computing, vol. 11, no. 1, pp. 532–549, Jan.
2023, doi: 10.1109/TCC.2021.3102996.

[12] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. Franklin de
Castro, “An improved multi-objective genetic algorithm with
heuristic initialization for service placement and load distribution in
edge computing,” Computer Networks, vol. 194, p. 108146, Jul.
2021, doi: 10.1016/j.comnet.2021.108146.

[13] S. Iftikhar, M. Golec, D. Chowdhury, S. S. Gill, and S. Uhlig,
“FogDLearner: A Deep Learning-based Cardiac Health Diagnosis
Framework using Fog Computing,” in Australasian Computer
Science Week 2022, New York, NY, USA: ACM, Feb. 2022, pp.
136–144. doi: 10.1145/3511616.3513108.

[14] I. Murturi, A. Egyed, and S. Dustdar, “Utilizing AI Planning on the
Edge,” IEEE Internet Computing, vol. 26, no. 2, pp. 28–35, Mar.
2022, doi: 10.1109/MIC.2021.3073434.

[15] S. Iftikhar et al., “AI-based fog and edge computing: A systematic
review, taxonomy and future directions,” Internet of Things, vol. 21,
p. 100674, Apr. 2023, doi: 10.1016/j.iot.2022.100674.

[16] P. Marwedel, Embedded System Design. Dordrecht: Springer
Netherlands, 2011. doi: 10.1007/978-94-007-0257-8.

[17] N. Frid and V. Sruk, “Memory-aware multiobjective design space
exploration of heteregeneous MPSoC,” in 2018 41st International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), IEEE, May 2018, pp.
0861–0866. doi: 10.23919/MIPRO.2018.8400159.

[18] M. Raeisi-Varzaneh, O. Dakkak, A. Habbal, and B.-S. Kim,
“Resource Scheduling in Edge Computing: Architecture, Taxonomy,
Open Issues and Future Research Directions,” IEEE Access, vol. 11,
pp. 25329–25350, 2023, doi: 10.1109/ACCESS.2023.3256522.

[19] M. Xu et al., “Genetic Programming for Dynamic Workflow
Scheduling in Fog Computing,” IEEE Transactions on Services
Computing, vol. 16, no. 4, pp. 2657–2671, Jul. 2023, doi:
10.1109/TSC.2023.3249160.

[20] C. Wang, X. Yu, L. Xu, and W. Wang, “Energy-Efficient Task
Scheduling Based on Traffic Mapping in Heterogeneous Mobile-
Edge Computing: A Green IoT Perspective,” IEEE Transactions on
Green Communications and Networking, vol. 7, no. 2, pp. 972–982,
Jun. 2023, doi: 10.1109/TGCN.2022.3186314.

[21] J. Fang and A. Ma, “IoT Application Modules Placement and
Dynamic Task Processing in Edge-Cloud Computing,” IEEE Internet
of Things Journal, vol. 8, no. 16, pp. 12771–12781, Aug. 2021, doi:
10.1109/JIOT.2020.3007751.

[22] S. Azizi, M. Othman, and H. Khamfroush, “DECO: A Deadline-
Aware and Energy-Efficient Algorithm for Task Offloading in
Mobile Edge Computing,” IEEE Systems Journal, vol. 17, no. 1, pp.
952–963, Mar. 2023, doi: 10.1109/JSYST.2022.3185011.

[23] N. Frid, V. Sruk, and D. Jakobović, “Design Space Exploration of
Clustered Sparsely Connected MPSoC Platforms,” Sensors, vol. 22,
no. 20, p. 7803, Oct. 2022, doi: 10.3390/s22207803.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002,
doi: 10.1109/4235.996017

[25] C. Peng, H.-L. Liu, and E. D. Goodman, “Handling multi-objective
optimization problems with unbalanced constraints and their effects
on evolutionary algorithm performance,” Swarm and Evolutionary
Computation, vol. 55, p. 100676, Jun. 2020, doi:
10.1016/j.swevo.2020.100676

[26] T. Adegbija, A. Rogacs, C. Patel, and A. Gordon-Ross,
“Microprocessor Optimizations for the Internet of Things: A
Survey,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 7–20, Jan. 2018,
doi: 10.1109/TCAD.2017.2717782.

[27] Y. Yamato, T. Demizu, H. Noguchi, and M. Kataoka, “Automatic
GPU Offloading Technology for Open IoT Environment,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 2669–2678, Apr. 2019,
doi: 10.1109/JIOT.2018.2872545

[28] B. Tessema and G. G. Yen, “An Adaptive Penalty Formulation for
Constrained Evolutionary Optimization,” IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.
39, no. 3, pp. 565–578, May 2009, doi:
10.1109/TSMCA.2009.2013333

[29] M. A. Jan and R. A. Khanum, “A study of two penalty-parameterless
constraint handling techniques in the framework of MOEA/D,”
Applied Soft Computing, vol. 13, no. 1, pp. 128–148, Jan. 2013, doi:
10.1016/j.asoc.2012.07.027.

[30] Y.-K. Kwok and I. Ahmad, “Benchmarking and Comparison of the
Task Graph Scheduling Algorithms,” Journal of Parallel and
Distributed Computing, vol. 59, no. 3, pp. 381–422, Dec. 1999, doi:
10.1006/jpdc.1999.1578

[31] H.-L. Liu, L. Chen, K. Deb, and E. Goodman, “Investigating the
Effect of Imbalance Between Convergence and Diversity in
Evolutionary Multi-objective Algorithms,” IEEE Transactions on
Evolutionary Computation, pp. 1–1, 2016, doi:
10.1109/TEVC.2016.2606577

[32] H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, “Comparison
of Hypervolume, IGD and IGD+ from the Viewpoint of Optimal
Distributions of Solutions,” 2019, pp. 332–345, doi: 10.1007/978-3-
030-12598-1_27

MIPRO 2024/AIS 113

