
Role, Importance and Significance of
Software Quality

F. Témolé*, D. Atanasova**
* Capgemini Hamburg, Germany

** University of Ruse „Angel Kanchev“, Department of IIT, Ruse, Bulgaria
ftemole@t-online.de, datanasova@uni-ruse.bg

Abstract - In software development processes, as in other

forms within the mechanical environment, the objectives of

least costs, adherence to due dates and item quality must be

taken into consideration. Great software system must satisfy

different already concurred quality perspectives or product

characteristics. Since of the gigantic significance of quality

within the advancement of computer program items, its

administration ought to be coordinates into software

ventures. Software quality administration ought to make

and keep up program quality with the assistance of

specialized and hierarchical measures. As it were when the

above-mentioned goals have been satisfied can one talk of

financial computer program advancement. Software quality

management can ensure that the software has the required

level of quality. Quality objectives should be set, and their

degree of fulfilment can be determined during development.

In this paper, the essential findings from the expert

interviews on the role and importance as well as the

significance of software quality are brought together and a

reflection is made between statements from business

practice (experts) and science (theory), whereby the state of

both research and practice can be decisively improved.

Keywords - component; formatting; style; styling; insert

(key words)

I. INTRODUCTION
First of all, the term quality must be defined in order to

subsequently be able to determine the term software
quality. According to DIN EN ISO 9000, quality is
understood to be a degree " to which a set of inherent
characteristics of an object fulfils requirements" [3, 4].
Quality is thus reflected in how the product fulfils the
existing requirements. There are numerous definitions in
the literature that look at the term quality from different
perspectives (e.g. objective or marketing-oriented view).
Garvin [6] examined product quality, listed characteristic
features and described five views (transcendent view,
product-based view, user view, manufacturer view, value-
based view).

TABLE I. FIVE VIEWS OF QUALITY, ACCORDING TO GARVIN [6]

View Description

Transcendental
view

No precise quality definition possible, but is
absolutely and independently recognizable
from other quality characteristics as a whole.
Only through the highest demands, standards
and performance can this quality be achieved.

Product-based view Quality can be derived from the product
characteristics and is thus measurable via the

properties or ingredients.

User view Quality is characterised by the fact that
individual customer needs are met and the
customer is supplied with the most suitable
product for his specific needs.

Manufacturer's
view

Quality is achieved when given specifications
or legal requirements are met.

Value-based view Quality is characterised by the fact that the
services are provided at a cost that is acceptable
to the customer (price-performance ratio of the
product).

DIN EN ISO 9001 defines the requirements for a
company's quality management and is designed to be
industry-neutral. According to DIN EN ISO 9001 [4] a
quality management concept must meet the following
mini-mum requirements:

• Project-specific quality model with the relevant
quality characteristics

• Determination of the parameters with the
corresponding procedure

• Weighing the benefits and costs of the quality
management system

Due to the special features of software products, a
quality management adapted for software should be
applied, which is to be regarded as part of the quality
management of the company. Quality management can be
carried out in a process- or product-oriented manner.
According to Liggesmeyer [16] there are analytical and
constructive methods that allow the development of
comprehensible, reliable and easily modifiable software
products and enable the early detection of errors. Software
quality management can ensure that the software has the
required level of quality. On the one hand, the quality of
the software must be assured with appropriate measures
(e.g. inspection of the requirements document), and on the
other hand, the development process must be checked to
ensure that defined quality characteristics are adhered to
(e.g. regulations on the performance of tests). A
distinction can be made between internal and external
software quality.

II. DIMENSIONS AND MEASURING QUALITY

A. Dimensions of quality

Garvin [6] identified eight dimensions for analysing
quality (Figure 1): The Performance dimension (1)
includes the scope of performance, the primary operating
characteristics of the product. The features dimension (2)

MIPRO 2023/SSE 1883

mailto:ftemole@t-online.de
mailto:datanasova@uni-ruse.bg

includes special or supplementary performance
characteristics that go beyond the normal level.
Reliability (3) reflects the likelihood that the product will
behave consistently throughout its lifetime. The
conformity dimension (4) indicates the extent to which
the design, the expression of features corresponds to
standards or previously defined specifications. The
dimension durability (5) distinguishes between technical
and economic durability. Technical durability is about
durability until the product deteriorates to the point where
repair is no longer possible. Economic durability refers to
repair costs, as well as losses due to downtime. This
means that the benefit of the product must be calculated
up to the point where repair is no longer economical. The
ease of maintenance dimension (6) refers to the speed,
courtesy and competence of maintenance. The aesthetics
dimension (7) assesses the external appearance and
impression. Perceived quality (8) covers the way and
feeling of the consumer in handling the product [6].

Figure 1. Eight dimensions of quality according to [6]

These dimensions of quality cannot simply be transferred
to software products. Since there is no absolute quality,
the determination of software quality is complex.
Software quality can be circumscribed by numerous
different properties. Quality models have therefore been
developed for software products that contain quality
criteria in the various dimensions. The defined quality
characteristics can be used as a checklist to
comprehensively ensure the quality requirements and
thus provide a basis for estimating the resulting efforts
and activities required during system development [9]

B. Internal and external software quality

If the focus is on how well a system is built, then the
internal software quality is meant, i.e. a consideration is
made from the developer's point of view. Here it must be
pointed out very early on that the software architecture
also has a quality requirement, which is often omitted.
This internal quality is not visible to the user. Important
characteristics of internal software quality are, for
example, readability, comprehensibility, extensibility,
changeability, maintainability and reusability, all of
which refer exclusively to the source code [19]. Internal

quality ensures that the software can be better maintained
in the long term and thus minimises the technical risks
and costs as much as possible [17]. Therefore, it primarily
addresses the technical debt and is an investment in the
future for the respective system.
If the focus is placed on how the system behaves with
regard to the specified expectations, then we are talking
about external software quality, i.e. the focus is on the
customer or user perspective. In this case, the quality is
focused on the needs and requirements of the end user
[15]. The technical correctness, reliability, ease of use,
usability and performance of the system are important
characteristics of external software quality. The higher
the quality of the products we deliver, the fewer
reworking afterwards. The big challenge is to identify the
different needs of each user group and to meet their
respective expectations [1].

C. Product and process quality

Another view of software quality, as already explained, is
product quality, which corresponds to the degree of
quality of the product. This is often determined by how
error-prone the system in question is. Its determination
represents both a definable and measurable quantity and
thus enables an objective assessment of quality. It is
extremely important that we deliver functioning software.
Software quality consists of determining the efficient and
effective processes to ensure software development. A
survey conducted by Javed and colleagues [12] showed
that management plays a major role in quality assurance.
It is the primary responsibility of team managers to
support team members (e.g. through training) and provide
them with a good working environment. Within the
framework of quality management, measures of quality
measurement, quality improvement and configuration
management must also be provided [12]. Quality
management in software development can be
distinguished into

• Quality management focused on the software
product and

• Quality management focused on software
development.

Product quality is characterised, for example, by
reusability, portability, reliability, manageability,
flexibility and usability and depends on rigorous and
systematic standards and procedures [18]. These quality
characteristics determine the objective measurability of
the quality of a software product [2]. Internal software
quality, a characteristic of structural properties of the
software product, includes the source code, the
architecture and design of the software and the
documentation (e.g. conception, requirements, API
specification) [7]. Thus, only the requirements for the
software product are considered, which can be used as
criteria for product evaluation and which serve as
guidelines for software development. Product-based
quality assurance checks whether and how the developed
software product fulfils these requirements. The
disadvantage of this form of quality assurance is that
errors are often discovered after the software product or

1884 MIPRO 2023/SSE

an intermediate product has been realised. Product quality
can be achieved through testing and static quality
assurance [19].
In order to improve software quality, the efficient and
effective processes for software development need to be
determined. In doing so, companies can pursue different
strategies for software development [7]. Process-oriented
quality assurance places requirements on the software
development process that serve as guidelines for the
design as well as the evaluation of the IT project.
Through process-oriented quality assurance, software
development is designed in such a way that as few errors
as possible are committed. Various measures can be used
to standardise and continuously improve software
development in companies. Measuring the efficiency of
the process, for example, is one of the most important
items for process quality [11].

For the research design used, a sample size of 58
participants was chosen due to the relevance of different
roles and stakeholders along the value chain, as well as
the complexity of the software itself and the processes
involved. . They have been interviewed within 4 months.
The interviews were tape-recorded and subsequently
transcribed. The expert interviews were scheduled for a
minimum 90 minutes each. The researcher was not only
an observer, but was also involved in the interview
process as a moderator. Above all, their different views
on software quality, the different hierarchy levels and
their good and long-standing professional experience in
the respective field of activity were taken into account.
The focus here was on investigating several groups per
subprocess at different points in time.

Some experts see an overall exposure to ever-increasing
production and speed pressures. New requirements are
not only being brought to developers more quickly, but
are also becoming increasingly imprecise and are only
clarified during implementation. This makes development
and testing more difficult. Therefore, the work processes
would have to be changed in order to keep up with the
rapid changes, but then the entire quality assurance does
not fit. The testing process and the quality process would
have to be changed accordingly.
In the long run, the long development cycles will no
longer be possible. Product launches must not take years
as before, but must be faster. Frameworks, software, etc.
need to be reviewed to enable faster feedback in the
testing process. Test strategies (e.g. module testing
instead of integration or regression testing) must also be
reviewed.
It is therefore necessary that in the future there is no
longer just reaction, but action and a stronger focus on
automated and customer-oriented processes or products
as added value for the customer. Accordingly, a central
challenge will again be software quality, which will be
characterised by even more frequent releases in the
future. It is extremely important to have a quality model
that takes into account the industry-specific
characteristics and quality requirements. However, it

should be adapted or reconsidered when the way of
working in the company changes. It must be checked
whether the quality model with its rigid stages can cope
with the changes at all. Quality assurance must be
adapted to the new structures.
Product-oriented and process-oriented quality assurance
must not be considered independently of each other, as
both are about software quality, but this is viewed from
different perspectives. Both perspectives must therefore
be taken into account.

D. Importance of software quality

In companies, software quality is often only seen as a cost
factor and the importance of software quality is not
recognised. A good software must fulfil different,
previously agreed quality aspects or product
characteristics [21]. There is a high degree of agreement
between literature and empirical studies on the
importance of software quality per se. During the
interviews it became clear that the importance of software
quality is considered very high by most of the
interviewees. Functioning software must be produced that
is also used. The importance is rated or regarded as high
to very high in the literature and by the experts. Quality is
an important factor in the software industry [12].
However, some of the experts interviewed pointed out
that software quality is overrated.
The assertion that the importance of software quality is
not recognised was not confirmed either by the interviews
conducted or by the literature. Only individual experts see
software quality as overrated. However, it was found
during the interviews that the significance of software
quality is partly not known or not tangible. Many of the
experts only considered product quality and hardly
addressed process quality. Everyone understands
software quality differently, so everyone has a different
idea of how software quality is created. For example, the
experts made the following statements about software
quality:

• Good software quality is characterised by the
fact that as few technical errors as possible
occur.

• Software quality not only plays a role in
software development, but is also related to
documentation, test processes and test
management.

• The software product manufacturer's ultimate
goal is to deliver valuable and high-quality
software to the customer that contains
functionalities that the customer needs in a
stable quality and has a high and stable
performance. However, in doing so, there may
be trade-offs in the functional scope.

• Software quality defines what the company
delivers. Especially when the software is used
productively, this also has a direct impact for the
customer.

It became apparent that there is still uncertainty as to
what constitutes software quality. The experts
interviewed often only understand software quality as the

MIPRO 2023/SSE 1885

external software quality that meets the needs of the
customer. Software quality is thus predominantly viewed
from the customer's and user's point of view. According
to the experts, one focus is on product quality during
delivery and another, in terms of the quality dimensions,
on performance, which, however, is not primarily in the
foreground in the coordination process.
As elaborated from the literature, good software must
also have internal software quality. The internal software
quality can be captured by properties such as readability
or changeability of the source code. This ensures better
maintainability, for example. However, some software
developers prefer to live out their freedom and
individuality and do not recognise the necessity of rules
and specifications for software development and thus for
software quality. But quality also includes making
decisions and not just doing what is required, but also
questioning things from time to time.
Software quality should not be seen as a hindrance, but
rather as an assistance. There is still a need for
improvement in the company with regard to software
quality. Often the company does not live up to it. The
software developers must sometimes make their own
decisions in order to improve the software quality. Not all
software developers have the appropriate quality
awareness. This has also been addressed in the literature.
Javed and colleagues [12] pointed out that the attitude of
the developer plays a major role in software quality.
According to Distanont and colleagues [5] they are the
main responsible for the quality of the software.
However, developers often do not show cooperative
behaviour or interest in the problem areas pointed out by
quality management [5]. Therefore, the company's
developers must be given a corresponding or an
appropriate attitude towards software quality.

E. Causes of poor software quality

In the literature and in the interviews conducted, several
causes for a lack of software quality emerged. The most
important are:

• High complexity in software development
• Rapid changes and adjustments
• Lack of knowledge and overview
• Scope of the desired functionalities
• Problems with requirements elicitation

The complexity of software development has increased
considerably in recent years. Ever greater demands are
being placed on software development. In addition,
constant changes and adaptations (e.g. to customer
requirements or legal regulations) are necessary, to which
the software product manufacturer must react effectively
and efficiently. This is also confirmed by the experts and
the literature. Unrealistic deadlines and thus tight
schedules are often agreed upon, which can be a major
problem factor for software quality [12]. Quality is
sometimes not sufficiently considered due to speed as
well as efficiency.
Poor software quality sometimes also results from a lack
of knowledge. There are fewer and fewer people who
have an overview of the entire project. By breaking up

into individual teams, knowledge is also decentralised.
The global overview suffers due to too much focus on
issues of the subject departments. As a result, errors are
currently arriving in production that are caused by a lack
of coordination between the developers. There are too
many individual teams dealing with software quality. The
interaction of individual sub-processes (e.g. requirements
elicitation, software development and testing) is
unbalanced and not very transparent. The global
overview and the holistic view are missing. Literature and
science agree on this. This can lead to product delays,
rework and thus higher costs. Customer and employee
satisfaction can decline. A large test coverage cannot
close this gap; here too, there is agreement between
literature and empirics. The author's statement was
confirmed that software product manufacturers must
implement the business and technically highly complex
requirements in high quality in short development and
change cycles while taking economic aspects into
account.
Software quality must not only be seen from the
perspective of the technicians, but must also take into
account the perspective of the specialist/business
departments. This is also the view of the departments that
have to sell products or manage contracts. Functionalities
must be made available to these departments efficiently
and quickly in order to be able to hold one's own in the
face of increased competition. Quality is therefore not an
end in itself, but it must also not excessively delay or
block development.
The software development of the software product
manufacturer emphasises meeting the needs of different
user groups. This was also evident in the responses of the
different users of the software products. The software
developers have to deliver a functional software, which
means that functionality has a slightly higher priority.
This is also the view of another interviewee. The goal in
the development team is to create production-ready
software more quickly, which means that quality takes a
back seat. Other interviewees pointed out that it is better
to make concessions in certain functional features, but
that performance, stability, maintainability and security
should be improved instead. Ergonomics, usability, but
also maintenance and modularisation play a major role in
the software development process alongside software
quality.
As has already been worked out on the basis of the
literature, errors in requirements elicitation cause
enormous effort, longer development times and
subsequent economic costs. Therefore, requirements
engineering is absolutely necessary. Although this is
carried out in practice, according to the experts it is not
consistent and comprehensive enough, which leads to
problems with the delivery of the software. The topic of
software quality should already play a role in the
requirements process and not only be examined
afterwards during testing. Software quality therefore
already begins with requirements elicitation in the
business departments. However, most of the time the
departments are not able to formulate the requirements

1886 MIPRO 2023/SSE

precisely, or they do not know the potential of the
software products. This prevents correct technical
implementation. Therefore, special attention should be
paid to requirements elicitation. By clearly formulating
the requirements, error chains or errors in software
systems can be avoided [8]. This is also the view of the
experts interviewed. However, there is usually not
enough time for this due to time pressure. Only one
expert stated that the current software quality in his
division is very good, so that other challenges (e.g. timely
elicitation of requirements) are currently in focus.
The multitude of quality characteristics allow the existing
expectations and needs of different experts along the
software development to be taken into account. When
viewed from the perspective of the developer and the
software architect, for example, the focus is on how well
a system is built technologically. This aspect of quality is
not visible to the user. Important characteristics of this
view include readability, comprehensibility, extensibility,
changeability, maintainability and reusability, all of
which relate exclusively to the source code. It also serves
to make it easier to maintain the software in the long term
and thus to minimise the technical risks as much as
possible.

F. Value of software quality

Software quality also pays off financially for companies,
especially for highly complex, maintenance-intensive
systems [22]. The experts were therefore asked how the
value of software quality is assessed in the company.
Some experts said: With software quality that is taken
into account right from the start, fewer corrections have
to be made afterwards, so costs can be saved. The higher
the software quality, the fewer problems and errors occur
and the less rework the software development and IT staff
have to do.
However, the economic benefits are usually not clear to
the interviewees. The experts confirmed the author's
statement that savings are often made in software quality
assurance measures due to permanent cost pressure. The
economic perspective of software quality must be
communicated more intensively to those involved.
Through the interviews and observations conducted, it
became apparent that mechanisms for error prevention
have not been established or sufficiently taken into
account in all areas of the company. This leads to
problems in the timely detection of errors.

G. Importance in the company

Based on the literature, it was worked out that software
quality must be integrated as an integral part of the
corporate strategy. The experts were therefore asked
about the importance of software quality in the company.
One interviewee stated that efficiency and speed are more
important in his division than ensuring quality. Market
entry and thus presence are paramount. In another
division, software quality also plays a rather subordinate
role from the company's point of view. It is often only
considered as a partial aspect in retrospect, so that quality
assurance does not take place from start to finish, but
only when certain incidents have occurred. However,

many of the experts interviewed saw a causal connection
between corporate success and high product-based
software quality. As a result, expensive rework could be
reduced. One interviewee stated that it is part of the
company strategy to deliver high-quality software.
The image of quality assurance has changed in recent
years. Overall, the company has seen a significant
improvement in the quality of software. However,
software quality and testing are often neglected due to
time pressure or in order to save costs. In practice,
software quality often has to be weighed against quality.
A better error culture must be lived in the company. In
the literature, company policy is also identified as an
important aspect of poor software quality [12]. Within the
company, specific efforts must be made to ensure that all
those involved in software development recognise the
importance of software quality within the company. The
literature has shown that there is a causal relationship
between the pursuit of high product-based software
quality and the company's success. However, this is not
yet practised by all divisions of the software product
manufacturer.
Sufficiently high software quality allows systems to be
developed more economically. Only high-quality
software will be used in the long term and ensures good
maintainability. Existing systems could be further
developed and new systems introduced with less effort,
mainly in terms of personnel, if more attention were paid
to the issue of quality.

III. CONCLUSION
As the interviews showed, the experts in the company
tend to have a product-based view of quality, which is
expressed purely through the design of the software itself.
It is also clear from the expert interviews that a view-
based model - such as the quality model according to
IOS/IEC 25010 - is better suited for a holistic control of
quality, since here the needs of the various user groups
are the focus of consideration.
With regard to software quality, therefore, it is not the
favoured user view that is in the foreground in the
company (despite the agreement between theory and
practice) [13], but the manufacturer's view in
combination with the aforementioned product-based
view. Thus, in the company, quality is considered to have
been achieved when the product fulfils the functionalities
and thus the given specifications or design requirements
have been met [15]. All in all, this is to be seen rather
negatively with regard to user orientation, improvement
of software quality and securing the economic future of
the company. Thus, in comparison with the literature, it
can be formulated that the role, importance and
significance of software quality [14, 20] in terms of its
effect on the success of the company is not sufficiently
taken into account.
The economic advantages of software quality are usually
not clear to the interviewees or, due to cost and time
pressure, savings are often made in software quality
assurance measures. The value of software quality is
partly recognised, but not consistently implemented in the

MIPRO 2023/SSE 1887

company. Software quality is often only seen as a cost
factor and savings are made at this point.
The most important approaches to reviewing software
quality are improvement, delivery time, overheads, the
inclusion of customer requirements and how quickly the
customer's requirements are implemented. Software
quality management provides a framework for software
development by defining and measuring software quality
in the first place. The success factor software quality is
largely dependent on how well the respective company
succeeds in integrating and consistently using it as a fixed
component of software development.

REFERENCES
[1] ASQF. (2016). Quality from the start: 20 years in the service of

quality. (ASQF, ed.) Potsdam.
[2] Broy, M., & Kuhrmann, M. (2021). Introduction to software

engineering. Berlin: Springer.
[3] DIN EN ISO 9000. (2015). Quality management systems -

Fundamentals and terms. Berlin.
[4] DIN EN ISO 9001. (2015). DIN EN ISO 9001 Quality

management systems - Requirements.
[5] Distanont, A. (2015). The Test Automation Adoption-A Case

Study. In: Numprasertchai, H. & Meeampol, S. (Eds.):
International Journal of Business Development and Research.
Volume 2, Issue 1, pp. 60-78.

[6] Garvin, D. A. (1984). What Does "Product Quality" Really Mean?
MIT Sloan Management Review, 26(1), pp. 25-43.

[7] Hassan, M., Mubashi, M., Shabi, M., & Ullah, M. (2018).
Software quality assurance techniques: A review. In: International
Journal of Information, Business and Management, Vol. 10, No.4,
2018, pp. 214-221.

[8] Hoffmann, D. (2008). Software Quality. Berlin Heidelberg:
Springer.

[9] ISO/IEC 25010. (2011). "Systems and software engineering --
Systems and software Quality Requirements and Evaluation
(SQuaRE) -- System and software quality models". ISO/IEC.
Retrieved 18 March 2017 from iso.org.

[10] ISO/IEC 9126-1. (2001). Information technology-Software
product quality. Geneva.

[11] Jamil, M., Arif, M., Abubakar, N., & Ahmad, A. (2016). Software
Testing Techniques: A Literature Review. In: 2016 6th
International Conference on Information and Communication
Technology for The Muslim World, pp. 177-182.

[12] Javed, A., Maqsoo, M., Quazi, K., & Shah, K. (2012). How to
improve software quality assurance in devoloping countries. In:
Advanced Computing: An International Journal (ACIJ), Vol.3,
No.2, March 2012, pp. 17 - 28.

[13] Kitchenham, B., & Pfleeger, S. L.. (1996). Software quality. IEEE
Software, 13(1), pp. 12-21.

[14] Kreilkamp, E. (1987). Strategic management and marketing:
market and competitive analysis. Berlin: de Gruyter.

[15] Lange, C. (2011). Software quality models. Munich: TUM.
[16] Liggesmeyer, P. (2009). Software Quality. Heidelberg: Spektrum

Akademischer Verlag.
[17] Petrasch, R. (2001). Introduction to Software Quality

Management. Berlin: Logos Verlag.
[18] Rashid, J., & Nisar, W. (2016). How to Improve a Software

Quality Assurance In Software Development - A Survey. In:
International Journal of Computer Science and Information
Security (IJCSIS), Vol. 14, No. 8, August 2016, pp. 99-108.

[19] Spillner, A., Roßner, T., Winter, M., & Linz, T. (2014).
Praxiswissen Softwaretest: Testmanagement (4th ed.). Heidelberg:
dpunkt.Verlag.

[20] Venelinova N., D. Antonova and I. Kostadinova (2021). Adaptive
Approach of System-engineering Project Management Skills
Acquisition MIPRO 2021 - The 44th International Convention on
Information, Communication and Electronic Technology,
Proceedings MIPRO2021.Engineering Education, , 1778-1784,
doi:

[21] Wallmüller, E. (2001). "Software Quality Management in
Practice: Software Quality through Leadership and Improvement
of Software Processes" (Vol. 2). Munich Vienna: Carl Hanser
Verlag.

[22] Zimmermann, T. (05 March 2018). Software quality. From testing
costs - not testing too!: https://www.business-
wissen.de/artikel/software-qualitaet-testen-kostet-nicht-zu-testen-
auch/ retrieved

1888 MIPRO 2023/SSE

