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ABSTRACT 

The Internet of Things (IoT) is a global network of 
devices capable of communicating and exchanging data with 
other devices and systems, mainly via the Internet, using 
specific communication protocols. The number of such 
devices that can be connected to the Internet is constantly 
growing due to progress in various technological areas (such 
as communication technologies, microelectronic circuits, 
sensors, embedded systems, smartphones, etc.). This leads to 
network congestion due to the large amount of data 
exchanged between devices. In addition, IoT devices are 
resource-constrained, further exacerbating network 
congestion. Network congestion leads to additional 
communication delays, low bandwidth, and waste of 
computer resources. This is one of the important aspects 
when some IoT applications exchange critical information 
(e.g., monitoring the patient's health condition in the 
application of IoT in smart healthcare). As the number of 
IoT applications increases, so does the need to modify or 
introduce new protocols to deal with the problems of 
adapting to network conditions. In the IoT layered 
architecture, the transport layer plays an important role in 
managing the end-to-end connection to the services of the 
upper application IoT layer. An important function of the 
transmission layer of the IoT layer is congestion control. This 
paper presents an overview of related research on the 
congestion control mechanism of the IoT architecture's 
transport layer, advantages, disadvantages, and current 
transport layer problems in IoT applications.  

Keywords: Internet of Things; Congestion control; TCP 
protocol; CoAP protocol; Machine learning. 

 1. INTRODUCTION 

IETF1 defines the Internet of Things as a system with 
devices often constrained in communication and 
computation capabilities, becoming more commonly 
connected to the Internet or at least to an IP network and 
to various services built on top of the capabilities these 
devices jointly provide. Such development is expected to 
usher in a more machine-to-machine Internet 
communication with no active human mediation [1]. 

IoT enables the interconnection of different devices to 
transfer data over the network. Major applications of IoT 
are smart homes, smart cities, smart grids, industrial 

 

1 IETF - The Internet Engineering Task Force, standards 

development organization for the Internet. 

monitoring systems, health monitoring systems, 
environmental monitoring systems, etc.  

As the number of connected IoT devices increases, 
Internet congestion also increases. Also, as new 
technologies and new communication networks develop, 
the complexity of network transmission has also 
increased. This led to new challenges in the design of 
network protocols. Congestion control (hereinafter 
referred to as CC) is one of the fundamental components 
of computer networks. CC plays an important role when 
improving the utilization of the network to achieve better 
IoT application performance. As future networks become 
increasingly complex, conventional congestion control 
approaches based on pre-defined rules become 
increasingly ineffective. 

 2. OVERVIEW OF THE IOT STACK APPLICATION LAYER 

PROTOCOLS  

In the layered architecture of IoT, the application layer 
provides various communication protocols and acts as an 
interface between the application and end users or M2M 
communication. 

 

Figure 2.1: Architecture of IoT stack [21] 
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 2.1. Request/response protocols 

The request-response model is one of the basic two-
way communication models on the Internet, where the 
calling process sends a request for data, and the 
responding process issues a response to the request. 
RESTful HTTP and CoAP protocols are often applied in 
IoT applications as the request/response communication 
pattern implementation. 

2.2. MQTT 

MQTT is a message transfer protocol based on 
publish/subscribe architecture. MQTT v3.1 was adopted 
by the OASIS consortium in 2013 and certified by the 
International Organization for Standardization (ISO) and 
the International Electrotechnical Commission (ISO/IEC) 
in 2016. It is developed for resource-constrained devices, 
based on open source, reliable is also a simple protocol. 
Four years after MQTT 3.1 became the OASIS standard, 
the MQTT 5 protocol was released, bringing significant 
improvements and upgrades to the MQTT 3.1 protocol. In 
March 2019, MQTT 5.0 became the new OASIS standard. 

3. REQUIREMENTS FOR NETWORK IN IOT  

IoT devices have limited computing capabilities (so-
called constrained devices) and limited network 
bandwidth. In addition, IoT devices most often use 
wireless networks in which (due to the nature of this type 
of communication) packet losses often occur (lossy 
networks) and have limited energy consumption (e.g., 
battery-powered IoT devices). Also, IoT devices have 
different requirements regarding communication speed, 
delay, and reliability according to the application method. 

Another important aspect of some IoT applications is 
exchanging sensitive and critical information. For 
example, the application of IoT in smart health deals with 
the transfer of essential and time-critical data, which 
includes, for example, monitoring the health status of 
patients where packet loss or delay is not acceptable. 
That's why the goal is to reduce losses and packet delay. 

TCP/IP was not originally designed to run on limited 
devices. The current congestion control algorithms are 
primarily designed for the web. They are only sometimes 
suitable for device-constrained environments, where 
nodes are limited in CPU and memory. The network is 
characterized by high packet loss, low bandwidth, or 
frequent topology change. Thus, deploying and integrating 
congestion control mechanisms on limited devices creates 
new challenges. 

 3.1. Congestion control 

Congestion is a condition that occurs in a network 
when data traffic is so high that it slows down the 
network's response time. Congestion negatively affects the 
performance of IoT applications. It leads to the 
retransmission of packets, thereby increasing energy 
consumption, delay, and packet loss while reducing 
bandwidth and packet delivery ratio (PDR). Therefore, 
congestion control plays an important role in meeting the 
performance requirements of network communication. 

Congestion control is a technique that controls the rate 
of sent data packets to optimize the use of network 
infrastructure. It is designed to avoid the degradation of 

network performance caused by congestion. A simplified 
congestion control principle is that when a packet loss is 
detected, the sender reduces its sending rate. Most IoT 
technologies use wireless (radio) connections. Wireless 
radio links generally have a higher transmission error rate 
than wired links due to their susceptibility to interference. 
They generally have a lower transmission speed. 

An example of how congestion management can affect 
an IoT application's performance is a camera forest fire 
detection system with built-in machine learning (computer 
vision) models. Regardless of successful detection, 
sending a picture of the fire itself is still necessary. The 
limitation of such a system can be the communication 
connection (for example, we use NB-IoT technology, 
characterized by low bandwidth and the limited amount of 
traffic that the telecommunications operator allows for 
this type of communication). In this case, optimizing 
congestion management would lead to improved system 
performance. An example of such a system is described 
in the paper [2].  

4. END TO END CONGESTION CONTROL IN THE IOT AREA 

Traditional CC algorithms for congestion control (CC 
in further text) can be categorized into end-to-end CC and 
network-assisted CC. End-to-end approaches require only 
the cooperation of the sender and receiver. This category 
does not rely on explicit congestion information obtained 
from the network. Conversely, network-assisted 
approaches require congestion information from network 
devices (like routers). 

Traditional end-to-end CC algorithms implemented so 
far rely on predefined rules. Based on these rules, the 
congestion window variable (CWND) and the 
retransmission timeout (RTO) - which determines how 
long the transport engine waits for an acknowledgment - 
are recalculated continuously. Depending on the 
congestion indicator, they can be classified as loss-based, 
delay-based, and hybrid (including both congestion 
indicator mechanisms). Many algorithms of one of these 
types have already been developed and implemented. 
However, modern networks are complex, diverse, and 
heterogeneous in their structure. Applying strict rules in a 
multi-parameter and dynamic environment does not 
perform equally well in different network conditions; rules 
that work nearly optimally in one environment may not 
work well in other environments or when network 
conditions change rapidly. 

Considering the problem space and the variety and 
variability of the input parameters, new approaches based 
on machine learning have recently attracted much research 
attention. One such study was conducted by Wei et al. [3]. 
Unlike traditional CC algorithms, ML-based patterns rely 
on real-time network states to make decisions instead of 
predetermined rules. 

Transmission Control Protocol (TCP) is the 
fundamental protocol of the Internet. However, IoT 
applications use specific communication patterns that TCP 
cannot effectively support. For example, some IoT devices 
may go into sleep mode, which causes the connection to 
terminate. In such cases, it is impossible to keep the 
connection active (keep-alive), which can be one of the 
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requirements in IoT applications (e.g., using the MQTT 
protocol). Due to situations like the above, an interest in 
building new reliable transport protocols on top of the 
unreliable UDP transport protocol has risen. 

 

 4.1. Congestion control mechanisms 

Congestion management is based on the control of the 
size of the sending window (window size). The 
mechanism adjusts the window size to accommodate 
congestion. The window size can be considered the 
number of segments sent to the network, representing the 
number of segments and ACK2 in transit or queued. 

4.1.1. Phases of congestion control 

Slow start: at the beginning, we start sending segments 
slowly, then exponentially increasing the speed of sending 
data until the congestion window (CWND) value reaches 
the threshold value (ssthresh). 

Congestion Avoidance: After reaching the threshold, 
the sender linearly increases the size of the congestion 
window to avoid congestion. Each time an 
acknowledgment is received, the sender increases the 
congestion window size by 1. 

Congestion Detection: there are two methods by 
which packet losses can be identified over the 
communication path: (1) by timeout (RTO) and (2) by 
receiving duplicate acknowledgments (dupACK). 

4.2. Packet loss approach 

When a sender has not received an ACK for a sent 
packet for a certain period, this usually indicates packet 
loss. The packet loss-based approach adjusts the sending 
rate when packet loss occurs. An example of an algorithm 
based on packet loss is TCP Vegas [4]. 

 4.3. Delay-based approach 

The delay-based approach predicts and reacts to 
congestion before packet loss occurs. This mechanism 
relies on detected network-induced transmission delays. 
An example of a delay-based algorithm is TCP NewReno 
[5]. Compared to loss-based approaches, delay-based 
approaches are more suitable for fast networks. 
Calculating the exact transmission delay is still a 
challenge. For example, a small change in packet 
processing time at the host can cause deviations in the 
measured transmission delay, which causes wrong 
decisions when sending. Hybrid approaches have been 
proposed to take advantage of both loss and delay 
approaches. TCP Copa is one such example [6]. 

 4.4. ML-based approach 

The complexity of today's network architectures is a 
significant challenge for CC. Designing a generic CC 
mechanism that will work on all network scenarios is 

 

2 ACK - short for "acknowledgement.". In TCP protocol an 

ACK packet is any packet that acknowledges receiving a sent 

packet. 

challenging. The dynamic nature of even the same 
network can make CC operation incorrect. 

Because of that, ML-based CC algorithms have been 
proposed to solve the above-mentioned problems. 
Traditional CC algorithms rely on using predetermined 
rules. ML-based mechanisms rely on real-time network 
states to make congestion control decisions. This allows 
better adoption of CC mechanisms to dynamic and 
complex network scenarios. 

 5. CC MECHANISMS IN THE IOT 

 5.1. Traditional CC mechanisms 

RTO estimation. Retransmission timeout (RTO) 
determines how long the transport mechanism waits for 
confirmation (ACK) of the sent segment. The segment is 
considered lost if confirmation is not received within this 
time. An important part of the RTO calculation is 
determining how long it takes for the segment to go to the 
receiver and for the ACK to return from the receiver to the 
sender. This is called RTT or Round-Trip Time.  

TCP uses the RTO (Retransmission Timeout) 
estimation algorithm defined in RFC6298 [11]. TCP 
adaptively determines the RTO by applying the EWMA 
(exponentially weighted moving average) algorithm to 
RTT samples.  

CC mechanisms based on TCP protocol. Verma [7] 
et al made CC adapted to IoT. They made a comparative 
study comparing the new mechanism with other TCP CC 
mechanisms, such as TCP Cubic, TCP New Reno, and 
TCP BBR, simulating the IoT environment (devices with 
limited resources and limited network bandwidth).  

The RTO estimation algorithm defined in RFC6298 is 
not designed to consider IoT environment scenarios. In 
research [8], the expected RTO algorithm defined in [9] 
outperformed state-of-the-art algorithms designed to 
enhance RFC 6298 for TCP in terms of PDR. 

CoAP-based CC mechanisms. CoAP is a simple 
protocol, and the basic specification offers a default CoAP 
CC mechanism that uses an RTO with binary exponential 
offset (BEB) for lost packets. Since lost packets are 
retransmitted in an exponentially increasing time, the 
default CoAP CC is very simple and insensitive to 
dynamic network conditions. Consequently, the default 
CoAP CC has lower performance.  

Due to UDP communication, using CoAP with 
existing network infrastructures (e.g., the use of NAT 
using firewalls) may lead to certain limitations. This is one 
of the reasons why there is also a CoAP over TCP 
specification [14]. 

To improve the performance of the default CoAP CC, 
CoAP Simple Congestion Control/Advanced CoCoA is 
proposed. CoCoA uses round trip time (RTT) 
measurements and adaptive RTO. This algorithm 
responds to congestion with a lower sending rate.  
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Table 5.1: REVIEW OF RECENT RESEARCH ARTICLES ON TCP BASED CC MECHANISMS  

Article Protocol Description 
[10] TCP Cubic One of the most common used TCP CC mechanisms. It is supported by most of 

today OS. 
RFC 
6582[11] 

TCP New Reno Improvement of performances compared to TCP Reno 

[8] TCP uIP with 
CoCoA CC 
mechanism 

Performance improvement in the IoT environment compared to RFC6298 

Verma [7] IoT based 
congestion control 
algorithm 

A comparative study where the mentioned new TCP mechanism is compared in an 
IoT environment with other known TCP CC mechanisms. Showed the best 
performance, except in RTT where only TCP Cubic is better 

  

Table 5.2: REVIEW OF RECENT RESEARCH ARTICLES ON CoAP BASED CC MECHANISMS 

Table 5.3: REVIEW OF RECENT RESEARCH ARTICLES ON ML BASED CC MECHANISMS 

Article Protocol ML method Advantages Disadvantages 
Xiao [15] TCP - Drinc Reinforcement learning Increasing performance in 

complex and dynamic network 
environments 

 

Falahatraftar[17] Predikcija 
zagušenja 
GRNN  

GRNN model compared to 
SVM, decision tree, 
regression models 

The GRNN model shows higher 
accuracy, reliability and stability 
among the forecasting methods 
considered  

 

Demir[16] mlCoCoA Uses SVM for dynamic 
RTO calculation  

Performance improvement over 
CoCoA  

Computationally 
intensive  

Sander[18] DeePCCI RNN model Performance improvement over 
traditional TCP CC mechanisms  

 

Najm[19] C4.5 DT Using a decision tree 
model for congestion 
control in a 5G IoT 
environment  

Significant performance 
improvement over other ML 
machine learning algorithms  

 

 

Article Protocol Description Advantages Disadvantages 
[10] CoCoA+ Uses RTT for RTO 

estimation and VBF backoff  
Reduction of retransmission 
compared to the default CoCo 
model  

Inconsistency in expected 
RTO  

[12] CoCoA++ Uses CAIA Delay Gradient 
for RTO estimation and 
PBF backoff 

Low RTO with minimal latency 
and high packet transfer rate in 
various IoT scenarios 

Increased end-to-end 
latency and 
computationally intensive 

[13] pCoCoA Modification of the RTO 
estimation compared to the 
CoCoA+ algorithm 

Improvement of congestion 
control (reduced packet loss and 
thus retransmission) 

Increased end-to-end 
latency 

[14] CoAP over 
TCP 

CoAP over TCP Enables the use of TLS and 
WebSocket protocols 

Weaker performance  
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5.2. CC mechanisms based on ML algorithms. 

Xiao et al [15], proposed TCP-Drinc for smart 
congestion management for TCP variants. The authors use 
Deep Reinforcement Learning. Congestion is controlled 
by adjusting the window size. TCP-Drinc is compared 
against different versions of TCP: TCP-New Reno, 
TCPCubic, TCP-Hybla, TCP-Vegas and TCP-Illinois. 
TCP-Drinc provides maximum throughput and the second 
lowest round trip time (RTT).  

Demir et al [16] proposed mlCoCoA, ML-based 
improvement in CoCoA, mlCoCoA adaptively sets 
CoCoA retransmission timeout (RTO) estimation 
parameters using an ML method. 

Sander, et al [18] proposed DeePCCI for congestion 
detection based on packet arrival time in traffic flow.  

 

 

Figure 5.1: Example of RTO estimation strategy for CoAP 
and its improvements [21]. 

 6. CONCLUSION 

Network communication speed and reliability with 
low resource utilization in resource-constrained devices 
are key requirements for IoT. 

Congestion negatively affects performance. 
Congestion leads to the retransmission of packets, thereby 
increasing energy consumption, delay, and packet loss 
while reducing the throughput and packet delivery ratio 
(PDR). This can have negative consequences for the end 
IoT application. Congestion control should be an 
important issue when working in IoT networks. 

Traditional end-to-end CC algorithms implemented so far 
rely on predefined rules. 

There are two main ways to control congestion. In the 
first case, the application layer uses the CC mechanism of 
the TCP protocol. Examples are the HTTP and MQTT 
protocols that build on the TCP protocol for congestion 
control. The CC mechanism is implemented in the 
application layer in the second case. An example is the 
CoAP protocol which uses the CC mechanism in the 
application layer of the IoT model and is based on the 
UDP protocol. 

In this paper, a literature review of existing CC 
mechanisms was made with an emphasis on the IoT field 
of application. A large number of research deal with 
improving the CC mechanism of the TCP protocol. There 
are also many works where machine learning has been 
used to improve the performance of the TCP CC 
mechanism. However, only a small amount of research is 
focused on applying TCP congestion control mechanisms 
to the IoT application area. As for the CoAP protocol, 
many works are investigating the improvements of the CC 
mechanism. A smaller number of studies use the 
application of machine learning for the CC mechanism of 
the CoAP protocol. 
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