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Abstract – Code smells are structures in code that imply 

potential maintainability problems and may negatively 

impact software quality. One of the critical challenges with 

code smells is that their definitions are often vague, difficult 

to comprehend and subjective, making them hard to 

reliably and consistently detect and analyze by humans and 

automated systems. Most existing code smell detection 

approaches rely heavily on human interpretation and are 

typically supported by structural code metrics. 

Unfortunately, many of these approaches are incomplete 

and do not cover a range of code properties that could 

indicate potential code smells. 

This paper analyzes code smell detection approaches to 

identify code properties used for code smell detection and 

analysis. Informed by our previous work and the literature, 

we define five code properties used by humans and 

automatic detectors to identify code smells. We demonstrate 

how various code properties can be mapped to the 22 code 

smells defined by Martin Fowler. The resulting catalog of 

properties can help software engineers and code 

maintainability researchers analyze code smells and build 

automated code smell detectors that examine properties 

beyond the traditional structural metrics.  

Keywords – clean code; code smell; maintainability; code 

quality 

I. INTRODUCTION 
Code smells are structures in code that indicate 

maintainability issues in software design or 
implementation [1]. These structures may negatively 
impact various attributes of software quality, such as 
maintainability and evolvability [2]. The presence of code 
smells in software leads to increased maintenance costs 
due to the inability to understand existing code, adapt and 
create new features to address new requirements, and fix 
bugs [2][3]. 

Software engineering experts agree that removing 
harmful code smells is important for sustainable software 
development and high-quality code [2][4]. Identifying 
code smells is a challenging task for both humans and 
automated detection systems. Previous research has shown 
a significant disagreement among developers, as the 
definitions of code smell can vary depending on the 
context, developer experience, and intuition [5]. Code 
smell definitions tend to be ambiguous and hard to grasp, 
as they vary depending on the programming language, 
framework, and coding conventions used. It is worth 

noting that removing code smells can be time-consuming 
[6] and requires a deep understanding of the codebase and 
the system's architecture. 

Most existing code smell detection approaches are 
solely based on structural metrics extracted from source 
code [7]. Structural metrics alone are insufficient for 
identifying all the smells specified by Fowler [1], as they 
cannot capture other aspects of the system that may 
indicate the presence of code smells. Historical 
information can offer a deeper understanding of the code’s 
evolution and help identify patterns that may indicate the 
presence of certain code smells (e.g., Shotgun Surgery) 
[7]. Code property such as AST (Abstract Syntax Tree) 
adds more context about the system's structure and 
organization, enabling the identification of code smells 
that might not be immediately obvious from the source 
code [8]. The presence of specific code smells (e.g., 
Feature Envy) also needs to be evaluated by analyzing the 
relationship between the system's classes [9][10]. 

This paper investigates code smell detection 
approaches to identify code properties used for code smell 
detection and analysis. Based on our previous work and 
the literature review, we define five code properties used 
by humans and automatic detectors to identify code 
smells: text, AST, structural metrics, change history, and 
relationships. We demonstrate how different properties 
can be mapped to the 22 code smells defined by Martin 
Fowler [1], highlighting which properties are useful for 
each code smell analysis1. 

The resulting catalog of code properties can help 
software engineers and code maintainability researchers 
analyze code smells and build automated code smell 
detectors that examine properties beyond the traditional 
structural metrics. Software experts can use the catalog in 
the code smell annotation process to gain guidance on the 
crucial properties needed for each code smell analysis. 

Section 2 presents related work for previously 
identified code properties. Section 3 outlines our research 
methodology. We offer our results in Section 4 and 
discuss results and limitations in Section 5. In Section 6, 
we make our conclusions. 

 
1 We use the term analysis to bring together activities such as detection, 
scoping (in terms of what code is affected) and determining severity of 
code smell. This research was supported by the Science Fund of the Republic of 

Serbia, Grant No 6521051, AI-Clean CaDET. 
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II. RELATED WORK 
Several earlier studies have addressed identifying 

various code properties for code smell analysis. To the 
best of our knowledge, none of these studies were 
concerned with mapping properties to Fowler's code 
smells (i.e., determining the usefulness of specific 
properties for smell analysis). 

Walter et al. [15] identified six data sources considered 
useful for code smell analysis: programmer's intuition and 
experience, metric values, AST, history of changes made 
in code, dynamic behavior of code, and the existence of 
other smells. The authors briefly described each of these 
data sources but did not address the mapping of these 
sources to code smells. Instead of determining the 
usefulness of specific properties for certain smells, their 
study was focused on Large Class detection based on 
some of the listed sources. 

Several recent review papers have listed data sources 
and approaches for code smell analysis. In [6], we found a 
list of metrics (primarily structural) used for the machine 
learning detection approaches for code smells. Authors of 
[6] focused exclusively on the machine learning 
approaches. Our goal was to identify properties useful for 
analyzing smells, regardless of whether performed 
manually or automatically.  

Haque et al. [11] have presented manual and various 
automatic approaches used for code smell analysis (e.g., 
metrics-based, rule-based, history-based). Still, their aim 
was not to map the data used in these approaches to 
specific smells. Furthermore, machine learning and hybrid 
approaches for code smell analysis are listed in [12]. 
Although the mentioned approaches provide insight into 
the data used for code smell analysis (e.g., software 
metrics, change history), there is no mapping between 
specific code smells and data. 

Authors of [13] present various tools used for code 
smell analysis and techniques they are based on (e.g., 
metrics-based, history-based). Additionally, the mapping 
of code smells and source code metrics used for their 
analysis in [13] can be useful for our paper. 

We have previously conducted a systematic literature 
review (SLR) of the most recent studies to survey the 
existing machine learning approaches for smell detection 
[14]. Through the SLR, we have identified several data 
sources used in these approaches. These include structural 
metrics, historical features, AST, and natural language 
features. The data sources used for each code smell were 
valuable for mapping the code properties and smells in 
this study. 

III. METHODOLOGY 
Our study aims to determine code properties from the 

existing literature, regardless of whether humans or 
automated systems used them for code smell analysis. The 
goal is not to gather properties that produce the best smell 
detection results but to collect the properties frequently 
used, either individually or in combination. Following the 
identification of properties, we map these properties to 
Fowler's code smells [1], highlighting their use for 
analyzing each specific smell. 

To accomplish this goal, we conducted a procedure 
that started with reading recently published survey papers 
on code smell analysis [6][11][12][13] and using data 
from our SLR [14]. In this step, we aimed to identify 
properties frequently used to analyze smells. While 
reviewing survey papers, we discovered a study [15] that 
was the foundation for creating an initial catalog of 
properties. They identified six distinct data sources useful 
for smell analysis. We made changes to the initial catalog 
taking into consideration the properties listed in other 
survey papers and our SLR. We describe these changes in 
the results section. 

The result of the first step of our procedure was a 
catalog of five code properties, which we then mapped to 
22 code smells specified by Fowler [1]. We used 
information from survey papers and the studies they cited 
to conduct the mapping. Using the existing literature as a 
reference, we identified specific properties that were 
examined when analyzing each smell. 

Researchers do not give equal attention to each smell 
as they tend to focus on prevalent and impactful smells 
[16]. The literature we examined until this phase was 
insufficient to map certain smells and properties. We 
managed to map some of these smells to some of the 
properties in the previous step (most often text and 
structural metrics), but we needed more information for 
the remaining properties. We searched for additional 
studies that focused on analyzing these smells.  

Despite extensive literature search, we were unable to 
find information for some of the less prioritized code 
smells and properties. Using the expert opinion research 
method [17], we completed the mapping of the properties 
to code smells rarely discussed in the literature. Relying 
on the expertise of two researchers who have been 
analyzing code smells for several years [18][19][20], we 
made predictions about whether properties could be useful 
for analyzing a specific smell.  

The experts considered code smell definitions and 
property descriptions to make predictions. Each expert 
prediction was accompanied by an explanation of their 
reasoning, providing an opinion on the potential 
usefulness of the properties for code smell analysis. We 
provide a comprehensive description of these predictions 
and reasoning in the results of our research. 
Disagreements between experts were resolved in the 
discussion, and if there was no consensus, the opinion of a 
more experienced expert was considered more significant. 

IV. RESULTS 
This chapter presents the results of our research on 

code properties used for smell analysis by humans or 
automated systems. 

A. Code properties 

We used six distinct data sources useful for code smell 
analysis from [15] as a starting point for our catalog of 
code properties. These include programmer's intuition and 
experience, metric values, abstract syntax tree (AST), 
history of changes made in code, dynamic behavior of 
code, and existence of other smells. 

1890 MIPRO 2023/SSE



From these data sources, we retained metric values, 
referred to as structural metrics in our catalog of 
properties, AST, and history of changes made in code 
(referred to as change history in our catalog). The 
selection of these properties was based on data from 
survey papers on code smell analysis [6][11][12][13] and 
our SLR [14], which found that these properties were 
often used to analyze code smells. 

Structural metrics provide a way to quantify the 
structural properties of the code, and most existing smell 
detection approaches are based only on structural metrics 
extracted from source code [7]. An extensive list of rules 
for automatic code smell detection based on the metrics 
and thresholds defined for each metric is presented in [23]. 

AST is a tree representation of the code structure 
where each node represents a construct in the code. AST 
is often used as an intermediate model for various model-
based techniques for code smell analysis [23]. AST 
contains structural and semantic information that can be 
used for code smell analysis [8][24][25]. 

The code’s change history provides insight into how 
the software evolved. This information can be used to 
identify trends and patterns in development, providing 
additional useful information for code smell analysis [26]. 
Several studies used change history to detect code smells 
[26][27][28], concluding that historical information can be 
helpful in the analysis of some code smells (e.g., 
Divergent Change and Shotgun Surgery). 

We replaced programmer's intuition and experience 
with a code property named text (source code), bearing in 
mind that the manual smell analysis requires the source 
code where developers can rely on their intuition and 
experience. Analyzing the source code can reveal issues in 
the design or implementation that code smells imply. In 
[21] and [22], developers were asked how they analyze 
code smells. Both studies found that developers look at 
the source code to identify code smells and evaluate their 
severity. 

Dynamic behavior of code as a data source is rarely 
discussed in the literature we reviewed while identifying 
properties [6][11][12][13][14]. Additionally, we did not 
analyze the co-existence of code smells because we 
focused primarily on the properties of the code being 
analyzed to determine the presence and impact of a code 
smell. Therefore, our catalog excludes dynamic behavior 
of code and existence of other smells. 

Finally, we added the fifth code property to our 
catalog, representing relationships between system 
classes. The analysis of relationships is necessary to 
determine the presence of certain smells and has been 
used for code smell analysis [9][10][30][31]. 
Relationships can indicate highly coupled parts of the 
system, which can imply the presence of specific code 
smells (e.g., Inappropriate Intimacy) [29]. 

We use the term relationships for several relationships 
between system classes, such as inheritance. The 
important information is which classes are in the 
inheritance hierarchy and each class's direct descendants 
or ancestors. The next significant relationship represents 
method invocation to observe invoked methods, classes 

they belong to, and classes that invoked those methods. 
Similarly, it could be helpful to analyze the attributes that 
are accessed or modified, the classes to which they 
belong, and the classes that accessed or modified those 
attributes. One class could also have a member variable, 
local variable, method parameter, or return value of 
another class. These relationships also indicate highly 
coupled parts of the system and help analyze code smells. 
Some structural metrics provide insight into the 
relationships (e.g., CBO, DIT), but semantics are difficult 
to analyze through metrics. 

B. Mapping code properties to code smells 

After identifying the code properties, we map them to 
22 code smells specified by Fowler [1], highlighting 
which properties are useful for analyzing each code smell. 
The resulting mapping is summarized in Table I where we 
mark “Yes” if the property was used to analyze a 
particular smell and list the references that discuss this 
analysis. If there are no references next to the value “Yes”, 
our experts have reached these conclusions and we will 
describe their reasoning in more detail below. Code smells 
for which the value “No” is filled in Table I are those for 
which we found no evidence in the literature of specific 
properties being used for analysis, nor could we determine 
their usefulness through the expert opinion method [17]. 

Text and code smells: Several studies 
[21][22][32][33] conclude that developers perceive the 
existence and impact of some code smells by analyzing 
text (source code). For certain code smells (i.e., Primitive 
Obsession, Alternative Classes with Different Interfaces, 
Divergent Change, Incomplete Library Class, and 
Comments), we did not find similar evidence in the 
literature, so we used the expert opinion method to 
complete the mapping of the text code property. We 
concluded that all code smells could be analyzed through 
text as developers can look for the structures in the source 
code that suggest the possibility of refactoring (i.e., 
removal) of smells [1]. 

AST and code smells: AST has been used for code 
smell analysis [8][24][25][33][37][38]. Alternative 
Classes with Different Interfaces is one of the code smells 
not found in these studies. Since that code smell refers to 
classes with similar methods with different names [1][23], 
using the expert opinion method we concluded that similar 
patterns in classes could be observed through AST. Other 
smell not found in the literature is Parallel Inheritance 
Hierarchies, but we concluded that AST can also be used 
to observe hierarchies, providing information for this code 
smell. 

Structural metrics and code smells: The metric-
based approach is a widely used method among the 
various techniques for code smell detection [34]. 
Structural metrics can be used in combination with 
thresholds in detection rules [23], as well as in machine 
learning approaches [35][36]. 

Change history and code smells: Historical 
information has been used for code smell analysis in 
several studies [26][27][28][39][41]. 
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For some code smells (i.e., Primitive Obsession, Long 
Parameter List, and Data Clumps), we did not find similar 
research in the literature. It is pointed out in [40] that these 
smells seem likely to grow over time. Taking this into 
account and using expert opinion, we concluded that 
change history could provide useful information for 
analyzing these code smells. 

We also used expert opinion on Switch Statements code 
smell, relying on the definition from [1] where it is said 
that the problem is essentially a duplication of code. Since 
Duplicated Code can be analyzed through change history 
[28], we concluded that Switch Statements could too. 

Relationships and code smells: The visualization or 
information of relationships was used as an aid in the code 
smell analysis by the authors of several papers 
[29][31][42][43]. 

For smells not included in the mentioned papers 
(Refused Bequest, Parallel Inheritance Hierarchies, 
Message Chains, Middle Man, and Feature Envy), we 
used the expert opinion method to finish the mapping of 
relationships code property. The inheritance relationship 
[5] and related classes/methods should be considered 
when analyzing Refused Bequest. Examining the hierarchy 
in which the observed instance is located, we can 
determine if the hierarchy is incorrectly designed and 
whether the observed class is appropriately placed in it. 

Several inheritance-related metrics are used in [23] for 
Parallel Inheritance Hierarchies code smell. These 
metrics provide numerical values that indicate certain 
characteristics of the hierarchy in which the observed class 
is located. Analyzing the relationships and related classes 
is essential to gain a deeper understanding of this code 
smell.  

Message Chains code smell is reflected in a series of 
calls to other objects [5]. These relationships between 
various objects should be analyzed when detecting 
Message Chains and determining how to remove this 
smell. Class or method infected by Middle Man code 
smell has references to other classes as it is calling their 
methods [23][33]. We concluded that developers should 
pay attention to these relationships between system’s 
classes when analyzing Middle Man, to determine whether 
the observed class just delegates its work to other classes 
or if it has a meaningful responsibility. 

Methods containing Feature Envy code smell 
frequently access data from other classes [5][10]. These 
dependency relationships should be analyzed when 
assessing whether Feature Envy is present in code, which 
class is being accessed the most and how this smell should 
be removed. 

V. DISCUSSION 
This chapter will discuss the results, limitations and 

threats to the validity of our research. These limitations 
can also indicate areas for improvement and further 
research. 

For five identified properties and 22 Fowler’s code 
smells (a total of 110 combinations for mapping), we 
based 60% of the mapping on the existing literature. We 
completed the remaining 40% of the mapping based on 
the conclusions of two experts. To map text property and 
code smells, we used the expert opinion method in 22.7% 
of cases (five out of 22 smells had to be evaluated using 
this method). In the case of AST, 36.4% of mapping (eight 
out of 22 smells) was done using the expert opinion 
method, whereby the experts concluded that 27.3% of 
smells could not be analyzed by AST (six out of 22 
smells). In the case of structural metrics, an expert opinion 

TABLE I.  CODE PROPERTIES MAPPED TO FOWLER’S CODE SMELLS, WHERE EACH VALUE (YES OR NO) INDICATES WHETHER THE SPECIFIC CODE 
PROPERTY IS USEFUL FOR ANALYZING AND DETECTING A PARTICULAR CODE SMELL 

Code smell 
Code properties 

Text AST Structural metrics Change history Relationships 

Long Method Yes[21][22][32] Yes[8][24][25] Yes[23][34][35][36] Yes[39] No 
Large Class Yes[21][22][32] Yes[8][25] Yes[23][34][35][36] Yes[26][27][39][41] Yes[42][43] 

Primitive Obsession Yes No Yes[23] Yes No 
Long Parameter List Yes[21][22] Yes[24][37] Yes[23][34][35] Yes No 

Data Clumps Yes[33] Yes[33][37] Yes[34] Yes No 
Switch Statements Yes[32][33] Yes[24][33][37] Yes[23] Yes No 
Temporary Field Yes[32] Yes[37] Yes[23] No No 
Refused Bequest Yes[21][22][32] Yes[24][37] Yes[23][34][35] Yes[39] Yes 

Alternative Classes with Different Interfaces Yes Yes Yes[23] No No 
Parallel Inheritance Hierarchies Yes[32] Yes Yes[23] Yes[26][27] Yes 

Divergent Change Yes No Yes[23][34] Yes[26][27][28] Yes[31] 
Shotgun Surgery Yes[32] No Yes[23][34] Yes[26][27][28][39] Yes[42] 

Lazy Class Yes[21][22][32] Yes[24][37] Yes[23][34] No No 
Data Class Yes[32] Yes[37] Yes[23][36] Yes[39][41] Yes[43] 

Duplicated Code Yes[22][32] Yes[38] Yes[23][34] Yes[28] No 
Speculative Generality Yes[21][22][33] Yes[33] Yes[23][35] No No 

Message Chains Yes[32][33] Yes[24][33] Yes[23] No Yes 
Middle Man Yes[21][32][33] Yes[33] Yes[23][35] No Yes 
Feature Envy Yes[21][22][32] Yes[8][24][25] Yes[23][34][35][36] Yes[26][27][39] Yes 

Inappropriate Intimacy Yes[21][22][32] No Yes[35] No Yes[29]  
Incomplete Library Class Yes No No No No 

Comments Yes No Yes[23] No No 
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was required for only one smell, and it was concluded that 
the metrics are not suitable for the analysis of that specific 
smell. From 59.1% of smells (13 out of 22), the experts 
concluded that 41% (nine out of 22) could not be analyzed 
through change history. Finally, the relationships property 
was the least represented in the literature, whereby experts 
made conclusions for 77.3% of smells (17 out of 22), and 
for as many as 54.5% (12 out of 22), it was concluded that 
this property would not be useful for the analysis. 

Given the lack of information in the literature for 
mapping all properties and smells, we relied on two 
experts to complete the mapping. A greater number of 
experts in this mapping stage may have led to discovery of 
additional relevant insights. 

Apart from the five properties we have identified, 
several other properties for code smell analysis can be 
found in the literature (i.e., semantic metrics [44], 
dynamic code behavior [15][45], and concern metrics 
[46]). Semantic metrics have been discussed more in the 
literature in the light of refactoring and various aspects of 
code quality. Still, we have not found relevant papers that 
analyze semantic metrics for the analysis of Fowler’s code 
smells. Dynamic code behavior was not included because 
no recent studies used this property, while we found this 
property used only for Data Class [15] and Refused 
Bequest [45]. We excluded concern metrics because only 
several code smells were analyzed using those metrics 
(Divergent Change, Shotgun Surgery, Large Class) [46]. 

Furthermore, the existing tools for smell analysis often 
use properties that are easier to calculate and use (i.e., 
structural metrics are easier to calculate than semantic or 
concern metrics which require a deeper understanding of 
the system). Considering the literature and existing tools, 
it would be too challenging and time-consuming to 
identify all properties and map them to Fowler’s code 
smells as part of this paper. It remains an open question of 
which less frequent code properties would be useful for 
smell analysis. 

While we have mapped five properties to 22 Fowler’s 
code smells, there are additional code smells in the 
literature that we have not covered [47][48][49][50][51]. 
With such a comprehensive list of code smells, we chose 
to concentrate on those specified by Fowler, which have a 
strong presence in the literature. Future researchers in this 
field may consider mapping code properties to other code 
smells to assess their usefulness for analysis. 

We should point out that we did not conduct a SLR to 
identify the code properties for code smell analysis. A 
SLR would represent a more thorough approach for 
gathering information, but it would also be highly time-
consuming. As indicated in the description of our 
methodology, we mainly relied on the data we read in 
recently published review papers and the papers they 
reference. However, we did rely on our SLR [14] of the 
existing machine learning approaches for code smell 
detection. As part of that review, we collected the data 
sources used in detection approaches, which we found 
useful for this study. 

We believe that researchers should go beyond the 
traditional structural metrics when analyzing code smells 
and examine other code properties to achieve a more 

comprehensive understanding, and improved analysis of 
code smells. The resulting mapping of identified 
properties and code smells can guide software engineers 
and code maintainability researchers to build automated 
code smell detectors that examine properties beyond the 
traditional structural metrics. Additionally, our results can 
help researchers manually analyze code smells by 
examining properties highlighted for specific smells and 
investigate the impact of other properties sufficiently 
presented in the literature. 

VI. CONCLUSION 
The first objective of our study was to identify code 

properties used for code smell analysis by both human and 
automatic detectors. The second objective was to map the 
identified properties to code smells specified by Fowler. 

Based on our previous work, the existing literature, 
and expert opinion, we have defined five code properties 
that are used for code smell analysis: text, AST, structural 
metrics, change history, and relationships. Through the 
mapping of these properties and 22 code smells, we 
emphasized the usefulness of properties for specific smell 
analysis. Resulting mapping could guide software 
engineers and researchers in their attempts to analyze code 
smells and build automated code smells detectors.  

In addition to the five identified code properties, other 
properties (e.g., semantic metrics, concern metrics) have 
received less attention in the literature. They could be 
examined in the future to assess their impact and 
relevance for smell analysis. It should be noted that there 
are also other code smells besides Fowler’s. These code 
properties and code smells have yet to be explored in the 
literature, and the research community should strive to 
identify all aspects essential for analyzing smells. 
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