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Abstract - The use of software tools and applications 

progressively became a standard in both education and 

industry.  A solution for hand-drawn electrical scheme 

digitization has been proposed to match the fast-paced 

dynamic of the modern world in the field of electrical 

engineering.  The aim is to notably reduce time-consuming 

and error-prone electrical scheme tracing from hand-drawn 

to simulating software.  The means have been achieved 

through the usage of state-of-the-art deep learning model 

YOLOv5 for electrical elements detection along with Python 

and OpenCV library for data processing.  The user's input is 

an image of a hand-drawn circuit, and the end result is an 

LTspice digitized electrical scheme ready for simulation.  

Keywords - electrical scheme; digitization; deep learning; 

object detection; YOLOv5; LTspice 

I. INTRODUCTION 

Electrical circuits are a crucial aspect of electrical 
engineering. The conventional method of creating an 
electrical circuit involves manually drawing it on paper, 
followed by redrawing it in a simulation program during 
the later stages of analysis. This redrawing process is time-
consuming, reduces efficiency, and can result in human 
error.  

The intention to automate the process seems to be of 
great use for the purpose of removing the need for 
redrawing and setting the scheme in a state ready for 
simulation.  A branch of computer science that offers a 
solution of the mentioned problem is artificial intelligence.  

The proposed solution consists of using an electrical 
scheme image dataset to train a deep learning model for 
electrical component detection.  Henceforth, detected 
components are processed to produce a fully functional 
digitized electrical scheme. 

II. DATASET 

Datasets are an integral part of contemporary object 
recognition research [1].  Generally, the weak and 
unattended dataset is a bottleneck to the model’s 
performance, leading to poor results altogether.  It is of 
uttermost importance to squeeze in those extra hours to find 
a good match, as it will be significant for the rest of the 
project. 

For this project, the CGHD1152 (Circuit Graph Hand 
Drawn 1152) dataset was chosen as the best available 
option [2].  CGHD1152 consists of 1152 .jpg images 
derived from 144 unique circuits accompanied by 48563 
object annotations.  Despite the dataset is divided into 45 
unique classes (junction, resistor, speaker, switch, etc.), 7 
classes are being used for the sake of efficiency and 
accuracy. 

Further deconstruction and visualization of the dataset 
provide a clear picture of its unbalanced class distribution 
seen in Fig. 1 (a), and unrepresentative instances in Fig. 1 
(b). 

The CGHD1152 dataset was purged of outliers and 
unannotated images using Roboflow, a computer vision 
platform designed for dataset manipulation, export, and 
deployment [3].  Preprocessing steps, such as auto-
orientation, resizing, and conversion to grayscale, were 
applied through Roboflow.  Image augmentation was not 
included in the preprocessing since YOLOv5 handles it 
internally. 

The images were divided into three standardized 
subsets: training, testing, and validation, comprising 70% 
(813 images), 15% (175 images), and 15% (174 images) of 
the data, respectively. In addition, roughly 1% of 
background images (null images) were added to reduce 
False Positive (FP) classification, following Ultralytics' 
recommendations [4]. 

 

 

(a)   (b) 

 

Figure 1.  Dataset visualization.  

(a) Class distribution, (b) unrepresentative instance 
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III. YOLOV5 

YOLOv5 is the state-of-the-art (SOTA) model 
specialized for object detection.  The abbreviation YOLO 
is derived from “You Only Look Once”, meaning that the 
model uses single-shot detection (SSD) to predict the 
presence of an object and its corresponding location [4]. 

What makes YOLO a superior model and the perfect 
candidate is the usage of a grid-like division during 
inference that allows the model to see the input image as a 
whole while maintaining record-level speed and high mean 
average precision (mAP) [5]. 

A. Model Architecture 

• Backbone: CSP-DarkNet53 

• Neck: CSP-Path aggregation network (PAN) 

• Head: YOLOv3 Head 
 

This particular Backbone structure ensures high 
inference speed and accuracy while maintaining relatively 
low memory cost by solving the issue of repetitive gradient 
information passage [6].   

In the Neck, the Path Aggregation Network is used to 
boost the information flow of the network by propagating 
low-level features in a feature pyramid [7]. 

The model Head is mainly used to perform the final 
detection part.  It applies anchor boxes on features and 
generates final output vectors with class probabilities, 
objectness scores, and bounding boxes [8]. 

Considering the scarcity of data provided in the 
dataset1, as well as possible applications of the model in 
real-time detection scenarios, the YOLOv5m version is 
selected based on its ideal balance of inference speed and 
prediction accuracy.  YOLOv5m consists of 291 layers, 
20.9 million parameters, and uses 48.3 GFLOPs.  

B. Initial training 

The initial model training was accomplished with a 
Jupyter notebook script running on Google Colab [9][10].  
The script begins with installing the dependencies and 
importing the dataset.  Afterward, the training procedure is 
initialized using pre-trained weights to accelerate the 
training process.  The simplicity provided by Ultralytics 
makes the training process intuitive and easy to debug 
where necessary.  The initial weights, yolov5m.pt, were 
trained on the COCO dataset [11].  To understand the 
general behavior of the model, most hyperparameters were 
set to their default values, with notable exceptions being the 
number of epochs (150), batch size (32), image size (640), 
and optimizer (Stochastic Gradient Descent).  

The first training took 1 hour and 3 minutes using the 
Tesla T4 graphics card (GPU) and yielded satisfactory 
results. 

The best results were at epoch 136 with mean average 
precision at 0.5 threshold of intersection over union 

 

 
1 A decent dataset contains more than 1500 images per 

class! 

(mAP@0.5) equating to 0.9888 and mAP [0.5:0.95] of 
0.7353, where [0.5:0.95] represents different IoU 
thresholds, from 0.5 to 0.95 with a step of 0.05.   

C. Hyperparameter Evolution 

Having a well-defined base case of the model and its 

metrics, the usual procedure would involve tweaking and 

experimenting with different hyperparameter values used 

to train the model repeatedly in the hope of improvement.  

This is also known as hyperparameter tuning [12]. 

In order to avoid such time-consuming, exhaustive and 

iterative process, hyperparameter evolution offers an 

interesting solution [13]. 

The evolutionary algorithm uses a single gene to encode 

each hyperparameter that needs to be optimized for each 

individual. A range and resolution are specified for each 

gene to prevent searching irrelevant regions of the 

hyperparameter space. The initial population is generated 

by randomly choosing each gene from a uniform 

distribution, after which the fitness of each individual is 

assessed. The individuals with the highest fitness from the 

previous generation are used to form subsequent 

generations through selection, crossover, and mutation 

[14]. 

Ultralytics YOLOv5 repository has a built-in 

hyperparameter evolution function that uses modified 

mutation to find the best set of hyperparameter values.  For 

the evolve parameters a number of epochs is 10 per default 

settings, and a number of generations is set to 150.  

Evolution lasted for 4 hours in total using RTX 3070Ti 

GPU, and the outcome was a fine-tuned set of 

hyperparameters where some of which are depicted in Fig. 

2. 

Marginal improvements were made by retraining the 

model on the new set of hyperparameters, as is depicted in 

the F1 curve in Fig. 3.  The junction’s F1 score is low 

compared to other classes due to its small and 

overrepresented nature, hence this significant disparity in 

the results. 

 
Figure 2.  Hyperparameter evolution scatter plot 
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 Newly found metrics are: 

• mAP@0.5 = 0.9895 

• mAP@[0.5:0.95] = 0.7496 

• Precision = 0.9794 

• Recall = 0.9820 

 

D. Final Model 

Further results and dataset analysis discovered that 
increasing the image size from 640 pixels to 1280 pixels 
has a positive impact on the training results since the 
majority of the bounding boxes, especially junctions, are 
quite small and easily misplaced.  Consequentially, 
changing the image size to 1280 pixels and retraining the 
model with evolved hyperparameters gave the best results. 

Training took 2 hours and 56 minutes to complete at 
epoch 167, and was logged using wandb, an experimental 
tracking tool for machine learning.  This provided several 
valuable metrics, such as the normalized confusion matrix 
shown in Fig. 4 [15].  

Examining the confusion matrix, it can be seen that the 
model's classification is highly accurate, except for 
background images where 76% of the time the model 
confused them with junctions.  

 

 A comparison of the final model's F1 score in Fig. 5 
and the evolved model's F1 score in Fig. 3 revealed that the 
final model had a better curvature, especially for the 
junction class.. This is reflected in the mAP metric, which 
combines precision and recall in its calculation, resulting 
in:  

• mAP@0.5 = 0.9907 

• mAP@[0.5:0.95] = 0.7614 

• Precision = 0.9883 

• Recall = 0.9909 

making this model a perfect candidate for later use.   

Overfitting occurs when a model does not generalize 
well from observed data to unobserved data [16].  YOLOv5 
addresses this issue by using regularization techniques such 
as weight decay and early stopping [17].  Early stopping is 
a regularization method that aims to stop the training 
process before the model begins to overfit, specifically at 
the inflection point of the validation error function [18]. 
This is why the training ended at 167th epoch - the model 
stopped at the optimal time and saved the best weights to a 
file named best.pt. 

The increase in image size from 640 pixels to 1280 
pixels did result in improved overall accuracy for the 
model, however it also led to a decrease in both training and 
inference speed. This trade-off is commonly encountered in 
the field, and the choice is determined based on the specific 
requirements of the model application. In the case of 
electrical scheme digitization, the inference speed of 39.8 
milliseconds is deemed appropriate for the task and 
therefore the model is ready to be implemented.   

IV. DIGITIZATION 

With the model thoroughly evaluated and ready, the 
next step is to begin data processing using Python 3.10 
programming language and PyTorch as the primary 
framework [19][20].   

A. LTspice 

 LTspice XVII, a high-performing computer program 
for electrical circuit simulation, has been chosen as the 
desired output.  It is based on the SPICE simulator 
(Simulation Program with Integrated Circuit Emphasis), 
open-source computer software used to analyze and predict Figure 4.  Confusion matrix of the final 

model 

Figure 5.  F1 curve of the final model 
 

Figure 3.  F1 curve of the model with tuned 

hyperparameters 
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the behavior of electronic circuits [21].  LTspice is widely 
used and accepted as the most prevalent SPICE software in 
the industry, making it a valuable choice due to its high user 
base.   

Although ease of use, clarity, low computational 
complexity and accuracy are significant benefits of the 
LTspice program, the main benefit of using LTspice is its 
ability to render a textual type of data and create a circuit. 
This is achieved through a simple syntax that represents a 
specific circuit, making digitization possible.  Fig. 6 (a) 
illustrates an electrical circuit in LTspice and Fig. 6 (b) its 
matching syntax created in the text file. 

To get a better understanding of how the syntax should 
be written, several electrical circuits were manually drawn 
and inspected from their correlating text format.  The 
conclusion was deduced for the format in which the text file 
should be written generally: 

• <Name of the element> <coordinates> 

For instance, a random wire element is written as: 

• WIRE xs  ys xe ye 

Where xs, ys represents the starting point, and xe ye 
represents the ending point of the wire. 

 Similarly, electrical components are written: 

• SYMBOL res xc yc Rz 

 Where xc, yc represents the center point and z  
∈ {0, 360} represents the rotation of the resistor. 

 

B. Code Implementation 

The model is loaded through PyTorch’s built-in 
function torch.hub.load() with custom weights as an 
argument.  OpenCV’s .imread() method is used to load a 
new image that the user wants to digitize.  With the new 
image, the model makes predictions and visualizes the 
results using .show() method depicted in Fig. 7.  Each 
element is surrounded by a bounding box with a confidence 
score. 

 The interpretation of the model's results is made 
convenient through the use of pandas, an open-source 
Python library for data analysis and manipulation [22].  
Calling the .pandas().xywh[0] function on the result, a table 
shown in Fig. 8 is generated containing center coordinates, 
width, height, and other useful information regarding the 
predicted bounding boxes. 

As the WIRE elements in LTspice dictate the 
connections of the circuit and the placement of the 
elements, the first challenge faced was the finding of the 
start and end points of the wires.  Upon examination of the 
junction class, it was deduced that the junction class was 
composed of two or more lines that were horizontally and 
vertically connected, making it a perfect match for the 
endpoints of the wires.  Hence, by iterating over the 
junction class in the dataframe, the wire endpoints were 
derived and stored in a list. 

However, simply connecting every combination of 
junctions is not correct, as there may not be a wire between 
every junction.  A solution was proposed to only connect 
junctions that were horizontally or vertically aligned.  This 
was achieved by finding the angle of slope formed by two 
given junctions. 

The slope of any straight line on the X-Y plane is given 
by tan θ, where θ is the angle that the straight line makes 
with the positive direction of x-axis.  Hence the equation 
for the slope is 

m = tan θ = 
𝑦2−𝑦1

 𝑥2 – 𝑥1
.    (1) 

Where m is the slope of that straight line which is 
inclined at an angle θ with the positive direction of x-axis, 
and (x1, y1), (x2, y2) are coordinates of the first and second 
junction, respectively. 

Therefore, the angle of slope is  

θ = tan-1 (m) = tan-1(
𝑦2−𝑦1

𝑥2−𝑥1
).    (2) 

The wire is classified as horizontal if the angle of slope 
falls within 180 ± 10% or 360 ± 10%.  Conversely, the wire 
is classified as vertical if the angle of slope falls within 90 
± 10% or 270 ± 10%.  The elimination of non-orthogonal 
wires leaves the initial list comprised of only valid wires. 

 

 
(a)                                      (b)     

Figure 6. LTspice electrical circuit. 

(a) Generated circuit, (b) circuit’s text format 

 
Figure 7.  Visualization of model inference 

 
Figure 8. The model inference dataframe 
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For loop was included to iterate over the list and write 
the coordinates to a file, which was later opened in LTspice 
for analysis.  It was discovered that the wire validation 
method was effective, but the wires were not perfectly 
horizontal or vertical as a result of the user’s hand-drawing 
or image capturing not being properly aligned.  As a result, 
the user was unable to interact with the wires or elements, 
as LTspice only allows for manipulation of vertical and 
horizontal straight wires. 

To overcome this challenge, a wire alignment function 
was implemented. To align the vertical wires on the x-axis, 
a function looped through all the points' x-coordinates, 
comparing their relative positions, and making them equal 
if they satisfied a proximity condition given by a threshold 
value. A similar procedure was implemented for the 
alignment of the horizontal wires using the y-coordinates of 
the points.  

 However, the aligned wires were out of reach and could 
not be manipulated by the user as they can only interact 
with wires on the edges of 16 by 16-sized grids. To address 
this bug and have the user be able to add, remove or modify 
the wires and elements, a simple wire offset method was 
implemented as shown in the following pseudocode: 

The y-coordinate offset correction was also applied with 
the same logic. 

Similar to wires, electrical elements were also added to 
the output file using the .write() built-in Python function.  If 
the element is placed on a wire, LTspice will automatically 
connect the element in a circuit and remove the excess wire, 
therefore the main challenge was determining the 
appropriate rotation for these elements based on whether 
they needed to lie on a horizontal or vertical wire.  This 
problem was resolved by splitting the list of all valid wires 
into two smaller lists - horizontal_wires and vertical_wires.  
By comparing whether the center of the element was 
located between two junctions of a horizontal or a vertical 
wire, the appropriate rotation of the elements was assigned 
and included in the output file.  

Upon program execution, a .asc file is generated in the 
current directory containing all the wires and elements 
depicted in a hand-drawn scheme and can be opened using 
LTspice. Fig. 9 shows an example of the input image (a) 
and its corresponding end product (b). 

C. Limitations 

Although providing an efficient and convenient way of 
digitizing electrical schemes, there are some limitations to 
the process.  

One of the main limitations is the possibility of using 
only six different types of elements that occur most 
frequently.  Excluding other elements could be problematic 
for users who require a wide range of elements.  On the 
other hand, the computational expenses of providing more 
elements are marginal, therefore, including more elements 
in the future is realizable. 

Another constraint is the inability to use non-orthogonal 
wires, such as diagonal wires, due to the method used for 
finding valid wires. Additionally, the current dataset is 
insufficient and lacks the necessary data to train the model 
accurately. 

D. Results 

A solution has been developed to meet the challenge of 
creating a digitized and fully operational electrical circuit 
from hand-drawn designs. By using the highly accurate 
deep learning model YOLOv5, which was trained on a 
custom dataset, and processing the output from the model, 
a fully functional LTspice electrical circuit was created. 
The digitization process involves the user inputting an 
image, the model making predictions, and processing the 
output to produce a file named “output.asc” that can be 
opened in LTspice for simulation or measurement 
purposes.   

The end result was further validated by using a subset 
of data from the dataset along with newly-drawn circuits. 
Although the validation procedure produced positive 
results, it also identified areas requiring improvement, 
specifically in the heuristics of digitization, which tend to 
produce errors when the drawings are complex or cluttered. 

 The digitization process is nearly independent of the 
drawing's complexity, making it a more efficient alternative 
to manual redrawing. In most cases, the entire process can 
be completed in less than a minute. 

V. CONCLUSION 

The proposed program for hand-drawn electrical 
scheme digitization is a promising solution that can greatly 
improve efficiency and reduce errors in the field of 
electrical engineering. By leveraging state-of-the-art deep 
learning techniques for object detection, the program 
successfully automates the time-consuming and error-
prone process of redrawing hand-drawn circuits for 
simulation. While further improvements and validations 
are required, the program has demonstrated its potential to 
offer an accessible and reliable solution for a wide range of 
users. 
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(a)                                     (b)     

Figure 9. A before-and-after example. 

(a) Input image, (b) end result 
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