
A survey of end-to-end congestion mechanisms
in the field of IoT

Dalibor Fonović*, Siniša Sovilj* and Nikola Tanković*

*Juraj Dobrila University of Pula, Pula, Croatia

dalibor.fonovic@unipu.hr

ABSTRACT

The Internet of Things (IoT) is a global network of
devices capable of communicating and exchanging data with
other devices and systems, mainly via the Internet, using
specific communication protocols. The number of such
devices that can be connected to the Internet is constantly
growing due to progress in various technological areas (such
as communication technologies, microelectronic circuits,
sensors, embedded systems, smartphones, etc.). This leads to
network congestion due to the large amount of data
exchanged between devices. In addition, IoT devices are
resource-constrained, further exacerbating network
congestion. Network congestion leads to additional
communication delays, low bandwidth, and waste of
computer resources. This is one of the important aspects
when some IoT applications exchange critical information
(e.g., monitoring the patient's health condition in the
application of IoT in smart healthcare). As the number of
IoT applications increases, so does the need to modify or
introduce new protocols to deal with the problems of
adapting to network conditions. In the IoT layered
architecture, the transport layer plays an important role in
managing the end-to-end connection to the services of the
upper application IoT layer. An important function of the
transmission layer of the IoT layer is congestion control. This
paper presents an overview of related research on the
congestion control mechanism of the IoT architecture's
transport layer, advantages, disadvantages, and current
transport layer problems in IoT applications.

Keywords: Internet of Things; Congestion control; TCP
protocol; CoAP protocol; Machine learning.

 1. INTRODUCTION

IETF1 defines the Internet of Things as a system with
devices often constrained in communication and
computation capabilities, becoming more commonly
connected to the Internet or at least to an IP network and
to various services built on top of the capabilities these
devices jointly provide. Such development is expected to
usher in a more machine-to-machine Internet
communication with no active human mediation [1].

IoT enables the interconnection of different devices to
transfer data over the network. Major applications of IoT
are smart homes, smart cities, smart grids, industrial

1 IETF - The Internet Engineering Task Force, standards

development organization for the Internet.

monitoring systems, health monitoring systems,
environmental monitoring systems, etc.

As the number of connected IoT devices increases,
Internet congestion also increases. Also, as new
technologies and new communication networks develop,
the complexity of network transmission has also
increased. This led to new challenges in the design of
network protocols. Congestion control (hereinafter
referred to as CC) is one of the fundamental components
of computer networks. CC plays an important role when
improving the utilization of the network to achieve better
IoT application performance. As future networks become
increasingly complex, conventional congestion control
approaches based on pre-defined rules become
increasingly ineffective.

 2. OVERVIEW OF THE IOT STACK APPLICATION LAYER

PROTOCOLS

In the layered architecture of IoT, the application layer
provides various communication protocols and acts as an
interface between the application and end users or M2M
communication.

Figure 2.1: Architecture of IoT stack [21]

MIPRO 2023/SSE 1909

 2.1. Request/response protocols

The request-response model is one of the basic two-
way communication models on the Internet, where the
calling process sends a request for data, and the
responding process issues a response to the request.
RESTful HTTP and CoAP protocols are often applied in
IoT applications as the request/response communication
pattern implementation.

2.2. MQTT

MQTT is a message transfer protocol based on
publish/subscribe architecture. MQTT v3.1 was adopted
by the OASIS consortium in 2013 and certified by the
International Organization for Standardization (ISO) and
the International Electrotechnical Commission (ISO/IEC)
in 2016. It is developed for resource-constrained devices,
based on open source, reliable is also a simple protocol.
Four years after MQTT 3.1 became the OASIS standard,
the MQTT 5 protocol was released, bringing significant
improvements and upgrades to the MQTT 3.1 protocol. In
March 2019, MQTT 5.0 became the new OASIS standard.

3. REQUIREMENTS FOR NETWORK IN IOT

IoT devices have limited computing capabilities (so-
called constrained devices) and limited network
bandwidth. In addition, IoT devices most often use
wireless networks in which (due to the nature of this type
of communication) packet losses often occur (lossy
networks) and have limited energy consumption (e.g.,
battery-powered IoT devices). Also, IoT devices have
different requirements regarding communication speed,
delay, and reliability according to the application method.

Another important aspect of some IoT applications is
exchanging sensitive and critical information. For
example, the application of IoT in smart health deals with
the transfer of essential and time-critical data, which
includes, for example, monitoring the health status of
patients where packet loss or delay is not acceptable.
That's why the goal is to reduce losses and packet delay.

TCP/IP was not originally designed to run on limited
devices. The current congestion control algorithms are
primarily designed for the web. They are only sometimes
suitable for device-constrained environments, where
nodes are limited in CPU and memory. The network is
characterized by high packet loss, low bandwidth, or
frequent topology change. Thus, deploying and integrating
congestion control mechanisms on limited devices creates
new challenges.

 3.1. Congestion control

Congestion is a condition that occurs in a network
when data traffic is so high that it slows down the
network's response time. Congestion negatively affects the
performance of IoT applications. It leads to the
retransmission of packets, thereby increasing energy
consumption, delay, and packet loss while reducing
bandwidth and packet delivery ratio (PDR). Therefore,
congestion control plays an important role in meeting the
performance requirements of network communication.

Congestion control is a technique that controls the rate
of sent data packets to optimize the use of network
infrastructure. It is designed to avoid the degradation of

network performance caused by congestion. A simplified
congestion control principle is that when a packet loss is
detected, the sender reduces its sending rate. Most IoT
technologies use wireless (radio) connections. Wireless
radio links generally have a higher transmission error rate
than wired links due to their susceptibility to interference.
They generally have a lower transmission speed.

An example of how congestion management can affect
an IoT application's performance is a camera forest fire
detection system with built-in machine learning (computer
vision) models. Regardless of successful detection,
sending a picture of the fire itself is still necessary. The
limitation of such a system can be the communication
connection (for example, we use NB-IoT technology,
characterized by low bandwidth and the limited amount of
traffic that the telecommunications operator allows for
this type of communication). In this case, optimizing
congestion management would lead to improved system
performance. An example of such a system is described
in the paper [2].

4. END TO END CONGESTION CONTROL IN THE IOT AREA

Traditional CC algorithms for congestion control (CC
in further text) can be categorized into end-to-end CC and
network-assisted CC. End-to-end approaches require only
the cooperation of the sender and receiver. This category
does not rely on explicit congestion information obtained
from the network. Conversely, network-assisted
approaches require congestion information from network
devices (like routers).

Traditional end-to-end CC algorithms implemented so
far rely on predefined rules. Based on these rules, the
congestion window variable (CWND) and the
retransmission timeout (RTO) - which determines how
long the transport engine waits for an acknowledgment -
are recalculated continuously. Depending on the
congestion indicator, they can be classified as loss-based,
delay-based, and hybrid (including both congestion
indicator mechanisms). Many algorithms of one of these
types have already been developed and implemented.
However, modern networks are complex, diverse, and
heterogeneous in their structure. Applying strict rules in a
multi-parameter and dynamic environment does not
perform equally well in different network conditions; rules
that work nearly optimally in one environment may not
work well in other environments or when network
conditions change rapidly.

Considering the problem space and the variety and
variability of the input parameters, new approaches based
on machine learning have recently attracted much research
attention. One such study was conducted by Wei et al. [3].
Unlike traditional CC algorithms, ML-based patterns rely
on real-time network states to make decisions instead of
predetermined rules.

Transmission Control Protocol (TCP) is the
fundamental protocol of the Internet. However, IoT
applications use specific communication patterns that TCP
cannot effectively support. For example, some IoT devices
may go into sleep mode, which causes the connection to
terminate. In such cases, it is impossible to keep the
connection active (keep-alive), which can be one of the

1910 MIPRO 2023/SSE

requirements in IoT applications (e.g., using the MQTT
protocol). Due to situations like the above, an interest in
building new reliable transport protocols on top of the
unreliable UDP transport protocol has risen.

 4.1. Congestion control mechanisms

Congestion management is based on the control of the
size of the sending window (window size). The
mechanism adjusts the window size to accommodate
congestion. The window size can be considered the
number of segments sent to the network, representing the
number of segments and ACK2 in transit or queued.

4.1.1. Phases of congestion control

Slow start: at the beginning, we start sending segments
slowly, then exponentially increasing the speed of sending
data until the congestion window (CWND) value reaches
the threshold value (ssthresh).

Congestion Avoidance: After reaching the threshold,
the sender linearly increases the size of the congestion
window to avoid congestion. Each time an
acknowledgment is received, the sender increases the
congestion window size by 1.

Congestion Detection: there are two methods by
which packet losses can be identified over the
communication path: (1) by timeout (RTO) and (2) by
receiving duplicate acknowledgments (dupACK).

4.2. Packet loss approach

When a sender has not received an ACK for a sent
packet for a certain period, this usually indicates packet
loss. The packet loss-based approach adjusts the sending
rate when packet loss occurs. An example of an algorithm
based on packet loss is TCP Vegas [4].

 4.3. Delay-based approach

The delay-based approach predicts and reacts to
congestion before packet loss occurs. This mechanism
relies on detected network-induced transmission delays.
An example of a delay-based algorithm is TCP NewReno
[5]. Compared to loss-based approaches, delay-based
approaches are more suitable for fast networks.
Calculating the exact transmission delay is still a
challenge. For example, a small change in packet
processing time at the host can cause deviations in the
measured transmission delay, which causes wrong
decisions when sending. Hybrid approaches have been
proposed to take advantage of both loss and delay
approaches. TCP Copa is one such example [6].

 4.4. ML-based approach

The complexity of today's network architectures is a
significant challenge for CC. Designing a generic CC
mechanism that will work on all network scenarios is

2 ACK - short for "acknowledgement.". In TCP protocol an

ACK packet is any packet that acknowledges receiving a sent

packet.

challenging. The dynamic nature of even the same
network can make CC operation incorrect.

Because of that, ML-based CC algorithms have been
proposed to solve the above-mentioned problems.
Traditional CC algorithms rely on using predetermined
rules. ML-based mechanisms rely on real-time network
states to make congestion control decisions. This allows
better adoption of CC mechanisms to dynamic and
complex network scenarios.

 5. CC MECHANISMS IN THE IOT

 5.1. Traditional CC mechanisms

RTO estimation. Retransmission timeout (RTO)
determines how long the transport mechanism waits for
confirmation (ACK) of the sent segment. The segment is
considered lost if confirmation is not received within this
time. An important part of the RTO calculation is
determining how long it takes for the segment to go to the
receiver and for the ACK to return from the receiver to the
sender. This is called RTT or Round-Trip Time.

TCP uses the RTO (Retransmission Timeout)
estimation algorithm defined in RFC6298 [11]. TCP
adaptively determines the RTO by applying the EWMA
(exponentially weighted moving average) algorithm to
RTT samples.

CC mechanisms based on TCP protocol. Verma [7]
et al made CC adapted to IoT. They made a comparative
study comparing the new mechanism with other TCP CC
mechanisms, such as TCP Cubic, TCP New Reno, and
TCP BBR, simulating the IoT environment (devices with
limited resources and limited network bandwidth).

The RTO estimation algorithm defined in RFC6298 is
not designed to consider IoT environment scenarios. In
research [8], the expected RTO algorithm defined in [9]
outperformed state-of-the-art algorithms designed to
enhance RFC 6298 for TCP in terms of PDR.

CoAP-based CC mechanisms. CoAP is a simple
protocol, and the basic specification offers a default CoAP
CC mechanism that uses an RTO with binary exponential
offset (BEB) for lost packets. Since lost packets are
retransmitted in an exponentially increasing time, the
default CoAP CC is very simple and insensitive to
dynamic network conditions. Consequently, the default
CoAP CC has lower performance.

Due to UDP communication, using CoAP with
existing network infrastructures (e.g., the use of NAT
using firewalls) may lead to certain limitations. This is one
of the reasons why there is also a CoAP over TCP
specification [14].

To improve the performance of the default CoAP CC,
CoAP Simple Congestion Control/Advanced CoCoA is
proposed. CoCoA uses round trip time (RTT)
measurements and adaptive RTO. This algorithm
responds to congestion with a lower sending rate.

MIPRO 2023/SSE 1911

Table 5.1: REVIEW OF RECENT RESEARCH ARTICLES ON TCP BASED CC MECHANISMS

Article Protocol Description
[10] TCP Cubic One of the most common used TCP CC mechanisms. It is supported by most of

today OS.
RFC
6582[11]

TCP New Reno Improvement of performances compared to TCP Reno

[8] TCP uIP with
CoCoA CC
mechanism

Performance improvement in the IoT environment compared to RFC6298

Verma [7] IoT based
congestion control
algorithm

A comparative study where the mentioned new TCP mechanism is compared in an
IoT environment with other known TCP CC mechanisms. Showed the best
performance, except in RTT where only TCP Cubic is better

Table 5.2: REVIEW OF RECENT RESEARCH ARTICLES ON CoAP BASED CC MECHANISMS

Table 5.3: REVIEW OF RECENT RESEARCH ARTICLES ON ML BASED CC MECHANISMS

Article Protocol ML method Advantages Disadvantages
Xiao [15] TCP - Drinc Reinforcement learning Increasing performance in

complex and dynamic network
environments

Falahatraftar[17] Predikcija
zagušenja
GRNN

GRNN model compared to
SVM, decision tree,
regression models

The GRNN model shows higher
accuracy, reliability and stability
among the forecasting methods
considered

Demir[16] mlCoCoA Uses SVM for dynamic
RTO calculation

Performance improvement over
CoCoA

Computationally
intensive

Sander[18] DeePCCI RNN model Performance improvement over
traditional TCP CC mechanisms

Najm[19] C4.5 DT Using a decision tree
model for congestion
control in a 5G IoT
environment

Significant performance
improvement over other ML
machine learning algorithms

Article Protocol Description Advantages Disadvantages
[10] CoCoA+ Uses RTT for RTO

estimation and VBF backoff
Reduction of retransmission
compared to the default CoCo
model

Inconsistency in expected
RTO

[12] CoCoA++ Uses CAIA Delay Gradient
for RTO estimation and
PBF backoff

Low RTO with minimal latency
and high packet transfer rate in
various IoT scenarios

Increased end-to-end
latency and
computationally intensive

[13] pCoCoA Modification of the RTO
estimation compared to the
CoCoA+ algorithm

Improvement of congestion
control (reduced packet loss and
thus retransmission)

Increased end-to-end
latency

[14] CoAP over
TCP

CoAP over TCP Enables the use of TLS and
WebSocket protocols

Weaker performance

1912 MIPRO 2023/SSE

5.2. CC mechanisms based on ML algorithms.

Xiao et al [15], proposed TCP-Drinc for smart
congestion management for TCP variants. The authors use
Deep Reinforcement Learning. Congestion is controlled
by adjusting the window size. TCP-Drinc is compared
against different versions of TCP: TCP-New Reno,
TCPCubic, TCP-Hybla, TCP-Vegas and TCP-Illinois.
TCP-Drinc provides maximum throughput and the second
lowest round trip time (RTT).

Demir et al [16] proposed mlCoCoA, ML-based
improvement in CoCoA, mlCoCoA adaptively sets
CoCoA retransmission timeout (RTO) estimation
parameters using an ML method.

Sander, et al [18] proposed DeePCCI for congestion
detection based on packet arrival time in traffic flow.

Figure 5.1: Example of RTO estimation strategy for CoAP
and its improvements [21].

 6. CONCLUSION

Network communication speed and reliability with
low resource utilization in resource-constrained devices
are key requirements for IoT.

Congestion negatively affects performance.
Congestion leads to the retransmission of packets, thereby
increasing energy consumption, delay, and packet loss
while reducing the throughput and packet delivery ratio
(PDR). This can have negative consequences for the end
IoT application. Congestion control should be an
important issue when working in IoT networks.

Traditional end-to-end CC algorithms implemented so far
rely on predefined rules.

There are two main ways to control congestion. In the
first case, the application layer uses the CC mechanism of
the TCP protocol. Examples are the HTTP and MQTT
protocols that build on the TCP protocol for congestion
control. The CC mechanism is implemented in the
application layer in the second case. An example is the
CoAP protocol which uses the CC mechanism in the
application layer of the IoT model and is based on the
UDP protocol.

In this paper, a literature review of existing CC
mechanisms was made with an emphasis on the IoT field
of application. A large number of research deal with
improving the CC mechanism of the TCP protocol. There
are also many works where machine learning has been
used to improve the performance of the TCP CC
mechanism. However, only a small amount of research is
focused on applying TCP congestion control mechanisms
to the IoT application area. As for the CoAP protocol,
many works are investigating the improvements of the CC
mechanism. A smaller number of studies use the
application of machine learning for the CC mechanism of
the CoAP protocol.

ACKNOWLEDGMENTS

This paper acknowledges the support of the Croatian
Science Foundation research project CSF no. HRZZ-IP-
2019-04-4216 “Reliability and Safety in Complex
Software Systems: From Empirical Principles towards
Theoretical Models in View of Industrial Applications
(RELYSOFT)” and the support of the Erasmus+ Key
Action 2 (Strategic partnership for higher education)
project No. 2020–1–PT01–KA203–078646:
“SusTrainable - Promoting Sustainability as a
Fundamental Driver in Software Development Training
and Education”.

This paper has also been supported by European
Regional Development Fund (ERDF) project SUNSET
IoT under grant agreement number KK.01.2.1.02.0116, by
Croatian Science Foundation under the project UIP-
201705-9066.

 REFERENCES

[1] The internet of things at the IETF. Available at:
https://www.ietf.org/topics/iot/ (accessed: January 22,
2023).

[2] G. Peruzzi, A. Pozzebon, and M. Van Der Meer,
“Fight fire with fire: Detecting forest fires with embedded
machine learning models dealing with audio and images
on low power IoT devices,” Sensors, vol. 23, no. 2, 2023,
doi: 10.3390/s23020783.

[3] W. Wei, H. Gu, and B. Li, “Congestion control:
A renaissance with machine learning,” IEEE Network,
vol. 35, no. 4, pp. 262–269, 2021, doi:
10.1109/MNET.011.2000603.

[4] L. S. Brakmo and L. L. Peterson, “TCP vegas:
End to end congestion avoidance on a global internet,”
IEEE Journal on Selected Areas in Communications, vol.
13, no. 8, pp. 1465–1480, 1995, doi: 10.1109/49.464716.

MIPRO 2023/SSE 1913

[5] A. Gurtov, T. Henderson, S. Floyd, and Y.
Nishida, “The NewReno Modification to TCP’s Fast
Recovery Algorithm.” RFC 6582; RFC Editor, Apr. 2012.
doi: 10.17487/RFC6582.

[6] V. Arun and H. Balakrishnan, “Copa:
 Practical delay-based congestion control for the
internet ,” in ANRW ’18:Proceedings of the Applied
Networking Research Workshop, Jul. 2018, pp. 19–19.
doi: 10.1145/3232755.3232783.

[7] L. P. Verma and M. Kumar, “An IoT based
congestion control algorithm,” Internet of Things, vol. 9,
p. 100157, 2020, doi:
https://doi.org/10.1016/j.iot.2019.100157.

[8] C. Lim, “Improving congestion control of
TCP for constrained IoT networks ,” Sensors, vol. 20,
no. 17, 2020, doi: 10.3390/s20174774.

[9] C. Bormann, A. Betzler, C. Gomez, and I.
Demirkol, “CoAP Simple Congestion
Control/Advanced,”Internet Engineering Task Force;
Internet Engineering Task Force, Internet-Draft draft-ietf-
core-cocoa-03, Feb. 2018. Dostupno:
https://datatracker.ietf.org/doc/draft-ietf-core-cocoa/03/

[10] A. Betzler, C. Gomez, I. Demirkol, and J.
Paradells, “CoCoA+: An advanced congestion control
mechanism for CoAP,” Ad Hoc Networks, Apr. 2015, doi:
10.1016/j.adhoc.2015.04.007.

[11] V. Paxson, M. Allman, J. Chu, and M. Sargent,
Computing TCP’s retransmission timer. RFC 6298, 2011.

[12] V. Rathod, N. Jeppu, S. Sastry, S. Singala, and
M. P. Tahiliani, “CoCoA++: Delay gradient based
congestion control for internet of things,” Future
Generation Computer Systems, vol. 100, pp. 1053–1072,
2019, doi: https://doi.org/10.1016/j.future.2019.04.054.

[13] S. Bolettieri, G. Tanganelli, C. Vallati, and E.
Mingozzi, “pCoCoA: A precise congestion control
algorithm for CoAP,” Ad Hoc Networks, vol. 80, pp. 116–
129, 2018, doi:
https://doi.org/10.1016/j.adhoc.2018.06.015.

[14] C. Bormann, S. Lemay, H. Tschofenig, K.
Hartke, B. Silverajan, and B. Raymor, “CoAP
(Constrained Application Protocol) over TCP, TLS, and
WebSockets.” RFC 8323; RFC Editor, Feb. 2018. doi:
10.17487/RFC8323.

[15] K. Xiao, S. Mao, and J. K. Tugnait, “TCP-drinc:
Smart congestion control based on deep reinforcement
learning,” IEEE Access, vol. 7, pp. 11892–11904, 2019,
doi: 10.1109/ACCESS.2019.2892046.

[16] A. K. Demir and F. Abut, “mlCoCoA: a machine
learning-based congestion control for CoAP,”
TurkishJournal of Electrical Engineeringand Computer
Sciences, vol. 28, no. 5, 2020, doi: 10.3906/ELK-2003-17.

[17] F. Falahatraftar, S. Pierre, and S. Chamberland,
“An intelligent congestion avoidance mechanism based on
generalized regression neural network for heterogeneous
vehicular networks,” IEEE Transactions on Intelligent
Vehicles, pp. 1–13, 2022, doi:
10.1109/TIV.2022.3180665.

[18] C. Sander, J. Rüth, O. Hohlfeld, and K. Wehrle,
“DeePCCI: Deep learning-based passive congestion
control identification,” in Proceedings of the 2019
workshop on network meets AI & ML, 2019, pp. 37–43.
doi: 10.1145/3341216.3342211.

[19] I. A. Najm, A. K. Hamoud, J. Lloret, and I.
Bosch, “Machine learning prediction approach to enhance
congestion control in 5G IoT environment,” Electronics,
vol. 8, no. 6, 2019, doi: 10.3390/electronics8060607.

[20] R. Al-Saadi, G. Armitage, J. But and P. Branch,
"A Survey of Delay-Based and Hybrid TCP Congestion
Control Algorithms," in IEEE Communications Surveys
& Tutorials, vol. 21, no. 4, pp. 3609-3638, Fourthquarter
2019, doi: 10.1109/COMST.2019.2904994.

[21] C. Bayılmış, M. A. Ebleme, Ü. Çavuşoğlu, K.
Küçük, and A. Sevin, “A survey on communication
protocols and performance evaluations for internet of
things,” Digital Communications and Networks, vol. 8,
no. 6, pp. 1094–1104, 2022, doi:
https://doi.org/10.1016/j.dcan.2022.03.013.

1914 MIPRO 2023/SSE

