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Abstract – This paper presents visualization of an 

ultrasonic probe beam from a series of cross-section images. 

The goal was to simulate scanning with an ultrasonic probe 

as it would be done in real-life. Cross-section slices that 

represent the detection sensitivity of the probe were obtained 

by simulating a sound pressure field in the metal sample and 

were provided by INETEC. Different techniques for 

rendering the three-dimensional model of a sequence of 

images used for beam visualization in the making of the 

software are presented. The beam and its inner structure 

were rendered with the Volumetric Ray Marching algorithm 

while the polygonal mesh approximation was constructed 

with the Marching cubes algorithm. The final software was 

developed using the Unity engine. The results and 

visualization possibilities were presented and analyzed along 

with the possible improvements for the future work. The 

developed simulation software can be used as a helping tool 

in minimizing the number of redundant scans in search of 

defects inside an object structure during the quality control 

phase. 

Keywords - volume rendering, volumetric ray casting, 

ultrasonic probe, Unity, shaders, three-dimensional dataset 

I. INTRODUCTION 

Volumetric rendering is a collection of important 

techniques in the field of computer graphics. They are a 

powerful tool for data visualization as they offer a way to 

display data visually, offering easier and more intuitive 

ways to understand raw data.  

Volume rendering is most notably used in medical 

imaging, for helping medical staff to see inside a body 

more accurately, using medical images obtained from 

procedures like computerized tomography (CT) or 

magnetic resonance imaging (MRI) three-dimensional 

models can be constructed. Besides medicine, volume 

rendering is finding more uses in other industries such as 

those that produce 3D data sets for analysis, e.g., physics 

for fluids, flood preparation simulations and more. 

In this work, volume rendering and other techniques 

are used to achieve ultrasonic beam simulation. Ultrasonic 

beam scanners are used for non-destructive material 

testing of tools and metal parts for nuclear power plant 

inspections. The final 3D model of the beam was recreated 

from a series of 2D cross-section images using the ray 

marching technique and the marching cubes algorithm.  

The main goal was to create a simulation that will 

visualize defect detection on a certain trajectory and make 

probe positioning in real testing quicker and more 

efficient. The models and data used in the implementation 

were provided by INETEC and collected using their 

instruments. The goal was to simulate movement of a UV 

probe during detection. Observing the best trajectory in the 

simulation could reduce the time to position the probe and 

scan for defects in practice. 

II. ULTRASONIC PROBES 

A. Representation of the pressure field 

Ultrasonic probes are devices that are used for 

investigating the internal structure of a target object. The 

detection sensitivity of an ultrasonic probe can be closely 

estimated by the strength of the sound pressure field it 

generated in the specimen. The sensitivity field visualized 

as a heat map can be seen on the Fig 1. 

The rainbow colormap was used for coloring the sound 

pressure field, the dark blue color represents lower 

pressure field density values and thus lower detection 

sensitivity while the dark red represents high values 

meaning high sensitivity. The series of this kind of images, 

generated with different settings - multiple UT probe 

angles and different focal depths, will be used as an input 

data for the visualization.  

The formula for calculating pressure field is complex 

and therefore using it to calculate the pressure field 

multiple times for each setting would take some time. That 

is why visualization from images is a good option, there is 

no need for complex formula calculations to get good 

results. However, the downside of this approach is that it 

needs pre-generated images.  

 
Fig. 1.  Representation of a sound pressure field of the probe at a 

45-degree angle 
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B. Ultrasonic sensors 

Ultrasonic sensors are instruments that use ultrasonic 

waves for inspection of subsurface structures and detection 

of anomalies. Ultrasonic sensors work by emitting sound 

waves at frequencies in the ultrasonic frequency range - 

range greater than twenty kilohertz, higher than the audible 

range of human hearing. Ultrasonic sensors emit ultrasonic 

waves toward a target and if there is an obstacle or an 

object in the way, the wave will bounce back to the 

sensor’s receiver. The distance of an obstacle is then 

calculated using the time the reflected wave took to return 

to the receiving sensor after being emitted. 

Ultrasonic inspection is a family of methods most 

widely used for nondestructive testing, it offers a great 

accuracy, high sensitivity but, most importantly, it does not 

cause damage to an object being tested, as such it finds its 

application in many fields. The most familiar usage being 

in the field of prenatal medicine for medical screening of a 

fetus during pregnancy. Besides that, ultrasonic inspection 

is also widely used for quality control and material 

inspection across all major industries, including electrical 

and electronic component manufacturing, production of 

metallic and composite materials, and fabrication of 

structures such as airframes, engines, machinery and many 

others [1]. 

III. VISUALIZATION TECHNIQUES 

Displaying data in a visual form provides clear and 

easily understandable representation of raw data. The main 

problem in visualizing volume data is displaying three-

dimensional data as a two-dimensional image while not 

losing too much information and not losing valuable 

information [2]. Volume rendering and surface rendering 

represent the most important techniques for three-

dimensional dataset visualization.  

A. Surface rendering 

Surface rendering method involves constructing 

polygonal surfaces in a dataset and rendering those 

surfaces. The assumption is that the original volume can 

be faithfully represented as a collection of polygonal 

surfaces. Surface rendering algorithms have a necessary 

preprocessing step, also called image segmentation, which 

involves determining a surface by extracting features from 

the volume data. More precisely - every pixel in an image 

is assigned a label such that pixels with the same label 

share certain visual characteristics such as color, intensity, 

or texture. These pixels are a part of one isosurface. The 

geometric primitives are then fit to the data to form a 3D 

surface based on the values extracted from the data in 

preprocessing step and rendered for display using 

conventional geometric rendering techniques [3]. 

The process of determining surface is not perfect, as it 

must be determined for every voxel how the surface passes 

through every cube of voxels. This issue is especially 

apparent for datasets surrounding objects that are very 

small, blend into their surroundings or describe poorly 

defined features [4]. A frequent problem that can occur is 

calculated surface containing voxels that don’t really 

belong to the original object we are trying to visualize or 

skipping the voxels that do belong. Because of the 

mentioned issues, when surfaces are transparent or semi-

transparent, geometric rendering techniques may not be 

the best choice, that is where the volume rendering comes 

in. 

B. Volume rendering 

Volume rendering is a powerful technique for the 

representation, manipulation and rendering of volume 

data. Traditional graphics techniques represent 3D objects 

as geometric surfaces and edges approximated by 

polygons and lines, but volumetric datasets can contain 

data and information not only on the surface, but also 

inside them, which is where surface rendering techniques 

fall short. Volume rendering techniques make it possible 

to explore the inner structures of volumetric data and allow 

visual representation of transparent and complex datasets.  

The advantage of volume rendering algorithms is that 

there is no need to determine surfaces in advance which 

removes the need for the segmentation step and a polygon 

representation, instead they render every voxel in the 

volume raster directly, without explicit conversion to 

geometric primitives. Volume visualization methods can 

achieve soft surfaces by integrating the contribution from 

the voxels in entire volume towards final rendered image 

[5]. Therefore, this method is applicable even in cases 

where dataset can’t be faithfully described by polygons or 

has a lot of small details that can’t be lost. It is also 

applicable in cases when geometric surfaces for dataset are 

unavailable or too cost-ineffective to generate. 

IV. VOLUMETRIC RAY CASTING 

Volumetric ray casting, also commonly referred to as 

Volume ray tracing, is the most common technique for 

achieving image-based volume rendering.  

The ‘ray casting’ part of the name comes from the 

similarity with the traditional ray casting in that they both 

define rays that represent beam from a camera’s viewpoint 

and only consider these primary rays without spawning the 

secondary, reflected and refracted, ones. The difference is 

that the ray casting interacts only with surface data and 

stops as soon as it encounters an intersection between a ray 

and a surface in a scene while volume ray casting does not 

stop the computation at the surface level but passes 

through the object, sampling it along the way [6].  

This technique shows the best results in materials 

where light goes through the object. Examples would 

include smoke, marble, and skin. When light hits one of 

these surfaces, a fraction of the light is reflected (ray 

casting only deals with this case) and a fraction is scattered 

into the object. Ray marching is a technique to compute 

the scattered light. Image projection is performed by 

simulating the absorption of light along the ray path to the 

eye and calculating light intensity when arriving at the 

camera. The advantage of this technique lies in the fact that 

it does not directly calculate intersections with the objects 

in the scene, so no mesh data of the objects needs to be 

provided. 
Volumetric ray marching employs simplified Emission-

Absorption Optical Model, taking into consideration, as per 
its name, emission and absorption while ignoring light 
scattering as it is too computationally complex while not 
affecting quality too much. This means it only deals with 
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primary rays, unlike some more common graphic rendering 
methods, no secondary rays like reflection or refraction or 
shadows are considered. The Emission-Absorption Optical 
Model places two assumptions: the volume is assumed to 
consist of particles that emit light. The volume is assumed 
to consist of black particles that absorb light [16]. Meaning 
the portion of light that passes through a particle will be 
absorbed. Volume rendering integral is an equation that 
computes light intensity at a point s along the ray, taking 
into consideration light attenuation. 

𝐼(𝑠) = 𝐼(𝑠0)𝑒−𝜏(𝑠0,𝑠) + ∫ 𝑞(𝑠1)𝑒−τ(𝑠1,𝑠)𝑠

𝑠0
𝑑𝑠1  (1) 

Where parts of the equations are: 

• I(s0) is initial light intensity at point s0, s0 being a 
starting point 

•  𝑒−τ(𝑠0,𝑠) is intensity reduction from s0 to s  

• I(s1) is light intensity (emission) at point s1, s1 
being a point on the ray further down than point 
s0  

• 𝑒−τ(𝑠1,𝑠)is intensity reduction from s1 to s  

• τ is an optical depth measure, measuring degree 
of absorption of light  

• ∫ 𝑞(𝑠1)𝑒−τ(𝑠1,𝑠)𝑠

𝑠0
𝑑𝑠1 gathers contributions of all 

points on the ray between s0 and s1 

There is no closed form solution to this integral, but it 
can be numerically approximated with a discrete sum of 
volume samples along the ray [7]. 

Each point in the volume is considered to emit and 
absorb light, and thus contributes to the final color and 
opacity. There are multiple compositing schemes for 
deciding the output color. The most common one is 
Volume compositing or accumulation. For the emission-
absorption model, the accumulated color and opacity are 
computed according to a following set of equations: 

 𝐶𝑜𝑢𝑡 =  𝐶𝑖𝑛 + (1 − 𝛼𝑖𝑛)𝛼𝐶 (2) 

 𝛼𝑜𝑢𝑡 =  𝛼𝑖𝑛 + (1 − 𝛼𝑖𝑛)𝛼  (3) 

These equations are known as Front-to-Back 
Compositing Equations since we go from the front of the 
volume to the back, collecting color on the way. 𝐶𝑜𝑢𝑡 is the 
resulting accumulated color over n voxels seen from the 
front of the volume [8]. Variable 𝛼𝑜𝑢𝑡 is the opacity of the 
result. Marching from beginning of the ray towards the end 
accumulating color and opacity using these equations is 
repeated until bounding box is exited, or some other 
stopping criteria is defined e.g., predefined maximal 
opacity or number of steps is exceeded. Another scheme 
that is going to be mentioned in continuation is Maximum 
Intensity Projection. It simply takes color of the highest 
density point along the ray.  

V. MARCHING CUBES ALGORITHM 

The Marching cubes algorithm is a computer graphics 

algorithm for creating polygonal representation of surfaces 

with constant density – isosurfaces. It was first presented 

in the paper Marching cubes: A high resolution 3D surface 

construction algorithm [9]. The algorithm processes the 

3D data in a scan-line order and calculates triangle vertices 

using linear interpolation. The density of the desired 

surface is specified as an input from the user.  

The Marching cubes algorithm belongs to the surface 

rendering algorithms. Its advantage is that it works on 

lookup tables so it’s relatively high speed. The algorithm 

works on a divide-and-conquer principle, it divides the 

problem of creating surface to the small cells, it focuses on 

each cell and applies to it one iteration of the algorithm. 

The first step of the algorithm would be splitting the space 

into a uniform grid of cells, in three dimensions that would 

be cubes. Secondly, the isovalue or a density of a desired 

isosurface is defined, in this case the beam density. Next 

step is assigning a Boolean value to each voxel according 

to its value in a relation to the designated isovalue – value 

one if the voxel’s value is greater than the isovalue, 

meaning that the voxel is inside the isosurface or lies on 

the surface and value zero if it is lesser than the isovalue 

and the voxel is outside of the isosurface.  

For each cube eight pixels that make up cube vertices 

are taken into polygon evaluation. Four vertices are pixels 

of one slice and the other four belong to adjacent slice. The 

surface intersects cubes at edges where one vertex is 

outside the surface and another one is inside, calculating 

the exact intersection location with interpolation in later 

steps of the algorithm. There are eight vertices in each cube 

and two possible states for each one, equating to 28 = 256 

ways a surface can intersect the cube [10]. These 256 

possible cases of surface-edge intersections are 

enumerated and can be searched found in the lookup table. 

The states given to each voxel in the previous step are now 

composed into an 8-bit index, where each bit corresponds 

to a Boolean value assigned to the vertex. That index is 

used to fetch data from the lookup table. Algorithm iterates 

over all cubes, adding triangles to a mesh, and the final 

mesh is the union of all added triangles. The smaller the 

cubes, the smaller the mesh triangles will be, making 

approximation more closely match the target function. 

VI. BEAM VISUALIZATION 

Visualizing the beam is the most important part of the 

project. The visualization was realized in Unity with the 

ray marching technique using 3D textures and shaders. The 

shaders were written in High-Level Shader Language 

(HLSL). Results are three-dimensional even though inputs 

are two-dimensional images. 

High-level shading language is a programming 

language used for writing programmable shaders in 

DirectX. It is very similar to the Cg shader language and 

will be used to write the shaders in the next steps. The 

Shader that will draw the ultrasonic beam implements 

volume rendering using ray marching algorithm and as a 

result gives a rendered volume representing the ultrasonic 

beam. Programmable parts of the graphics pipeline are 

vertex shader and fragment shader [15]. The vertex shader 

processes and performs transformations on individual 

vertices. Fragment shader is where GPU calculates the 

final RGB color for every pixel. The implementation is 

done in Unlit shader type as the beam doesn’t need to be 

affected by lightning models. 
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Most important task for the vertex shader is 

transforming vertices’ coordinates to the clip space so that 

they can be used by rasterizer and be projected on the 

screen. The vertex shader receives object space 

coordinates as its inputs, the conversion from object space 

to the clip space is done by putting vertices through a 

sequence of transformation matrices. To make things 

easier, all the transformation matrices can be combined 

into one matrix by the name Model View Projection matrix 

(MVP). In Unity there is a built-in helper function 

UnityObjectToClipPos(float3 pos) that does exactly that, 

it takes a position point and directly transforms it from an 

object space to the camera’s clip space in homogeneous 

coordinates [11]. 

Fragment stage is where the ray marching will be done. 

There is a ray created through each pixel, pixel’s local 

position is the ray origin, and the ray direction is the vector 

from camera to the pixel. Direction vector is calculated by 

using helper function ObjSpaceViewDir() and inverting it, 

since it returns opposite direction, from pixel to camera. 

Using this ray, the unit cube in which volume is drawn is 

intersected. The points of intersection are helpful for 

calculating marching step size. Distance between the start 

and the end point of intersection is divided by the defined 

maximum step size. The max step size limit is there 

because of performance concerns, if the number of steps is 

too great visualization would not run smoothly in real-

time.  

Finally, the ray marching is executed in the loop that 

runs for a number of steps. In each step the density is read 

from the B&W 3D texture and the color from the colored 

3D texture (or from the transfer function) using adjusted 

local vertex position.  

These 3D textures are a special Unity Asset type, they 

are bitmap images that contain information in three 

dimensions as opposed to the standard two. Texture 

coordinates are placed on a unit cube and texture data is 

accessed by three-dimensional texture coordinates. This 

kind of data type is fit for storing and manipulating 

volumetric data. The 3D texture containing volumetric 

data was built from a sorted sequence of 2D images 

through a script and is of the input properties for the 

shader. What is done with color calculation in the next step 

depends on the technique chosen.  

In the compositing technique color is sent to the 

method where accumulation formulas are used for 

collecting and interpolating colors through the steps. If the 

pixel density does not satisfy threshold the pixel color is 

not taken into calculation. Compositing can be terminated 

early if the currently accumulated opacity is so high it 

makes contributions of future samples insignificant.  

In Maximum intensity projection (MIP) technique the 

color of a voxel with maximum intensity along the ray is 

returned after checking all the pixels along the same ray.  

In both cases the final pixel color is returned. The color 

of the beam can be chosen to either be read from a 3D 

texture or from a defined transfer function. The case of 

using textures was implemented in a way that a color for 

the voxel is read from the texture in the ray marching 

algorithm, while when using transfer function, the density 

is first calculated using ray marching and then at the end, 

based on that value the color is read from the transfer 

function.  

A. Transfer function 

Transfer functions define mapping from voxel density 

to RGB color and opacity based on user defined values. 

Using transfer functions provides a better overview of the 

data. Transfer functions can be used to highlight important 

parts and omit unnecessary ones thus better emphasizing 

nuances inside the volume. Transfer function takes the 

scalar value, in this case density and relates it to a 

corresponding color and transparency, for example if it is 

desirable to highlight higher density parts higher opacity 

should be assigned to those densities [15]. Deciding how a 

transfer function should look is not an easy task, there is 

no fixed guide to perfect function because of variations 

from dataset to dataset.  

In Unity transfer function can be created by using a 2D 

texture with height of one, this is enough since needed 

information, color and opacity, can be stored in one pixel. 

Texture color is read and set based on input gradient stored 

in form of a Unity’s Gradient class. 

B. Collision 

For detecting collisions Unity’s default colliders were 

not close enough of an approximation for the beam, so the 

mesh had to be reconstructed from the images. The 

reconstruction was accomplished with the Marching cubes 

algorithm. The script inputs are a stack of B&W images 

and a minimum density value defined by the user, that 

value is going to be considered as the threshold in the 

script.  

In the preprocessing step when assigning labels for 

each pixel the slices were traversed line by line, in each 

one the first pixel with equal or higher density than defined 

was assigned a label one and all subsequent ones until the 

pixel below the threshold. After labeling the pixels were 

used in mesh creation using the Marching cubes algorithm 

with interpolation. The resulting triangles were decided 

using the case table and together they formed the resulting 

beam mesh. The mesh data is then saved in an instance of 

Unity’s Mesh class.  

The script is set up by attaching it to the desired 

GameObject that must have a Mesh Renderer and a Mesh 

Filter component. After mesh creation the Mesh collider 

can be added to the beam, Unity automatically adapts the 

Mesh collider to the selected Mesh - in this case the beam.  

Beam Collision script listens for the collision events 

and reacts by calling function that changes material color 

on a defect when it is under collision to a color that can be 

seen easily. After the beam collider is no longer in contact 

with the defect the material color is reverted to the original 

one. OnCollisionEnter() and OnCollisionExit() are physics 

engine specific functions that are triggered on update 

frames when the collision is detected and when the contact 

between colliders has stopped. 

C. User interface 

The User Interface is divided into three sections, which 

can be seen in Fig.2. The first section, on the left, consists 

of settings regarding beam visualization. Most important 

ones are Focal depth and Refraction angle, these settings 
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can be chosen from their drop-down lists, each 

combination of the two maps to the one set of images and 

by extent textures that will be used for visualization. For 

output color there are Max Intensity Projection and 

Compositing options. For Compositing the choice of 

current Z-slice is enabled, by using the slider the user can 

select any cross-section on z-axis within the beam for a 

more detailed view. The panel on the right is tasked with 

handling the input of the auto-movement path parameters. 

The user can fine tune the course of simulation by 

inputting the values for the desired simulation output in the 

suitable fields. Once all the parameters are confirmed 

automatic simulation will be ready to be played. 

The middle section, at the bottom of the screen, 

controls the movement of the probe model. Animation tab 

contains buttons for playing and pausing and the slider for 

rewinding the animation. Playback speed can be slowed 

down or accelerated. In the manual control tab user can 

either input exact probe position or use two sliders for 

selecting horizontal line position and sliding UT probe by 

a selected increment along it. The components used in the 

process of building the interface were extended from the 

Quantum UI package [12] which was downloaded from 

the Unity Asset store web page. Another custom package 

that was used during UI development for smoother UI 

transitions is LeanTween [13]. 

VII. RESULTS 

In this chapter, the results of the implementation are 

presented and discussed. The comparison between beam 

visualization using two different technique types and two 

color acquisition methods will be shown. Since results are 

visualization, the described results are mostly 

observations. Numerical approximation of the result 

accuracy can be explored in the future work. 

 

As previously explained, the beam can be rendered 

with two techniques: Maximum intensity projection and 

Compositing. On Fig.3. when using Max projection, the 

highest density can be clearly seen from all of the angles 

(an effect more visible in movement than on images) while 

with Compositing we can see color accumulation effect, 

most of the beam is in shades of blue as it is the color most 

present in the photos, so it contributes the most, but there 

are also some traces of red in the middle.  

Max intensity projection results can be improved upon 

by adding transparency. With this feature enabled voxels 

with lesser density values will be more transparent than the 

ones with the higher ones. This makes important parts of 

the beam stand out more. The result is outer blue rays 

being less visible than the middle ones in yellow-red range. 

Transparency effect is achieved by setting alpha color 

value to depend on voxel density, in this case it is just 

multiplied by a parameter in the shader.  

To get better insight of inner structure there are two 

options: removing parts outside of desired density 

segments or slicing off the parts of the volume that are not 

needed. Extracting segment from the beam is done by 

selecting minimum and maximum density value, all the 

other parts that are not included in this range are going to 

be transparent as can be seen on Fig.4. Cutting the volume 

along one of the axes makes it possible to select a slice or 

a part of the volume that is of interest. For example, on the 

z-axis if maximum and minimum are set, everything in 

front of the minimum and behind the maximum z-value 

will be removed.  

Coloring the volume after calculating densities can be 

done in different ways. The most common coloring 

method for volume rendering is using transfer function, 

since it is easily adjustable and can define both color and 

transparency. Another advantage of the transfer function is 

that we do not need additional color texture, saving time 

and space. The advantage of reading color from texture is 

that everything is colored exactly like in the original 

dataset, there is no approximation and thus it is more 

similar to the source data. Also, it saves the time that would 

otherwise be needed for defining perfect transfer function 

for a particular dataset. Even though the B&W texture used 

for density calculation was lower resolution the transfer 

function gave very smooth results, which is not the case 

with a color from texture one where it caused a bit of a 

blocky look to colors. If the input images were of better 

 

Fig. 4.  Result beam with an alpha value between 0.07 and 0.115, 

only volume with density inside that range is visible. 

 
Fig. 3.  Comparison between Compositing(left) and MIP (right) 

using color from texture and a cutoff density = 0.3 at a 30-degree 

refraction angle. 
 

Fig. 2. Highlighted defects result. 
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resolution the result would quite probably be significantly 

better and more similar to the transfer function result. 

The focus depth change from 30 to 60 mm causes the 

rendered result to consist of a more intense and larger 

surface of red area in comparison with the 30 mm one, this 

difference shows how the ray with depth change shifts 

focus to a deeper depth, around 60 mm deep from probe 

position. The refraction angle, as the name says, changes 

the angle of the probe and in extension angle in which rays 

enter the block. The probe can be imagined as if it was 

positioned in the top left corner.  

The marching cubes algorithm result is a mesh that 

approximates the beam. On the Fig.5. the comparison 

between the generated mesh and the beam using the 

density threshold of 0.3 can be seen. The mesh is lightly 

shaded on the image for the comparison, but it can be 

disabled from rendering in simulation if desired. 

VIII.  FUTURE WORK 

Future work could improve upon offering more 

scanning path options. Possibility to simulate scanning of 

complex surfaces like the curved surfaces or the surfaces 

with obstacles would make this program applicable for use 

in a wider number of cases since real objects are not 

regularly shaped blocks and commonly have welds and 

other obstacles on trajectory. Implementing this feature 

would be more complex than it is for flat surfaces. 

Additional complications to path calculation would 

present obstacles as they would prevent the probe from 

moving freely. Another small issue is that the results with 

current images come out a little pixelated, the cause is that 

the current images were generated in dimensions of 43 x 

31 pixels to save time for a course of development. If the 

simulation images can be regenerated in a bigger 

resolution, with their quality improved so would the 

quality results, the final visualization would be clearer and 

more accurate. 

The results could be evaluated numerically, to calculate 

how close the simulation represents the real-life beam and 

detection. 

IX. CONCLUSION 

The possibilities and advantages of using volume 

rendering in displaying datasets have been explored by 

applying described techniques and algorithms to a 

practical problem of visualizing ultrasonic beam for 

quality inspection. The achieved simulation can be used as 

a helping guide in minimizing the number of redundant 

scans in search of defects inside object structure during 

quality control phase. The implementation was done using 

Unity and writing custom shaders, results achieved 

showcased one possibility of use of volume rendering in 

the quality inspection field. The biggest limitation of the 

final application is no support for complex trajectories and 

that could be a potential course for future work. 
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Fig. 5.  Mesh reconstruction for the density threshold of 0.3 and the 
original visualized beam 
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