
Visualization of Three-Dimensional

Ultrasound Data

H. Hrženjak, Ž. Mihajlović

Faculty of Electrical Engineering and Computing, University of Zagreb, Republic of Croatia

helena.hrzenjak@fer.hr, zeljka.mihajlovic@fer.hr

Abstract – This paper presents visualization of an

ultrasonic probe beam from a series of cross-section images.

The goal was to simulate scanning with an ultrasonic probe

as it would be done in real-life. Cross-section slices that

represent the detection sensitivity of the probe were obtained

by simulating a sound pressure field in the metal sample and

were provided by INETEC. Different techniques for

rendering the three-dimensional model of a sequence of

images used for beam visualization in the making of the

software are presented. The beam and its inner structure

were rendered with the Volumetric Ray Marching algorithm

while the polygonal mesh approximation was constructed

with the Marching cubes algorithm. The final software was

developed using the Unity engine. The results and

visualization possibilities were presented and analyzed along

with the possible improvements for the future work. The

developed simulation software can be used as a helping tool

in minimizing the number of redundant scans in search of

defects inside an object structure during the quality control

phase.

Keywords - volume rendering, volumetric ray casting,

ultrasonic probe, Unity, shaders, three-dimensional dataset

I. INTRODUCTION

Volumetric rendering is a collection of important

techniques in the field of computer graphics. They are a

powerful tool for data visualization as they offer a way to

display data visually, offering easier and more intuitive

ways to understand raw data.

Volume rendering is most notably used in medical

imaging, for helping medical staff to see inside a body

more accurately, using medical images obtained from

procedures like computerized tomography (CT) or

magnetic resonance imaging (MRI) three-dimensional

models can be constructed. Besides medicine, volume

rendering is finding more uses in other industries such as

those that produce 3D data sets for analysis, e.g., physics

for fluids, flood preparation simulations and more.

In this work, volume rendering and other techniques

are used to achieve ultrasonic beam simulation. Ultrasonic

beam scanners are used for non-destructive material

testing of tools and metal parts for nuclear power plant

inspections. The final 3D model of the beam was recreated

from a series of 2D cross-section images using the ray

marching technique and the marching cubes algorithm.

The main goal was to create a simulation that will

visualize defect detection on a certain trajectory and make

probe positioning in real testing quicker and more

efficient. The models and data used in the implementation

were provided by INETEC and collected using their

instruments. The goal was to simulate movement of a UV

probe during detection. Observing the best trajectory in the

simulation could reduce the time to position the probe and

scan for defects in practice.

II. ULTRASONIC PROBES

A. Representation of the pressure field

Ultrasonic probes are devices that are used for

investigating the internal structure of a target object. The

detection sensitivity of an ultrasonic probe can be closely

estimated by the strength of the sound pressure field it

generated in the specimen. The sensitivity field visualized

as a heat map can be seen on the Fig 1.

The rainbow colormap was used for coloring the sound

pressure field, the dark blue color represents lower

pressure field density values and thus lower detection

sensitivity while the dark red represents high values

meaning high sensitivity. The series of this kind of images,

generated with different settings - multiple UT probe

angles and different focal depths, will be used as an input

data for the visualization.

The formula for calculating pressure field is complex

and therefore using it to calculate the pressure field

multiple times for each setting would take some time. That

is why visualization from images is a good option, there is

no need for complex formula calculations to get good

results. However, the downside of this approach is that it

needs pre-generated images.

Fig. 1. Representation of a sound pressure field of the probe at a

45-degree angle

MIPRO 2023/SP 1995

mailto:helena.hrzenjak@fer.hr
mailto:zeljka.mihajlovic@fer.hr

B. Ultrasonic sensors

Ultrasonic sensors are instruments that use ultrasonic

waves for inspection of subsurface structures and detection

of anomalies. Ultrasonic sensors work by emitting sound

waves at frequencies in the ultrasonic frequency range -

range greater than twenty kilohertz, higher than the audible

range of human hearing. Ultrasonic sensors emit ultrasonic

waves toward a target and if there is an obstacle or an

object in the way, the wave will bounce back to the

sensor’s receiver. The distance of an obstacle is then

calculated using the time the reflected wave took to return

to the receiving sensor after being emitted.

Ultrasonic inspection is a family of methods most

widely used for nondestructive testing, it offers a great

accuracy, high sensitivity but, most importantly, it does not

cause damage to an object being tested, as such it finds its

application in many fields. The most familiar usage being

in the field of prenatal medicine for medical screening of a

fetus during pregnancy. Besides that, ultrasonic inspection

is also widely used for quality control and material

inspection across all major industries, including electrical

and electronic component manufacturing, production of

metallic and composite materials, and fabrication of

structures such as airframes, engines, machinery and many

others [1].

III. VISUALIZATION TECHNIQUES

Displaying data in a visual form provides clear and

easily understandable representation of raw data. The main

problem in visualizing volume data is displaying three-

dimensional data as a two-dimensional image while not

losing too much information and not losing valuable

information [2]. Volume rendering and surface rendering

represent the most important techniques for three-

dimensional dataset visualization.

A. Surface rendering

Surface rendering method involves constructing

polygonal surfaces in a dataset and rendering those

surfaces. The assumption is that the original volume can

be faithfully represented as a collection of polygonal

surfaces. Surface rendering algorithms have a necessary

preprocessing step, also called image segmentation, which

involves determining a surface by extracting features from

the volume data. More precisely - every pixel in an image

is assigned a label such that pixels with the same label

share certain visual characteristics such as color, intensity,

or texture. These pixels are a part of one isosurface. The

geometric primitives are then fit to the data to form a 3D

surface based on the values extracted from the data in

preprocessing step and rendered for display using

conventional geometric rendering techniques [3].

The process of determining surface is not perfect, as it

must be determined for every voxel how the surface passes

through every cube of voxels. This issue is especially

apparent for datasets surrounding objects that are very

small, blend into their surroundings or describe poorly

defined features [4]. A frequent problem that can occur is

calculated surface containing voxels that don’t really

belong to the original object we are trying to visualize or

skipping the voxels that do belong. Because of the

mentioned issues, when surfaces are transparent or semi-

transparent, geometric rendering techniques may not be

the best choice, that is where the volume rendering comes

in.

B. Volume rendering

Volume rendering is a powerful technique for the

representation, manipulation and rendering of volume

data. Traditional graphics techniques represent 3D objects

as geometric surfaces and edges approximated by

polygons and lines, but volumetric datasets can contain

data and information not only on the surface, but also

inside them, which is where surface rendering techniques

fall short. Volume rendering techniques make it possible

to explore the inner structures of volumetric data and allow

visual representation of transparent and complex datasets.

The advantage of volume rendering algorithms is that

there is no need to determine surfaces in advance which

removes the need for the segmentation step and a polygon

representation, instead they render every voxel in the

volume raster directly, without explicit conversion to

geometric primitives. Volume visualization methods can

achieve soft surfaces by integrating the contribution from

the voxels in entire volume towards final rendered image

[5]. Therefore, this method is applicable even in cases

where dataset can’t be faithfully described by polygons or

has a lot of small details that can’t be lost. It is also

applicable in cases when geometric surfaces for dataset are

unavailable or too cost-ineffective to generate.

IV. VOLUMETRIC RAY CASTING

Volumetric ray casting, also commonly referred to as

Volume ray tracing, is the most common technique for

achieving image-based volume rendering.

The ‘ray casting’ part of the name comes from the

similarity with the traditional ray casting in that they both

define rays that represent beam from a camera’s viewpoint

and only consider these primary rays without spawning the

secondary, reflected and refracted, ones. The difference is

that the ray casting interacts only with surface data and

stops as soon as it encounters an intersection between a ray

and a surface in a scene while volume ray casting does not

stop the computation at the surface level but passes

through the object, sampling it along the way [6].

This technique shows the best results in materials

where light goes through the object. Examples would

include smoke, marble, and skin. When light hits one of

these surfaces, a fraction of the light is reflected (ray

casting only deals with this case) and a fraction is scattered

into the object. Ray marching is a technique to compute

the scattered light. Image projection is performed by

simulating the absorption of light along the ray path to the

eye and calculating light intensity when arriving at the

camera. The advantage of this technique lies in the fact that

it does not directly calculate intersections with the objects

in the scene, so no mesh data of the objects needs to be

provided.
Volumetric ray marching employs simplified Emission-

Absorption Optical Model, taking into consideration, as per
its name, emission and absorption while ignoring light
scattering as it is too computationally complex while not
affecting quality too much. This means it only deals with

1996 MIPRO 2023/SP

primary rays, unlike some more common graphic rendering
methods, no secondary rays like reflection or refraction or
shadows are considered. The Emission-Absorption Optical
Model places two assumptions: the volume is assumed to
consist of particles that emit light. The volume is assumed
to consist of black particles that absorb light [16]. Meaning
the portion of light that passes through a particle will be
absorbed. Volume rendering integral is an equation that
computes light intensity at a point s along the ray, taking
into consideration light attenuation.

𝐼(𝑠) = 𝐼(𝑠0)𝑒−𝜏(𝑠0,𝑠) + ∫ 𝑞(𝑠1)𝑒−τ(𝑠1,𝑠)𝑠

𝑠0
𝑑𝑠1 (1)

Where parts of the equations are:

• I(s0) is initial light intensity at point s0, s0 being a
starting point

• 𝑒−τ(𝑠0,𝑠) is intensity reduction from s0 to s

• I(s1) is light intensity (emission) at point s1, s1
being a point on the ray further down than point
s0

• 𝑒−τ(𝑠1,𝑠)is intensity reduction from s1 to s

• τ is an optical depth measure, measuring degree
of absorption of light

• ∫ 𝑞(𝑠1)𝑒−τ(𝑠1,𝑠)𝑠

𝑠0
𝑑𝑠1 gathers contributions of all

points on the ray between s0 and s1

There is no closed form solution to this integral, but it
can be numerically approximated with a discrete sum of
volume samples along the ray [7].

Each point in the volume is considered to emit and
absorb light, and thus contributes to the final color and
opacity. There are multiple compositing schemes for
deciding the output color. The most common one is
Volume compositing or accumulation. For the emission-
absorption model, the accumulated color and opacity are
computed according to a following set of equations:

 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 + (1 − 𝛼𝑖𝑛)𝛼𝐶 (2)

 𝛼𝑜𝑢𝑡 = 𝛼𝑖𝑛 + (1 − 𝛼𝑖𝑛)𝛼 (3)

These equations are known as Front-to-Back
Compositing Equations since we go from the front of the
volume to the back, collecting color on the way. 𝐶𝑜𝑢𝑡 is the
resulting accumulated color over n voxels seen from the
front of the volume [8]. Variable 𝛼𝑜𝑢𝑡 is the opacity of the
result. Marching from beginning of the ray towards the end
accumulating color and opacity using these equations is
repeated until bounding box is exited, or some other
stopping criteria is defined e.g., predefined maximal
opacity or number of steps is exceeded. Another scheme
that is going to be mentioned in continuation is Maximum
Intensity Projection. It simply takes color of the highest
density point along the ray.

V. MARCHING CUBES ALGORITHM

The Marching cubes algorithm is a computer graphics

algorithm for creating polygonal representation of surfaces

with constant density – isosurfaces. It was first presented

in the paper Marching cubes: A high resolution 3D surface

construction algorithm [9]. The algorithm processes the

3D data in a scan-line order and calculates triangle vertices

using linear interpolation. The density of the desired

surface is specified as an input from the user.

The Marching cubes algorithm belongs to the surface

rendering algorithms. Its advantage is that it works on

lookup tables so it’s relatively high speed. The algorithm

works on a divide-and-conquer principle, it divides the

problem of creating surface to the small cells, it focuses on

each cell and applies to it one iteration of the algorithm.

The first step of the algorithm would be splitting the space

into a uniform grid of cells, in three dimensions that would

be cubes. Secondly, the isovalue or a density of a desired

isosurface is defined, in this case the beam density. Next

step is assigning a Boolean value to each voxel according

to its value in a relation to the designated isovalue – value

one if the voxel’s value is greater than the isovalue,

meaning that the voxel is inside the isosurface or lies on

the surface and value zero if it is lesser than the isovalue

and the voxel is outside of the isosurface.

For each cube eight pixels that make up cube vertices

are taken into polygon evaluation. Four vertices are pixels

of one slice and the other four belong to adjacent slice. The

surface intersects cubes at edges where one vertex is

outside the surface and another one is inside, calculating

the exact intersection location with interpolation in later

steps of the algorithm. There are eight vertices in each cube

and two possible states for each one, equating to 28 = 256

ways a surface can intersect the cube [10]. These 256

possible cases of surface-edge intersections are

enumerated and can be searched found in the lookup table.

The states given to each voxel in the previous step are now

composed into an 8-bit index, where each bit corresponds

to a Boolean value assigned to the vertex. That index is

used to fetch data from the lookup table. Algorithm iterates

over all cubes, adding triangles to a mesh, and the final

mesh is the union of all added triangles. The smaller the

cubes, the smaller the mesh triangles will be, making

approximation more closely match the target function.

VI. BEAM VISUALIZATION

Visualizing the beam is the most important part of the

project. The visualization was realized in Unity with the

ray marching technique using 3D textures and shaders. The

shaders were written in High-Level Shader Language

(HLSL). Results are three-dimensional even though inputs

are two-dimensional images.

High-level shading language is a programming

language used for writing programmable shaders in

DirectX. It is very similar to the Cg shader language and

will be used to write the shaders in the next steps. The

Shader that will draw the ultrasonic beam implements

volume rendering using ray marching algorithm and as a

result gives a rendered volume representing the ultrasonic

beam. Programmable parts of the graphics pipeline are

vertex shader and fragment shader [15]. The vertex shader

processes and performs transformations on individual

vertices. Fragment shader is where GPU calculates the

final RGB color for every pixel. The implementation is

done in Unlit shader type as the beam doesn’t need to be

affected by lightning models.

MIPRO 2023/SP 1997

Most important task for the vertex shader is

transforming vertices’ coordinates to the clip space so that

they can be used by rasterizer and be projected on the

screen. The vertex shader receives object space

coordinates as its inputs, the conversion from object space

to the clip space is done by putting vertices through a

sequence of transformation matrices. To make things

easier, all the transformation matrices can be combined

into one matrix by the name Model View Projection matrix

(MVP). In Unity there is a built-in helper function

UnityObjectToClipPos(float3 pos) that does exactly that,

it takes a position point and directly transforms it from an

object space to the camera’s clip space in homogeneous

coordinates [11].

Fragment stage is where the ray marching will be done.

There is a ray created through each pixel, pixel’s local

position is the ray origin, and the ray direction is the vector

from camera to the pixel. Direction vector is calculated by

using helper function ObjSpaceViewDir() and inverting it,

since it returns opposite direction, from pixel to camera.

Using this ray, the unit cube in which volume is drawn is

intersected. The points of intersection are helpful for

calculating marching step size. Distance between the start

and the end point of intersection is divided by the defined

maximum step size. The max step size limit is there

because of performance concerns, if the number of steps is

too great visualization would not run smoothly in real-

time.

Finally, the ray marching is executed in the loop that

runs for a number of steps. In each step the density is read

from the B&W 3D texture and the color from the colored

3D texture (or from the transfer function) using adjusted

local vertex position.

These 3D textures are a special Unity Asset type, they

are bitmap images that contain information in three

dimensions as opposed to the standard two. Texture

coordinates are placed on a unit cube and texture data is

accessed by three-dimensional texture coordinates. This

kind of data type is fit for storing and manipulating

volumetric data. The 3D texture containing volumetric

data was built from a sorted sequence of 2D images

through a script and is of the input properties for the

shader. What is done with color calculation in the next step

depends on the technique chosen.

In the compositing technique color is sent to the

method where accumulation formulas are used for

collecting and interpolating colors through the steps. If the

pixel density does not satisfy threshold the pixel color is

not taken into calculation. Compositing can be terminated

early if the currently accumulated opacity is so high it

makes contributions of future samples insignificant.

In Maximum intensity projection (MIP) technique the

color of a voxel with maximum intensity along the ray is

returned after checking all the pixels along the same ray.

In both cases the final pixel color is returned. The color

of the beam can be chosen to either be read from a 3D

texture or from a defined transfer function. The case of

using textures was implemented in a way that a color for

the voxel is read from the texture in the ray marching

algorithm, while when using transfer function, the density

is first calculated using ray marching and then at the end,

based on that value the color is read from the transfer

function.

A. Transfer function

Transfer functions define mapping from voxel density

to RGB color and opacity based on user defined values.

Using transfer functions provides a better overview of the

data. Transfer functions can be used to highlight important

parts and omit unnecessary ones thus better emphasizing

nuances inside the volume. Transfer function takes the

scalar value, in this case density and relates it to a

corresponding color and transparency, for example if it is

desirable to highlight higher density parts higher opacity

should be assigned to those densities [15]. Deciding how a

transfer function should look is not an easy task, there is

no fixed guide to perfect function because of variations

from dataset to dataset.

In Unity transfer function can be created by using a 2D

texture with height of one, this is enough since needed

information, color and opacity, can be stored in one pixel.

Texture color is read and set based on input gradient stored

in form of a Unity’s Gradient class.

B. Collision

For detecting collisions Unity’s default colliders were

not close enough of an approximation for the beam, so the

mesh had to be reconstructed from the images. The

reconstruction was accomplished with the Marching cubes

algorithm. The script inputs are a stack of B&W images

and a minimum density value defined by the user, that

value is going to be considered as the threshold in the

script.

In the preprocessing step when assigning labels for

each pixel the slices were traversed line by line, in each

one the first pixel with equal or higher density than defined

was assigned a label one and all subsequent ones until the

pixel below the threshold. After labeling the pixels were

used in mesh creation using the Marching cubes algorithm

with interpolation. The resulting triangles were decided

using the case table and together they formed the resulting

beam mesh. The mesh data is then saved in an instance of

Unity’s Mesh class.

The script is set up by attaching it to the desired

GameObject that must have a Mesh Renderer and a Mesh

Filter component. After mesh creation the Mesh collider

can be added to the beam, Unity automatically adapts the

Mesh collider to the selected Mesh - in this case the beam.

Beam Collision script listens for the collision events

and reacts by calling function that changes material color

on a defect when it is under collision to a color that can be

seen easily. After the beam collider is no longer in contact

with the defect the material color is reverted to the original

one. OnCollisionEnter() and OnCollisionExit() are physics

engine specific functions that are triggered on update

frames when the collision is detected and when the contact

between colliders has stopped.

C. User interface

The User Interface is divided into three sections, which

can be seen in Fig.2. The first section, on the left, consists

of settings regarding beam visualization. Most important

ones are Focal depth and Refraction angle, these settings

1998 MIPRO 2023/SP

can be chosen from their drop-down lists, each

combination of the two maps to the one set of images and

by extent textures that will be used for visualization. For

output color there are Max Intensity Projection and

Compositing options. For Compositing the choice of

current Z-slice is enabled, by using the slider the user can

select any cross-section on z-axis within the beam for a

more detailed view. The panel on the right is tasked with

handling the input of the auto-movement path parameters.

The user can fine tune the course of simulation by

inputting the values for the desired simulation output in the

suitable fields. Once all the parameters are confirmed

automatic simulation will be ready to be played.

The middle section, at the bottom of the screen,

controls the movement of the probe model. Animation tab

contains buttons for playing and pausing and the slider for

rewinding the animation. Playback speed can be slowed

down or accelerated. In the manual control tab user can

either input exact probe position or use two sliders for

selecting horizontal line position and sliding UT probe by

a selected increment along it. The components used in the

process of building the interface were extended from the

Quantum UI package [12] which was downloaded from

the Unity Asset store web page. Another custom package

that was used during UI development for smoother UI

transitions is LeanTween [13].

VII. RESULTS

In this chapter, the results of the implementation are

presented and discussed. The comparison between beam

visualization using two different technique types and two

color acquisition methods will be shown. Since results are

visualization, the described results are mostly

observations. Numerical approximation of the result

accuracy can be explored in the future work.

As previously explained, the beam can be rendered

with two techniques: Maximum intensity projection and

Compositing. On Fig.3. when using Max projection, the

highest density can be clearly seen from all of the angles

(an effect more visible in movement than on images) while

with Compositing we can see color accumulation effect,

most of the beam is in shades of blue as it is the color most

present in the photos, so it contributes the most, but there

are also some traces of red in the middle.

Max intensity projection results can be improved upon

by adding transparency. With this feature enabled voxels

with lesser density values will be more transparent than the

ones with the higher ones. This makes important parts of

the beam stand out more. The result is outer blue rays

being less visible than the middle ones in yellow-red range.

Transparency effect is achieved by setting alpha color

value to depend on voxel density, in this case it is just

multiplied by a parameter in the shader.

To get better insight of inner structure there are two

options: removing parts outside of desired density

segments or slicing off the parts of the volume that are not

needed. Extracting segment from the beam is done by

selecting minimum and maximum density value, all the

other parts that are not included in this range are going to

be transparent as can be seen on Fig.4. Cutting the volume

along one of the axes makes it possible to select a slice or

a part of the volume that is of interest. For example, on the

z-axis if maximum and minimum are set, everything in

front of the minimum and behind the maximum z-value

will be removed.

Coloring the volume after calculating densities can be

done in different ways. The most common coloring

method for volume rendering is using transfer function,

since it is easily adjustable and can define both color and

transparency. Another advantage of the transfer function is

that we do not need additional color texture, saving time

and space. The advantage of reading color from texture is

that everything is colored exactly like in the original

dataset, there is no approximation and thus it is more

similar to the source data. Also, it saves the time that would

otherwise be needed for defining perfect transfer function

for a particular dataset. Even though the B&W texture used

for density calculation was lower resolution the transfer

function gave very smooth results, which is not the case

with a color from texture one where it caused a bit of a

blocky look to colors. If the input images were of better

Fig. 4. Result beam with an alpha value between 0.07 and 0.115,

only volume with density inside that range is visible.

Fig. 3. Comparison between Compositing(left) and MIP (right)

using color from texture and a cutoff density = 0.3 at a 30-degree

refraction angle.

Fig. 2. Highlighted defects result.

MIPRO 2023/SP 1999

resolution the result would quite probably be significantly

better and more similar to the transfer function result.

The focus depth change from 30 to 60 mm causes the

rendered result to consist of a more intense and larger

surface of red area in comparison with the 30 mm one, this

difference shows how the ray with depth change shifts

focus to a deeper depth, around 60 mm deep from probe

position. The refraction angle, as the name says, changes

the angle of the probe and in extension angle in which rays

enter the block. The probe can be imagined as if it was

positioned in the top left corner.

The marching cubes algorithm result is a mesh that

approximates the beam. On the Fig.5. the comparison

between the generated mesh and the beam using the

density threshold of 0.3 can be seen. The mesh is lightly

shaded on the image for the comparison, but it can be

disabled from rendering in simulation if desired.

VIII. FUTURE WORK

Future work could improve upon offering more

scanning path options. Possibility to simulate scanning of

complex surfaces like the curved surfaces or the surfaces

with obstacles would make this program applicable for use

in a wider number of cases since real objects are not

regularly shaped blocks and commonly have welds and

other obstacles on trajectory. Implementing this feature

would be more complex than it is for flat surfaces.

Additional complications to path calculation would

present obstacles as they would prevent the probe from

moving freely. Another small issue is that the results with

current images come out a little pixelated, the cause is that

the current images were generated in dimensions of 43 x

31 pixels to save time for a course of development. If the

simulation images can be regenerated in a bigger

resolution, with their quality improved so would the

quality results, the final visualization would be clearer and

more accurate.

The results could be evaluated numerically, to calculate

how close the simulation represents the real-life beam and

detection.

IX. CONCLUSION

The possibilities and advantages of using volume

rendering in displaying datasets have been explored by

applying described techniques and algorithms to a

practical problem of visualizing ultrasonic beam for

quality inspection. The achieved simulation can be used as

a helping guide in minimizing the number of redundant

scans in search of defects inside object structure during

quality control phase. The implementation was done using

Unity and writing custom shaders, results achieved

showcased one possibility of use of volume rendering in

the quality inspection field. The biggest limitation of the

final application is no support for complex trajectories and

that could be a potential course for future work.

ACKNOWLEDGMENTS

I would like to extend my gratitude to INETEC for
supplying the materials, 3D models, image sequences and
providing mentoring help in the creation of this paper.

REFERENCES

[1] L. J. Bond. “Fundamentals of Ultrasonic Inspection[1]” In:
Nondestructive Evaluation of Materials. ASM International, Aug.
2018.,URL:https://www.asminternational.org/documents/10192/
22533690/05511G_SampleArticle.pdf/a8c3979c-3b35-f304-68f2-
151271f2e3b8.

[2] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. “Volume
Rendering”. In: SIGGRAPH Comput. Graph. 22.4 (June 1988), pp.
65–74. ISSN: 0097-8930. DOI: 10.1145/378456.378484. URL:
https://doi.org/10.1145/ 378456.378484.

[3] Andreas G. Schreyer and Simon K. Warfield. “Surface Rendering”.
In: 3D Image Processing: Techniques and Clinical Applicatio Ed.
by Davide Caramella and Carlo Bartolozzi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 31–34. URL:
https://doi.org/10.1007/978-3-642-59438-0_4.

[4] Heavy.AI. Volume Rendering. URL:
https://www.heavy.ai/technical-glossary/volume-rendering (visited
on 06/2022)

[5] Multiple authors. Volume Rendering. URL:
https://www.sciencedirect. com/topics/computer-science/volume-
rendering (visited on 06/2022)

[6] ETH Zurich, “Direct Volume Rendering “,
https://cgl.ethz.ch/teaching/former/scivis_07/Notes/stuff/StuttgartC
ourse/VIS-Modules-06-Direct_Volume_Rendering.pdf

[7] Tino Weinkauf. Introduction to Visualization and Computer
Graphics. 2015. URL:
https://www.kth.se/social/files/565e35dff27654457fb84363/
08_VolumeRendering.pdf

[8] M. Ikits, J. Kinss, A.Lefohn, C. Hansen, “GPU Gems, Chapter
39.Volume Rendering Techniques”,
https://developer.nvidia.com/gpugems/gpugems/part-vi-beyond-
triangles/chapter-39-volume-rendering-techniques

[9] William Lorensen and Harvey Cline. “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”. In: ACM
SIGGRAPH Computer Graphics 21 (Aug. 1987), pp. 163–. DOI:
10.1145/37401.37422.

[10] Paul Bourke. Polygonising a scalar field. URL:
http://paulbourke.net/ geometry/polygonise/ (visited on 06/2022).

[11] Unity Technologies. Unity User Manual. URL: https://docs.unity3d.
com/Manual/ (visited on 06/2022)

[12] Quantum Tek. Unity Asset Store package - Quantum UI. URL:
https : / / assetstore.unity.com/packages/tools/gui/quantum-ui-
162077 (visited on 06/2022)

[13] Dented Pixel. Lean Tween. URL: https://assetstore.unity.com/
packages/tools/animation/leantween-3595.

[14] L. Radisson, “Raytracing Studies“
https://observablehq.com/@makio135/raytracing-studies

[15] Randima Fernando and Mark J. Kilgard. “Chapter 1. Introduction,
Chapter 4. Transformations”. In: The Cg Tutorial: The Definitive
Guide to Programmable Real-Time Graphics. Addison-Wesley
Professional, 2003. URL: https : / /
developer.download.nvidia.com/CgTutorial/cg_tutorial_
frontmatter.html.

[16] Tino Weinkauf. Introduction to Visualization and Computer
Graphics. 2015. URL:
https://www.kth.se/social/files/565e35dff27654457fb84363/
08_VolumeRendering.pdf

Fig. 5. Mesh reconstruction for the density threshold of 0.3 and the
original visualized beam

2000 MIPRO 2023/SP

https://doi.org/10.1007/978-3-642-59438-0_4
https://cgl.ethz.ch/teaching/former/scivis_07/Notes/stuff/StuttgartCourse/VIS-Modules-06-Direct_Volume_Rendering.pdf
https://cgl.ethz.ch/teaching/former/scivis_07/Notes/stuff/StuttgartCourse/VIS-Modules-06-Direct_Volume_Rendering.pdf
https://developer.nvidia.com/gpugems/gpugems/part-vi-beyond-triangles/chapter-39-volume-rendering-techniques
https://developer.nvidia.com/gpugems/gpugems/part-vi-beyond-triangles/chapter-39-volume-rendering-techniques
https://observablehq.com/@makio135/raytracing-studies

