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Abstract—Most of today’s software is connected to the
Internet, no matter its type/usage. The developers of these
applications constantly have to make important decisions
that impact the software’s performance. One predominant
area of these discussions is whether to use Object Relational
Mappings or native SQL. In this paper, we introduce a new
Java library called RQL and an algorithm to drastically
optimize ORMs, specifically time and memory complexity,
as well as the number of database calls that they produce.
We set a hypothesis to check if this new approach performs
better than the conventional one. The evaluation of conducted
experiments proves that the new approach based on the
division of work to separate threads, proper decision-making,
partitioning, in-memory data mapping, entity pre-processing
and the avoidance of Cartesian products and n+1 issues
achieves better performance and reduces resource require-
ments.

Keywords—object-relational mappers, entity preprocessing,
partitioning, distributed processing

I. INTRODUCTION

Our management specified a task to develop a solu-
tion based on a lot of legacy code, while also imple-
menting new features. Around the end of development,
management wanted a new functionality that was akin to
GraphQL. The development team compared the remaining
time to develop the new functionality with the estimated
time of refactoring the whole codebase to a GraphQL
implementation. We determined that it wasn’t feasible.

So, we implemented a similar functionality that would
meet the bare requirements and would be within the
available time frame. After implementing it, we noticed
that it brought a significant performance issue, especially
regarding database access.

We then looked at different options to improve the
performance and decided on creating a number of utility
methods which we afterward turned into a library.

In this paper, we introduce said library, as well as
explain the logic and decision-making algorithms related
to it, along with its possibilities for parallel processing.

One real-world use case for this library is access to
aggregation entities and data transfer objects (DTOs) like
in a software product used by a government agency
that regulates and reports on the systematization of other
government agencies, or the annual salaries. These reports
usually consist of many joins and a huge amount of data.

In a relational database, this can pose an issue, depend-
ing on the implemented solution like creating N+1 issues,

cartesian products, technical debt, or restricting possible
future functionality.

We aim to prove the following research hypothesis:
Time complexity, memory complexity, and the number of
requests being sent to a database can be improved by
disabling the possibility of Cartesian products and n+1
issues at run-time, as well as dividing the work into
smaller jobs dealt by separate threads using a variety of
different techniques.

To prove the validity of this hypothesis we measure the
response times and the counts of multiple different types
of database requests, with multiple different data sets.
The measurement is realized using semi-standard REST
and standard GraphQL implementations, with simple JPA
repositories, then, modifying the semi-standard REST im-
plementation to use the synchronous RQL library, and
finally the parallelized RQL library. Measured data are
collected using Python scripts to measure the response
times and Java methods to collect the number of database
calls detected by P6Spy.

The rest of the paper is organized in the following struc-
ture. Section II presents similar solutions like GraphQL
and Join-Monster, as well as key packages that RQL uses
and an overview of similar useful papers. Section III
elaborates on the Cartesian product and n+1 issues, un-
documented Spring Data JPA relational rules, as well as
Object Relational Mappings (ORMs) stances toward opti-
mization. Then we dive into our library’s solution, explain-
ing how the entity pre-processing, partitioning, mapping,
and parallel processing are implemented in Section IV.
Analysis of all the different test cases and payloads, as
well as the results and their evaluation, is presented in
Section V. Finally, Section VI concludes the paper and
gives directions for future works.

II. RELATED WORK

One of the huge problems in the development of back-
end services is the huge amount of effectively equiva-
lent REST endpoints, either due to constantly changing
requirements and not wanting to break previous imple-
mentations or because the problem is structured in such a
way that the same entity needs to be displayed in multiple
different ways. The current solution to this problem is
GraphQL [1]. GraphQL allows one to "pick and choose"
what is needed, by accessing a single endpoint.
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Fig. 1: General overview of system architecture.

But, GraphQL suffers from the N+1 problem [2] which
can easily flood the database with unexpected requests.
To solve this issue, the open-source community has cre-
ated the Join-Monster [3] library, which pre-processes the
GraphQL query, and creates a select to JOIN all the
relations and run the query using a single database request.
The issue with this approach is that this can very easily
lead to a Cartesian product issue [4], which could severely
tank the application’s performance.

Both of these issues can be avoided by intelligently
deciding the types of queries to be used based on the
definitions of the entities, and, separating them into dif-
ferent sub-jobs, each responsible for a different segment
of the entire query. RQL achieves this through the usage
of multiple open-source libraries. Avoiding a restriction
to the existing implementation of GraphQL, we use Cos-
sium’s EntityGraph implementation [5], which allows the
dynamic generation of queries, based on the requirements
that are sent to the back-end service. Another key library is
MapStruct [6] because it helps us dynamically map all the
attributes without risking automatic entity fetching while
returning the data.

Data-parallel programming is a great paradigm that
eases the parallelization of tasks and their implementation
[7] which is used in RQL to map out the retrieved
data to their corresponding parents. A similar idea to
ours has been implemented on graph-based databases,
which rewrites the queries into sub-queries, while also
implementing alternate algorithms for mapping out and
retrieving the data [8].

III. DATABASE ACCESS OPTIMIZATIONS AND ORMS

Databases are powerful tools, but, problems arise when
accessing them. Using the wrong approach for the wrong
situation can mean extra seconds, minutes, or even hours
during a simple lookup, in a "do anything" and "anyway"
approach. Practically, they don’t impose restrictions and
protocols (unless they are technologically infeasible).

ORMs work in the same manner, they go by the KISS
and SRP principles. They only take up the responsibility of
giving database access in programming languages through
objects, nothing more, nothing less. They don’t try to
optimize the user’s database calls or try to impose any
smart restrictions. This approach poses a problem because
developers can make mistakes much more frequently. Two
frequent types of problems due to ORMs using these prin-
ciples are the N+1 issues and creating Cartesian products
when they aren’t wanted. Besides the principles, there

is also the issue of "expected" undocumented behavior
with ORMs. Such an example can be found in Spring
Data JPA’s "optional" property. More specifically, when
an annotation has the "optional" property set to false,
JPA always tries to access the records relating to that
relation. It doesn’t respect any other properties (like setting
the fetch strategy as lazy), which can lead to unexpected
behavior.

The new library helps to avoid this by imposing some
restrictions, adding "patches" to the undocumented behav-
ior, and making smart decisions about what actually should
be accessed or not, while also giving the possibility to
implement parallelization into the database access layer.

IV. ALGORITHMS

A. General Overview

Usually, with most back-end frameworks, like Spring,
the codebase is layered in such a way that there is at
least a service layer that contains the business logic, and
a data access layer (which is usually either an ORM or a
lot of custom repositories that contain stored procedures
or custom queries). In Fig. 1 we can see an example of
this standard approach where Service A requests some
data from Spring Data JPA (which in turn usually uses
Hibernate entity manager as the data access layer) and
then returns it as a result.

Fig. 3 presents a drawn-out example of this approach.
Service A requests some data, but now, instead of directly
calling the ORM, it first calls a divider (which also
serves as an optimizer) to rebuild the query so that it
runs efficiently, then, separates it into multiple sub-queries
based on different criteria that are discussed later on in
this same section. After that separation, it sends each of
the sub-queries into different processing units that then
call JPA. Afterward, when each processing unit receives
the results (the parent entities as well as their relations),
it sends it over to a local combiner so that any children
can get re-mapped back to their parents which then gets
returned as the result of each processing unit. The thread
combiner collects these results and then combines them
into one aggregate cohesive object that counts as the final
result. Before returning the result from the RQL layer,
an extra step is done which just wraps or unwraps the
aggregate object so that the service layer can receive the
result as if it had called JPA directly.

B. Setup

We use a specifically designed database that should
break every undocumented behavior in Spring Data JPA
(or in other words, designed to be as inefficient as possi-
ble), as presented in Fig. 2.

We’ve configured each X-to-one relation as a mandatory
relation (which makes it so that even if we set the fetch
type to lazy, JPA will still attempt to access these objects
even if they aren’t used later), for the accounts we have
a many-to-many relation with itself which can easily
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Fig. 2: ER diagrams of our sample database

throttle the performance of the application due to how
JPA accesses all the relations. Another important part of
the configuration is that we have defined the relation on
both ends, for example in the Account and Person relation
we have 2 properties, one which references the multiple
posts, and one which references the accounts associated to
them, which can also lead to a big throttle on performance
and memory intensity due to the possibility of infinite
recursion and possible depth. On a couple of the relations
we also defined their "mappedBy" property which can also
lead to JPA sometimes fetching the relation, even though
it isn’t requested or used. One more point that we’d like to
stress is the circular reference between Account, Post and
Comment (also keep in mind that all of these relations are
2 sided) which can lead to a heap of trouble in all aspects,
performance, implementation, memory, complexity, etc.
The configuration is designed in such a way that we had
to override the equals and hash code methods because
otherwise whenever we’d try to access any of the objects
or methods, the application would simply crash.

C. Synchronous

First, we start with the synchronous aspect and opti-
mizations of our algorithm.

Our starting point is a graph that RQL creates and uses
to decide when to query specific entities. We call this graph
a "reference graph". Whenever access to the database
is requested, the first thing the library does is create a
reference graph, which is essentially an ER diagram of
the requested data with small modifications. One of those
small modifications is the fact that whenever a cycle is
encountered in the graph, it treats the "next in line" node
as a separate node. The graph then adds the requested
nodes to the tree, while also checking for bad relationship
configurations (ex. a property is set with a lazy fetch
strategy while also being a mandatory field). Based on
the checks, it adds them in a specific way to the reference
graph to avoid creating any n+1 issues by querying for
them with a JOIN in their corresponding parent’s batch
select.

After creating the initial graph, the graph is then par-
titioned into special sub-graphs, based on the type of
relationship in a BFS manner. If the relationship is an

X-To-Many type, then it qualifies for a sub-graph. Then,
it is also recursively invoked on those sub-graphs as well.
While this is being processed, each sub-graph is marked
with a depth level, which signifies their dependence on any
previous sub-graphs. The main reason for this partitioning
is to avoid Cartesian products and to add the capability
for parallelism by separating one "giant" call into separate,
discrete database calls.

Finally, after the partitioning, a batch query is run for
each sub-graph recursively based on their depth level (each
sub-graph waits for its parent so that they can receive the
data to query). The query is generated through the usage
of a Cossium’s Entity Graph.

After all the data has been queried, it gets separated
with a HashMap where each pair is made of the parent id
as the key and a list of all its children as the value. After
this separation, each parent gets their appropriate children
set through reflection. Then, as the recursive functions
return, the discrete data segments get combined into a
final, cohesive result.

D. Parallelization

In terms of parallelism, the algorithm is implemented
in such a way that it opens up multiple parallelization
opportunities.

One successful attempt at parallelization was the follow-
ing idea: Segment the original database call into discrete,
smaller database calls where we try to gather the data
as pages. This idea worked wonders. It gave the library
a huge performance boost, making the calls ∼2-3 times
faster. We implement this feature in 2 ways. The first one
is by adding the capability to specify the number of threads
for a particular call, and then divide the original request
into that many pages. The other implementation is the
inverse of the previous one, where the user would specify
the maximum size of a page, and then the library would
spin up as many threads as needed. With these approaches,
the user can customize based on the resources they have
available.

There is one downfall currently to this approach, which
is a high possibility of "clogging up" the database connec-
tions since each page uses a separate connection.

Another successful attempt at parallelization was the
idea of putting the HashMap segmentation and child
mapping in separate threads, based on the count of child
records (which can be set in spring’s yml or properties
configuration file). We make one big difference in the child
mapping part, where we set an empty array if the property
is null, and then we add the children to the list (rather than
just outright setting the children). This didn’t give us much
performance, only about an 8-10% increase.

E. Remarks and Concerns

One point that we’d like to address is data leaks (ex.
accessing a password of a user). With the algorithm model
discussed thus far, this type of security is a great concern.
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We tackle this issue by adding the possibility to set an
annotation on entity properties that are restricted. Then,
through the usage of Spring AOP, RQL checks each
database request for whether a restricted property has been
requested and throws an adequate error.

Besides the possibility of data leaks, there is also the
issue of over-fetching data. RQL also implements auto-
generated MapStruct mappers which map the data to
DTOs based on the reference graph. It can also be cus-
tomized more specifically based on the scenario through
the extension of those mappers, and the application of an
@InheritConfiguration annotation [9].

V. EXPERIMENTAL PROOF OF CONCEPT

A. Experimental methods

There are many scenarios and cases in which RQL is
more or less optimized compared to its "competitors",
and in this paper, we define 3 scenarios as the most
important ones, each differing in the number of relations
being requested, types of relations, and relational depth.

Scenario A is based on sending requests for accounts,
together with all of their corresponding posts and com-
ments. This scenario is meant to test how these libraries
handle the fetching of multiple collections, which are also
a part of another collection.

Scenario B will just be a simpler variant of Scenario
A aiming at fetching accounts, and this time, only their
posts. This is a very important scenario, precisely because
it’s so simple, and we’d expect that it should already be
optimized.

Scenario C is dedicated to testing the depth use case,
more precisely, focusing on taking accounts, their "person"
relation, the account related to that person (essentially the
original record), and then finally getting that account’s
"person".

The general basis for the testing is based on conducting
tests and calculating the average of 20 requests per each
number of records per scenario. The number of records
per scenario is the same throughout the entire testing

which is in sets of 50 records, more specifically, 50, 100,
150, 200, and 250 account records. Of course, for each
account record, there will be another set of records that
are fetched (but those amounts are discussed further on in
this segment).

Furthermore, the database is set up in the following
manner: for each account, we create 1 person and 100
posts, and then for each post, we create another 60
comments which we randomly assign to random accounts.
On each initialization, we create 100 accounts, and for this
test, 250 accounts are initialized (and their appropriate
number of posts and comments). One more important
point is that a timeout of 2 minutes is set for all cases. If
a request hits this threshold, we classify it as if the result
runs infinitely.

Since RQL also implements parallelization, we should
also disclose the corresponding configuration. Our exper-
iments use 5 threads, which get an equal amount of work
given to them based on the algorithm.

The GraphQL queries have been defined as simple as
possible since we’re trying to encapsulate the performance
based on the "ease of implementation" as well, or in other
words, the amount of code and hours that would be needed
for implementing GraphQL into a project should equal
the amount it would take to implement RQL as well. The
payloads in question also force the response data to be
sorted based on the username of the accounts that are
requested, so we can ensure that the data which is being
sent as a response is the same.

B. Results

In scenario A the semi-standard JPA repository ap-
proach couldn’t even operate, and while GraphQL can
execute the experiment, it hits a soft cap at around 150
accounts, where the performance goes into the 2-minute
mark. Other than that, RQL with our parallelization ap-
proach performs a lot faster in this case compared to the
synchronous RQL approach. The semi-standard JPA failed
because it created a Cartesian product that took over all
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Fig. 4: Results of Scenario A.
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Fig. 5: Results of Scenario B.
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Fig. 6: Results of Scenario C.
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of the system memory and hard disk memory which is
dedicated to disk pagination (Fig. 4).

For scenario B the semi-standard JPA implementation
managed to get to second place towards the end, and that’s
because RQL also values the system’s memory, while JPA
does not. More precisely, when running the semi-standard
JPA implementation, it constantly kept taking more than
the system memory made available to it (Fig. 5).

And finally, the interesting part for scenario C is the fact
that the semi-standard JPA implementation was in second
place (Fig. 6) throughout the entire testing.

C. Discussion

The parallelized version of RQL outperforms the syn-
chronous one in terms of speed, while the synchronous
approach uses fewer SQL calls. Other than that, both RQL
approaches always outperform the GraphQL and semi-
standard JPA implementations in both the number of SQL
calls & speed.

Evaluating all achieved results, we conclude that indeed
ORMs can improve a lot, confirming our hypothesis.

Another important fact that we can see from these re-
sults is that running a couple of extra SQL queries smartly
can also drastically improve the performance and resource
usage (since in the semi-standard JPA implementation we
were having memory issues as discussed in Scenario A).

We also proved that some operations, currently aren’t
even executable with the existing technologies and their
approaches.

The proof-of-concept example and insight into the
introduced library are available at https://github.com/
PegasusMKD/rest-graphql.

The existing implementation of the library does have
a couple of edge cases, which are mainly regarding bad
configurations, database & server connection throttling and
deadlocks. For each of these issues, we can implement
different solutions, for example, to avoid blocking server
connections the library could implement a custom executor
dedicated to it, and for the avoidance of database connec-
tion throttling, we can implement a producer-consumer
pattern, where the library methods act as producers and
we have a consumer that keeps said calls in a Queue and
executes them. Finding the correct configuration has to be
done with a trial-and-error approach and on a case-by-
case basis. RQL will not inform the users at any point as
to whether they’ve configured it properly or not since it

can’t guess the intentions, use cases, or machines that the
code base will run on.

VI. CONCLUSION

Throughout this paper, we explained the algorithm, as
well as the ideas and logic behind it. We also proved the
hypothesis that by dividing the complete task into separate
threads, proper decision-making, partitioning, in-memory
data mapping, entity pre-processing, and the avoidance
of Cartesian products and n+1 issues we can drastically
improve any system’s performance and resource require-
ments, as well as the strain it creates on the database itself.

We also discussed some issues and concerns with this
algorithm like threads hoarding database connections or
security issues, as well as ideas on how to fix them (ex.
producer-consumer pattern for the hoarding of database
connections). We’ve shown ways in which ORMs can im-
prove and extend, and discussed some "hidden" behaviors
within them. We also gave an alternative to GraphQL for
companies which would provide some of its main features,
while also drastically improving it in every aspect.

The next steps for our research would be making an
official release of this library, improving on its stability,
implementing a producer-consumer pattern for the parallel
approach, testing it on real-world examples, and finally
trying to re-implement it using different technologies and
languages with more proper support for parallelization.
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