
Identification of Code Properties that Support Code
Smell Analysis

S. Prokić, N. Luburić, J. Slivka and A. Kovačević
Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

{simona.prokic, nikola.luburic, slivkaje, kocha78}@uns.ac.rs

Abstract – Code smells are structures in code that imply

potential maintainability problems and may negatively

impact software quality. One of the critical challenges with

code smells is that their definitions are often vague, difficult

to comprehend and subjective, making them hard to

reliably and consistently detect and analyze by humans and

automated systems. Most existing code smell detection

approaches rely heavily on human interpretation and are

typically supported by structural code metrics.

Unfortunately, many of these approaches are incomplete

and do not cover a range of code properties that could

indicate potential code smells.

This paper analyzes code smell detection approaches to

identify code properties used for code smell detection and

analysis. Informed by our previous work and the literature,

we define five code properties used by humans and

automatic detectors to identify code smells. We demonstrate

how various code properties can be mapped to the 22 code

smells defined by Martin Fowler. The resulting catalog of

properties can help software engineers and code

maintainability researchers analyze code smells and build

automated code smell detectors that examine properties

beyond the traditional structural metrics.

Keywords – clean code; code smell; maintainability; code

quality

I. INTRODUCTION
Code smells are structures in code that indicate

maintainability issues in software design or
implementation [1]. These structures may negatively
impact various attributes of software quality, such as
maintainability and evolvability [2]. The presence of code
smells in software leads to increased maintenance costs
due to the inability to understand existing code, adapt and
create new features to address new requirements, and fix
bugs [2][3].

Software engineering experts agree that removing
harmful code smells is important for sustainable software
development and high-quality code [2][4]. Identifying
code smells is a challenging task for both humans and
automated detection systems. Previous research has shown
a significant disagreement among developers, as the
definitions of code smell can vary depending on the
context, developer experience, and intuition [5]. Code
smell definitions tend to be ambiguous and hard to grasp,
as they vary depending on the programming language,
framework, and coding conventions used. It is worth

noting that removing code smells can be time-consuming
[6] and requires a deep understanding of the codebase and
the system's architecture.

Most existing code smell detection approaches are
solely based on structural metrics extracted from source
code [7]. Structural metrics alone are insufficient for
identifying all the smells specified by Fowler [1], as they
cannot capture other aspects of the system that may
indicate the presence of code smells. Historical
information can offer a deeper understanding of the code’s
evolution and help identify patterns that may indicate the
presence of certain code smells (e.g., Shotgun Surgery)
[7]. Code property such as AST (Abstract Syntax Tree)
adds more context about the system's structure and
organization, enabling the identification of code smells
that might not be immediately obvious from the source
code [8]. The presence of specific code smells (e.g.,
Feature Envy) also needs to be evaluated by analyzing the
relationship between the system's classes [9][10].

This paper investigates code smell detection
approaches to identify code properties used for code smell
detection and analysis. Based on our previous work and
the literature review, we define five code properties used
by humans and automatic detectors to identify code
smells: text, AST, structural metrics, change history, and
relationships. We demonstrate how different properties
can be mapped to the 22 code smells defined by Martin
Fowler [1], highlighting which properties are useful for
each code smell analysis1.

The resulting catalog of code properties can help
software engineers and code maintainability researchers
analyze code smells and build automated code smell
detectors that examine properties beyond the traditional
structural metrics. Software experts can use the catalog in
the code smell annotation process to gain guidance on the
crucial properties needed for each code smell analysis.

Section 2 presents related work for previously
identified code properties. Section 3 outlines our research
methodology. We offer our results in Section 4 and
discuss results and limitations in Section 5. In Section 6,
we make our conclusions.

1 We use the term analysis to bring together activities such as detection,
scoping (in terms of what code is affected) and determining severity of
code smell. This research was supported by the Science Fund of the Republic of

Serbia, Grant No 6521051, AI-Clean CaDET.

MIPRO 2023/SSE 1889

II. RELATED WORK
Several earlier studies have addressed identifying

various code properties for code smell analysis. To the
best of our knowledge, none of these studies were
concerned with mapping properties to Fowler's code
smells (i.e., determining the usefulness of specific
properties for smell analysis).

Walter et al. [15] identified six data sources considered
useful for code smell analysis: programmer's intuition and
experience, metric values, AST, history of changes made
in code, dynamic behavior of code, and the existence of
other smells. The authors briefly described each of these
data sources but did not address the mapping of these
sources to code smells. Instead of determining the
usefulness of specific properties for certain smells, their
study was focused on Large Class detection based on
some of the listed sources.

Several recent review papers have listed data sources
and approaches for code smell analysis. In [6], we found a
list of metrics (primarily structural) used for the machine
learning detection approaches for code smells. Authors of
[6] focused exclusively on the machine learning
approaches. Our goal was to identify properties useful for
analyzing smells, regardless of whether performed
manually or automatically.

Haque et al. [11] have presented manual and various
automatic approaches used for code smell analysis (e.g.,
metrics-based, rule-based, history-based). Still, their aim
was not to map the data used in these approaches to
specific smells. Furthermore, machine learning and hybrid
approaches for code smell analysis are listed in [12].
Although the mentioned approaches provide insight into
the data used for code smell analysis (e.g., software
metrics, change history), there is no mapping between
specific code smells and data.

Authors of [13] present various tools used for code
smell analysis and techniques they are based on (e.g.,
metrics-based, history-based). Additionally, the mapping
of code smells and source code metrics used for their
analysis in [13] can be useful for our paper.

We have previously conducted a systematic literature
review (SLR) of the most recent studies to survey the
existing machine learning approaches for smell detection
[14]. Through the SLR, we have identified several data
sources used in these approaches. These include structural
metrics, historical features, AST, and natural language
features. The data sources used for each code smell were
valuable for mapping the code properties and smells in
this study.

III. METHODOLOGY
Our study aims to determine code properties from the

existing literature, regardless of whether humans or
automated systems used them for code smell analysis. The
goal is not to gather properties that produce the best smell
detection results but to collect the properties frequently
used, either individually or in combination. Following the
identification of properties, we map these properties to
Fowler's code smells [1], highlighting their use for
analyzing each specific smell.

To accomplish this goal, we conducted a procedure
that started with reading recently published survey papers
on code smell analysis [6][11][12][13] and using data
from our SLR [14]. In this step, we aimed to identify
properties frequently used to analyze smells. While
reviewing survey papers, we discovered a study [15] that
was the foundation for creating an initial catalog of
properties. They identified six distinct data sources useful
for smell analysis. We made changes to the initial catalog
taking into consideration the properties listed in other
survey papers and our SLR. We describe these changes in
the results section.

The result of the first step of our procedure was a
catalog of five code properties, which we then mapped to
22 code smells specified by Fowler [1]. We used
information from survey papers and the studies they cited
to conduct the mapping. Using the existing literature as a
reference, we identified specific properties that were
examined when analyzing each smell.

Researchers do not give equal attention to each smell
as they tend to focus on prevalent and impactful smells
[16]. The literature we examined until this phase was
insufficient to map certain smells and properties. We
managed to map some of these smells to some of the
properties in the previous step (most often text and
structural metrics), but we needed more information for
the remaining properties. We searched for additional
studies that focused on analyzing these smells.

Despite extensive literature search, we were unable to
find information for some of the less prioritized code
smells and properties. Using the expert opinion research
method [17], we completed the mapping of the properties
to code smells rarely discussed in the literature. Relying
on the expertise of two researchers who have been
analyzing code smells for several years [18][19][20], we
made predictions about whether properties could be useful
for analyzing a specific smell.

The experts considered code smell definitions and
property descriptions to make predictions. Each expert
prediction was accompanied by an explanation of their
reasoning, providing an opinion on the potential
usefulness of the properties for code smell analysis. We
provide a comprehensive description of these predictions
and reasoning in the results of our research.
Disagreements between experts were resolved in the
discussion, and if there was no consensus, the opinion of a
more experienced expert was considered more significant.

IV. RESULTS
This chapter presents the results of our research on

code properties used for smell analysis by humans or
automated systems.

A. Code properties

We used six distinct data sources useful for code smell
analysis from [15] as a starting point for our catalog of
code properties. These include programmer's intuition and
experience, metric values, abstract syntax tree (AST),
history of changes made in code, dynamic behavior of
code, and existence of other smells.

1890 MIPRO 2023/SSE

From these data sources, we retained metric values,
referred to as structural metrics in our catalog of
properties, AST, and history of changes made in code
(referred to as change history in our catalog). The
selection of these properties was based on data from
survey papers on code smell analysis [6][11][12][13] and
our SLR [14], which found that these properties were
often used to analyze code smells.

Structural metrics provide a way to quantify the
structural properties of the code, and most existing smell
detection approaches are based only on structural metrics
extracted from source code [7]. An extensive list of rules
for automatic code smell detection based on the metrics
and thresholds defined for each metric is presented in [23].

AST is a tree representation of the code structure
where each node represents a construct in the code. AST
is often used as an intermediate model for various model-
based techniques for code smell analysis [23]. AST
contains structural and semantic information that can be
used for code smell analysis [8][24][25].

The code’s change history provides insight into how
the software evolved. This information can be used to
identify trends and patterns in development, providing
additional useful information for code smell analysis [26].
Several studies used change history to detect code smells
[26][27][28], concluding that historical information can be
helpful in the analysis of some code smells (e.g.,
Divergent Change and Shotgun Surgery).

We replaced programmer's intuition and experience
with a code property named text (source code), bearing in
mind that the manual smell analysis requires the source
code where developers can rely on their intuition and
experience. Analyzing the source code can reveal issues in
the design or implementation that code smells imply. In
[21] and [22], developers were asked how they analyze
code smells. Both studies found that developers look at
the source code to identify code smells and evaluate their
severity.

Dynamic behavior of code as a data source is rarely
discussed in the literature we reviewed while identifying
properties [6][11][12][13][14]. Additionally, we did not
analyze the co-existence of code smells because we
focused primarily on the properties of the code being
analyzed to determine the presence and impact of a code
smell. Therefore, our catalog excludes dynamic behavior
of code and existence of other smells.

Finally, we added the fifth code property to our
catalog, representing relationships between system
classes. The analysis of relationships is necessary to
determine the presence of certain smells and has been
used for code smell analysis [9][10][30][31].
Relationships can indicate highly coupled parts of the
system, which can imply the presence of specific code
smells (e.g., Inappropriate Intimacy) [29].

We use the term relationships for several relationships
between system classes, such as inheritance. The
important information is which classes are in the
inheritance hierarchy and each class's direct descendants
or ancestors. The next significant relationship represents
method invocation to observe invoked methods, classes

they belong to, and classes that invoked those methods.
Similarly, it could be helpful to analyze the attributes that
are accessed or modified, the classes to which they
belong, and the classes that accessed or modified those
attributes. One class could also have a member variable,
local variable, method parameter, or return value of
another class. These relationships also indicate highly
coupled parts of the system and help analyze code smells.
Some structural metrics provide insight into the
relationships (e.g., CBO, DIT), but semantics are difficult
to analyze through metrics.

B. Mapping code properties to code smells

After identifying the code properties, we map them to
22 code smells specified by Fowler [1], highlighting
which properties are useful for analyzing each code smell.
The resulting mapping is summarized in Table I where we
mark “Yes” if the property was used to analyze a
particular smell and list the references that discuss this
analysis. If there are no references next to the value “Yes”,
our experts have reached these conclusions and we will
describe their reasoning in more detail below. Code smells
for which the value “No” is filled in Table I are those for
which we found no evidence in the literature of specific
properties being used for analysis, nor could we determine
their usefulness through the expert opinion method [17].

Text and code smells: Several studies
[21][22][32][33] conclude that developers perceive the
existence and impact of some code smells by analyzing
text (source code). For certain code smells (i.e., Primitive
Obsession, Alternative Classes with Different Interfaces,
Divergent Change, Incomplete Library Class, and
Comments), we did not find similar evidence in the
literature, so we used the expert opinion method to
complete the mapping of the text code property. We
concluded that all code smells could be analyzed through
text as developers can look for the structures in the source
code that suggest the possibility of refactoring (i.e.,
removal) of smells [1].

AST and code smells: AST has been used for code
smell analysis [8][24][25][33][37][38]. Alternative
Classes with Different Interfaces is one of the code smells
not found in these studies. Since that code smell refers to
classes with similar methods with different names [1][23],
using the expert opinion method we concluded that similar
patterns in classes could be observed through AST. Other
smell not found in the literature is Parallel Inheritance
Hierarchies, but we concluded that AST can also be used
to observe hierarchies, providing information for this code
smell.

Structural metrics and code smells: The metric-
based approach is a widely used method among the
various techniques for code smell detection [34].
Structural metrics can be used in combination with
thresholds in detection rules [23], as well as in machine
learning approaches [35][36].

Change history and code smells: Historical
information has been used for code smell analysis in
several studies [26][27][28][39][41].

MIPRO 2023/SSE 1891

For some code smells (i.e., Primitive Obsession, Long
Parameter List, and Data Clumps), we did not find similar
research in the literature. It is pointed out in [40] that these
smells seem likely to grow over time. Taking this into
account and using expert opinion, we concluded that
change history could provide useful information for
analyzing these code smells.

We also used expert opinion on Switch Statements code
smell, relying on the definition from [1] where it is said
that the problem is essentially a duplication of code. Since
Duplicated Code can be analyzed through change history
[28], we concluded that Switch Statements could too.

Relationships and code smells: The visualization or
information of relationships was used as an aid in the code
smell analysis by the authors of several papers
[29][31][42][43].

For smells not included in the mentioned papers
(Refused Bequest, Parallel Inheritance Hierarchies,
Message Chains, Middle Man, and Feature Envy), we
used the expert opinion method to finish the mapping of
relationships code property. The inheritance relationship
[5] and related classes/methods should be considered
when analyzing Refused Bequest. Examining the hierarchy
in which the observed instance is located, we can
determine if the hierarchy is incorrectly designed and
whether the observed class is appropriately placed in it.

Several inheritance-related metrics are used in [23] for
Parallel Inheritance Hierarchies code smell. These
metrics provide numerical values that indicate certain
characteristics of the hierarchy in which the observed class
is located. Analyzing the relationships and related classes
is essential to gain a deeper understanding of this code
smell.

Message Chains code smell is reflected in a series of
calls to other objects [5]. These relationships between
various objects should be analyzed when detecting
Message Chains and determining how to remove this
smell. Class or method infected by Middle Man code
smell has references to other classes as it is calling their
methods [23][33]. We concluded that developers should
pay attention to these relationships between system’s
classes when analyzing Middle Man, to determine whether
the observed class just delegates its work to other classes
or if it has a meaningful responsibility.

Methods containing Feature Envy code smell
frequently access data from other classes [5][10]. These
dependency relationships should be analyzed when
assessing whether Feature Envy is present in code, which
class is being accessed the most and how this smell should
be removed.

V. DISCUSSION
This chapter will discuss the results, limitations and

threats to the validity of our research. These limitations
can also indicate areas for improvement and further
research.

For five identified properties and 22 Fowler’s code
smells (a total of 110 combinations for mapping), we
based 60% of the mapping on the existing literature. We
completed the remaining 40% of the mapping based on
the conclusions of two experts. To map text property and
code smells, we used the expert opinion method in 22.7%
of cases (five out of 22 smells had to be evaluated using
this method). In the case of AST, 36.4% of mapping (eight
out of 22 smells) was done using the expert opinion
method, whereby the experts concluded that 27.3% of
smells could not be analyzed by AST (six out of 22
smells). In the case of structural metrics, an expert opinion

TABLE I. CODE PROPERTIES MAPPED TO FOWLER’S CODE SMELLS, WHERE EACH VALUE (YES OR NO) INDICATES WHETHER THE SPECIFIC CODE
PROPERTY IS USEFUL FOR ANALYZING AND DETECTING A PARTICULAR CODE SMELL

Code smell
Code properties

Text AST Structural metrics Change history Relationships

Long Method Yes[21][22][32] Yes[8][24][25] Yes[23][34][35][36] Yes[39] No
Large Class Yes[21][22][32] Yes[8][25] Yes[23][34][35][36] Yes[26][27][39][41] Yes[42][43]

Primitive Obsession Yes No Yes[23] Yes No
Long Parameter List Yes[21][22] Yes[24][37] Yes[23][34][35] Yes No

Data Clumps Yes[33] Yes[33][37] Yes[34] Yes No
Switch Statements Yes[32][33] Yes[24][33][37] Yes[23] Yes No
Temporary Field Yes[32] Yes[37] Yes[23] No No
Refused Bequest Yes[21][22][32] Yes[24][37] Yes[23][34][35] Yes[39] Yes

Alternative Classes with Different Interfaces Yes Yes Yes[23] No No
Parallel Inheritance Hierarchies Yes[32] Yes Yes[23] Yes[26][27] Yes

Divergent Change Yes No Yes[23][34] Yes[26][27][28] Yes[31]
Shotgun Surgery Yes[32] No Yes[23][34] Yes[26][27][28][39] Yes[42]

Lazy Class Yes[21][22][32] Yes[24][37] Yes[23][34] No No
Data Class Yes[32] Yes[37] Yes[23][36] Yes[39][41] Yes[43]

Duplicated Code Yes[22][32] Yes[38] Yes[23][34] Yes[28] No
Speculative Generality Yes[21][22][33] Yes[33] Yes[23][35] No No

Message Chains Yes[32][33] Yes[24][33] Yes[23] No Yes
Middle Man Yes[21][32][33] Yes[33] Yes[23][35] No Yes
Feature Envy Yes[21][22][32] Yes[8][24][25] Yes[23][34][35][36] Yes[26][27][39] Yes

Inappropriate Intimacy Yes[21][22][32] No Yes[35] No Yes[29]
Incomplete Library Class Yes No No No No

Comments Yes No Yes[23] No No

1892 MIPRO 2023/SSE

was required for only one smell, and it was concluded that
the metrics are not suitable for the analysis of that specific
smell. From 59.1% of smells (13 out of 22), the experts
concluded that 41% (nine out of 22) could not be analyzed
through change history. Finally, the relationships property
was the least represented in the literature, whereby experts
made conclusions for 77.3% of smells (17 out of 22), and
for as many as 54.5% (12 out of 22), it was concluded that
this property would not be useful for the analysis.

Given the lack of information in the literature for
mapping all properties and smells, we relied on two
experts to complete the mapping. A greater number of
experts in this mapping stage may have led to discovery of
additional relevant insights.

Apart from the five properties we have identified,
several other properties for code smell analysis can be
found in the literature (i.e., semantic metrics [44],
dynamic code behavior [15][45], and concern metrics
[46]). Semantic metrics have been discussed more in the
literature in the light of refactoring and various aspects of
code quality. Still, we have not found relevant papers that
analyze semantic metrics for the analysis of Fowler’s code
smells. Dynamic code behavior was not included because
no recent studies used this property, while we found this
property used only for Data Class [15] and Refused
Bequest [45]. We excluded concern metrics because only
several code smells were analyzed using those metrics
(Divergent Change, Shotgun Surgery, Large Class) [46].

Furthermore, the existing tools for smell analysis often
use properties that are easier to calculate and use (i.e.,
structural metrics are easier to calculate than semantic or
concern metrics which require a deeper understanding of
the system). Considering the literature and existing tools,
it would be too challenging and time-consuming to
identify all properties and map them to Fowler’s code
smells as part of this paper. It remains an open question of
which less frequent code properties would be useful for
smell analysis.

While we have mapped five properties to 22 Fowler’s
code smells, there are additional code smells in the
literature that we have not covered [47][48][49][50][51].
With such a comprehensive list of code smells, we chose
to concentrate on those specified by Fowler, which have a
strong presence in the literature. Future researchers in this
field may consider mapping code properties to other code
smells to assess their usefulness for analysis.

We should point out that we did not conduct a SLR to
identify the code properties for code smell analysis. A
SLR would represent a more thorough approach for
gathering information, but it would also be highly time-
consuming. As indicated in the description of our
methodology, we mainly relied on the data we read in
recently published review papers and the papers they
reference. However, we did rely on our SLR [14] of the
existing machine learning approaches for code smell
detection. As part of that review, we collected the data
sources used in detection approaches, which we found
useful for this study.

We believe that researchers should go beyond the
traditional structural metrics when analyzing code smells
and examine other code properties to achieve a more

comprehensive understanding, and improved analysis of
code smells. The resulting mapping of identified
properties and code smells can guide software engineers
and code maintainability researchers to build automated
code smell detectors that examine properties beyond the
traditional structural metrics. Additionally, our results can
help researchers manually analyze code smells by
examining properties highlighted for specific smells and
investigate the impact of other properties sufficiently
presented in the literature.

VI. CONCLUSION
The first objective of our study was to identify code

properties used for code smell analysis by both human and
automatic detectors. The second objective was to map the
identified properties to code smells specified by Fowler.

Based on our previous work, the existing literature,
and expert opinion, we have defined five code properties
that are used for code smell analysis: text, AST, structural
metrics, change history, and relationships. Through the
mapping of these properties and 22 code smells, we
emphasized the usefulness of properties for specific smell
analysis. Resulting mapping could guide software
engineers and researchers in their attempts to analyze code
smells and build automated code smells detectors.

In addition to the five identified code properties, other
properties (e.g., semantic metrics, concern metrics) have
received less attention in the literature. They could be
examined in the future to assess their impact and
relevance for smell analysis. It should be noted that there
are also other code smells besides Fowler’s. These code
properties and code smells have yet to be explored in the
literature, and the research community should strive to
identify all aspects essential for analyzing smells.

ACKNOWLEDGMENT
This research is supported by the Science Fund of the

Republic of Serbia, Grant No 6521051, AI-Clean CaDET.

REFERENCES
[1] M. Fowler, et al., Refactoring: improving the design of existing

code. Addison-Wesley, 1999.
[2] T. Sharma and D. Spinellis, “A survey on software smells,”

Journal of Systems and Software, 138, pp.158-173, 2018.
[3] A. Kaur, "A systematic literature review on empirical analysis of

the relationship between code smells and software quality
attributes," Archives of Computational Methods in Engineering,
27, pp.1267-1296, 2020.

[4] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 2018.

[5] M. Hozano, et al., “Are you smelling it? Investigating how similar
developers detect code smells,” Information and Software
Technology, 93, pp.130-146, 2018.

[6] M. I. Azeem, et al., “Machine learning techniques for code smell
detection: A systematic literature review and meta-analysis,”
Information and Software Technology, 108, pp.115-138, 2019.

[7] F. Palomba, et al., “Detecting bad smells in source code using
change history information,” 28th IEEE/ACM International
Conference on Automated Software Engineering, pp.268-278,
2013.

[8] M. Hadj-Kacem and N. Bouassida, "Improving the Identification
of Code Smells by Combining Structural and Semantic

MIPRO 2023/SSE 1893

Information,” Neural Information Processing: 26th International
Conference, pp.296-304, 2019.

[9] E. Murphy-Hill, et al., “Interactive ambient visualizations for soft
advice,” Information Visualization 12(2), pp.107-132, 2013.

[10] R. Oliveira, et al., “Collaborative identification of code smells: A
multi-case study,” IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track,
pp.33-42, 2017.

[11] M. S. Haque, et al., “Causes, impacts, and detection approaches of
code smell: a survey,” Proceedings of the ACMSE 2018
Conference, pp.1-8, 2018.

[12] A. Kaur, et al., "A review on machine-learning based code smell
detection techniques in object-oriented software system(s),”
Recent Advances in Electrical & Electronic Engineering, 14(3),
pp.290-303, 2021.

[13] G. Rasool and Z. Arshad, “A review of code smell mining
techniques,” Journal of Software: Evolution and Process 27(11),
pp.867-895, 2015.

[14] K. G. Grujic, et al., “Machine Learning Approaches for Code
Smell Detection: A Systematic Literature Review,” Available at
SSRN: https://ssrn.com/abstract=4299859, 2022. Unpublished.

[15] B. Walter and B. Pietrzak, “Multi-criteria Detection of Bad Smells
in Code with UTA Method,” Extreme Programming and Agile
Processes in Software Engineering: 6th International Conference,
Proceedings 6, pp.154-161, 2005.

[16] N. Sae-Lim, et al., “An Investigative Study on How Developers
Filter and Prioritize Code Smell,” IEICE TRANSACTIONS on
Information and Systems, 101(7), pp.1733-1742, 2018.

[17] R. Wieringa, “Empirical research methods for technology
validation: Scaling up to practice,” Journal of systems and
software, 95, pp.19-31, 2014.

[18] A. Kovacevic, et al., “Automatic detection of Long Method and
God Class code smells through neural source code embeddings,”
Expert Systems with Applications, 204, p.117607, 2022.

[19] N. Luburic, et al., “Towards a systematic approach to manual
annotation of code smells,” Preprint available at TechRxiv:
https://doi.org/10.36227/techrxiv.14159183.v3,2021.Unpublished.

[20] A. Kovacevic, et al., “Automatic detection of code smells using
metrics and CodeT5embeddings: a case study in C#,” Preprint
available at TechRxiv:
https://doi.org/10.36227/techrxiv.19682754.v2,2022.Unpublished.

[21] F. Palomba, et al., “Do they really smell bad? A study on
developers’ perception of bad code smells,” IEEE International
Conference on Software Maintenance and Evolution, pp.101-110,
2014.

[22] D. Taibi, et al., “How developers perceive smells in source code:
A replicated study,” Information and Software Technology, 92,
pp.223-235, 2017.

[23] B. Bafandeh Mayvan, et al., “Bad smell detection using quality
metrics and refactoring opportunities,” Journal of Software:
Evolution and Process, 32(8), p.e2255, 2020.

[24] S. Slinger, “Code smell detection in Eclipse,” Delft University of
Technology, 2005.

[25] M. Hadj-Kacem and N. Bouassida, “Deep representation learning
for code smells detection using variational auto-encoder,”
International Joint Conference on Neural Networks, pp.1-8, 2019.

[26] F. Palomba, et al., “Detecting bad smells in source code using
change history information,” 28th IEEE/ACM International
Conference on Automated Software Engineering, pp.268-278.,
2013.

[27] F. Palomba, et al., “Mining Version Histories for Detecting Code
Smells,” IEEE Transactions on Software Engineering, 41(5),
pp.462-489, 2015.

[28] S. Fu and B. Shen, “Code Bad Smell Detection through
Evolutionary Data Mining,” ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, pp.1-9,
2015.

[29] A. Jermakovics, et al., “Visualizing software evolution with
lagrein,” Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications,
pp.749-750. 2008.

[30] K. Dhambri, et al., “Visual Detection of Design Anomalies,” 12th
European Conference on Software Maintenance and
Reengineering, pp.279-283, 2008.

[31] D. Jiang, et al., “Distance metric based divergent change bad smell
detection and refactoring scheme analysis,” International Journal
of Innovative Computing, Information and Control, 10(4),
pp.1519-1531, 2014.

[32] A. Tahir, et al., “Can you tell me if it smells? A study on how
developers discuss code smells and anti-patterns in Stack
Overflow,” Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018, pp.68-
78. 2018.

[33] T. Hall, et al., “Some Code Smells Have a Significant but Small
Effect on Faults,” ACM Transactions on Software Engineering
and Methodology, 23(4), pp.1-39, 2014.

[34] G. Lacerda, et al., “Code smells and refactoring: A tertiary
systematic review of challenges and observations,” Journal of
Systems and Software, 167, p.110610, 2020.

[35] F. Pecorelli, et al., “A large empirical assessment of the role of
data balancing in machine-learning-based code smell detection,”
Journal of Systems and Software, 169, p.110693, 2020.

[36] M. Y. Mhawish and M. Gupta, “Predicting Code Smells and
Analysis of Predictions: Using Machine Learning Techniques and
Software Metrics,” Journal of Computer Science and Technology,
35, pp.1428-1445, 2020.

[37] S. Mekruksavanich, “Design Flaws Detection in Object-Oriented
Software with Analytical Learning Method,” International Journal
of e-Education, e-Business, e-Management and e-Learning, 1(3),
p.210, 2011.

[38] I. D. Baxter, et al., “Clone detection using abstract syntax trees,”
Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272), pp.368-377, 1998.

[39] S. A. Vidal, et al., “An approach to prioritize code smells for
refactoring,” Automated Software Engineering, 23, pp.501-532,
2016.

[40] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of
software evolvability using code smells: An empirical study,”
Empirical Software Engineering, 11, pp.395-431, 2006.

[41] D. Rapu, et al., “Using history information to improve design
flaws detection,” Eighth European Conference on Software
Maintenance and Reengineering, pp.223-232, 2004.

[42] F. A. Fontana, et al., “Towards Assessing Software Architecture
Quality by Exploiting Code Smell Relations,” 2015 IEEE/ACM
2nd International Workshop on Software Architecture and Metrics,
pp.1-7, 2015.

[43] R. Wettel and M. Lanza, “Visually localizing design problems
with disharmony maps,” Proceedings of the 4th ACM Symposium
on Software Visualization, pp.155-164. 2008.

[44] J. Pantiuchina, et al., “Why developers refactor source code: A
mining-based study,” ACM Transactions on Software Engineering
and Methodology, 29(4), pp.1-30, 2020.

[45] E. Ligu, et al., “Identification of Refused Bequest Code Smells,”
2013 IEEE International Conference on Software Maintenance,
pp.392-395, 2013.

[46] J. Padilha, et al., “On the Effectiveness of Concern Metrics to
Detect Code Smells: An Empirical Study,” Advanced Information
Systems Engineering: 26th International Conference, 26, pp.656-
671, 2014.

[47] G. Suryanarayana, et al., “Refactoring for software design smells,”
ACM SIGSOFT Software Engineering Notes, 40, 2015.

[48] W. H. Brown, et al., AntiPatterns: refactoring software,
architectures, and projects in crisis. John Wiley & Sons, 1998.

[49] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley,
1996.

[50] M. Lippert and S. Roock, Refactoring in large software projects:
performing complex restructurings successfully. John Wiley &
Sons, 2006.

[51] T. Sharma, et al., “House of Cards: Code Smells in Open-Source
C# Repositories,” 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2017.

1894 MIPRO 2023/SSE

https://ssrn.com/abstract=4299859
https://doi.org/10.36227/techrxiv.14159183.v3
https://doi.org/10.36227/techrxiv.19682754.v2

