

Electrical Scheme Digitization Using Deep

Learning Methods

Marko Putak, Vatroslav Zuppa Bakša and Andrea Bednjanec

Zagreb University of Applied Sciences/Automation and Process Control Engineering, Zagreb, Croatia

mputak98@gmail.com, vzuppabak@tvz.hr, andrea.bednjanec@tvz.hr

Abstract - The use of software tools and applications

progressively became a standard in both education and

industry. A solution for hand-drawn electrical scheme

digitization has been proposed to match the fast-paced

dynamic of the modern world in the field of electrical

engineering. The aim is to notably reduce time-consuming

and error-prone electrical scheme tracing from hand-drawn

to simulating software. The means have been achieved

through the usage of state-of-the-art deep learning model

YOLOv5 for electrical elements detection along with Python

and OpenCV library for data processing. The user's input is

an image of a hand-drawn circuit, and the end result is an

LTspice digitized electrical scheme ready for simulation.

Keywords - electrical scheme; digitization; deep learning;

object detection; YOLOv5; LTspice

I. INTRODUCTION

Electrical circuits are a crucial aspect of electrical
engineering. The conventional method of creating an
electrical circuit involves manually drawing it on paper,
followed by redrawing it in a simulation program during
the later stages of analysis. This redrawing process is time-
consuming, reduces efficiency, and can result in human
error.

The intention to automate the process seems to be of
great use for the purpose of removing the need for
redrawing and setting the scheme in a state ready for
simulation. A branch of computer science that offers a
solution of the mentioned problem is artificial intelligence.

The proposed solution consists of using an electrical
scheme image dataset to train a deep learning model for
electrical component detection. Henceforth, detected
components are processed to produce a fully functional
digitized electrical scheme.

II. DATASET

Datasets are an integral part of contemporary object
recognition research [1]. Generally, the weak and
unattended dataset is a bottleneck to the model’s
performance, leading to poor results altogether. It is of
uttermost importance to squeeze in those extra hours to find
a good match, as it will be significant for the rest of the
project.

For this project, the CGHD1152 (Circuit Graph Hand
Drawn 1152) dataset was chosen as the best available
option [2]. CGHD1152 consists of 1152 .jpg images
derived from 144 unique circuits accompanied by 48563
object annotations. Despite the dataset is divided into 45
unique classes (junction, resistor, speaker, switch, etc.), 7
classes are being used for the sake of efficiency and
accuracy.

Further deconstruction and visualization of the dataset
provide a clear picture of its unbalanced class distribution
seen in Fig. 1 (a), and unrepresentative instances in Fig. 1
(b).

The CGHD1152 dataset was purged of outliers and
unannotated images using Roboflow, a computer vision
platform designed for dataset manipulation, export, and
deployment [3]. Preprocessing steps, such as auto-
orientation, resizing, and conversion to grayscale, were
applied through Roboflow. Image augmentation was not
included in the preprocessing since YOLOv5 handles it
internally.

The images were divided into three standardized
subsets: training, testing, and validation, comprising 70%
(813 images), 15% (175 images), and 15% (174 images) of
the data, respectively. In addition, roughly 1% of
background images (null images) were added to reduce
False Positive (FP) classification, following Ultralytics'
recommendations [4].

(a) (b)

Figure 1. Dataset visualization.

(a) Class distribution, (b) unrepresentative instance

1984 MIPRO 2023/SP

III. YOLOV5

YOLOv5 is the state-of-the-art (SOTA) model
specialized for object detection. The abbreviation YOLO
is derived from “You Only Look Once”, meaning that the
model uses single-shot detection (SSD) to predict the
presence of an object and its corresponding location [4].

What makes YOLO a superior model and the perfect
candidate is the usage of a grid-like division during
inference that allows the model to see the input image as a
whole while maintaining record-level speed and high mean
average precision (mAP) [5].

A. Model Architecture

• Backbone: CSP-DarkNet53

• Neck: CSP-Path aggregation network (PAN)

• Head: YOLOv3 Head

This particular Backbone structure ensures high
inference speed and accuracy while maintaining relatively
low memory cost by solving the issue of repetitive gradient
information passage [6].

In the Neck, the Path Aggregation Network is used to
boost the information flow of the network by propagating
low-level features in a feature pyramid [7].

The model Head is mainly used to perform the final
detection part. It applies anchor boxes on features and
generates final output vectors with class probabilities,
objectness scores, and bounding boxes [8].

Considering the scarcity of data provided in the
dataset1, as well as possible applications of the model in
real-time detection scenarios, the YOLOv5m version is
selected based on its ideal balance of inference speed and
prediction accuracy. YOLOv5m consists of 291 layers,
20.9 million parameters, and uses 48.3 GFLOPs.

B. Initial training

The initial model training was accomplished with a
Jupyter notebook script running on Google Colab [9][10].
The script begins with installing the dependencies and
importing the dataset. Afterward, the training procedure is
initialized using pre-trained weights to accelerate the
training process. The simplicity provided by Ultralytics
makes the training process intuitive and easy to debug
where necessary. The initial weights, yolov5m.pt, were
trained on the COCO dataset [11]. To understand the
general behavior of the model, most hyperparameters were
set to their default values, with notable exceptions being the
number of epochs (150), batch size (32), image size (640),
and optimizer (Stochastic Gradient Descent).

The first training took 1 hour and 3 minutes using the
Tesla T4 graphics card (GPU) and yielded satisfactory
results.

The best results were at epoch 136 with mean average
precision at 0.5 threshold of intersection over union

1 A decent dataset contains more than 1500 images per

class!

(mAP@0.5) equating to 0.9888 and mAP [0.5:0.95] of
0.7353, where [0.5:0.95] represents different IoU
thresholds, from 0.5 to 0.95 with a step of 0.05.

C. Hyperparameter Evolution

Having a well-defined base case of the model and its

metrics, the usual procedure would involve tweaking and

experimenting with different hyperparameter values used

to train the model repeatedly in the hope of improvement.

This is also known as hyperparameter tuning [12].

In order to avoid such time-consuming, exhaustive and

iterative process, hyperparameter evolution offers an

interesting solution [13].

The evolutionary algorithm uses a single gene to encode

each hyperparameter that needs to be optimized for each

individual. A range and resolution are specified for each

gene to prevent searching irrelevant regions of the

hyperparameter space. The initial population is generated

by randomly choosing each gene from a uniform

distribution, after which the fitness of each individual is

assessed. The individuals with the highest fitness from the

previous generation are used to form subsequent

generations through selection, crossover, and mutation

[14].

Ultralytics YOLOv5 repository has a built-in

hyperparameter evolution function that uses modified

mutation to find the best set of hyperparameter values. For

the evolve parameters a number of epochs is 10 per default

settings, and a number of generations is set to 150.

Evolution lasted for 4 hours in total using RTX 3070Ti

GPU, and the outcome was a fine-tuned set of

hyperparameters where some of which are depicted in Fig.

2.

Marginal improvements were made by retraining the

model on the new set of hyperparameters, as is depicted in

the F1 curve in Fig. 3. The junction’s F1 score is low

compared to other classes due to its small and

overrepresented nature, hence this significant disparity in

the results.

Figure 2. Hyperparameter evolution scatter plot

MIPRO 2023/SP 1985

 Newly found metrics are:

• mAP@0.5 = 0.9895

• mAP@[0.5:0.95] = 0.7496

• Precision = 0.9794

• Recall = 0.9820

D. Final Model

Further results and dataset analysis discovered that
increasing the image size from 640 pixels to 1280 pixels
has a positive impact on the training results since the
majority of the bounding boxes, especially junctions, are
quite small and easily misplaced. Consequentially,
changing the image size to 1280 pixels and retraining the
model with evolved hyperparameters gave the best results.

Training took 2 hours and 56 minutes to complete at
epoch 167, and was logged using wandb, an experimental
tracking tool for machine learning. This provided several
valuable metrics, such as the normalized confusion matrix
shown in Fig. 4 [15].

Examining the confusion matrix, it can be seen that the
model's classification is highly accurate, except for
background images where 76% of the time the model
confused them with junctions.

 A comparison of the final model's F1 score in Fig. 5
and the evolved model's F1 score in Fig. 3 revealed that the
final model had a better curvature, especially for the
junction class.. This is reflected in the mAP metric, which
combines precision and recall in its calculation, resulting
in:

• mAP@0.5 = 0.9907

• mAP@[0.5:0.95] = 0.7614

• Precision = 0.9883

• Recall = 0.9909

making this model a perfect candidate for later use.

Overfitting occurs when a model does not generalize
well from observed data to unobserved data [16]. YOLOv5
addresses this issue by using regularization techniques such
as weight decay and early stopping [17]. Early stopping is
a regularization method that aims to stop the training
process before the model begins to overfit, specifically at
the inflection point of the validation error function [18].
This is why the training ended at 167th epoch - the model
stopped at the optimal time and saved the best weights to a
file named best.pt.

The increase in image size from 640 pixels to 1280
pixels did result in improved overall accuracy for the
model, however it also led to a decrease in both training and
inference speed. This trade-off is commonly encountered in
the field, and the choice is determined based on the specific
requirements of the model application. In the case of
electrical scheme digitization, the inference speed of 39.8
milliseconds is deemed appropriate for the task and
therefore the model is ready to be implemented.

IV. DIGITIZATION

With the model thoroughly evaluated and ready, the
next step is to begin data processing using Python 3.10
programming language and PyTorch as the primary
framework [19][20].

A. LTspice

 LTspice XVII, a high-performing computer program
for electrical circuit simulation, has been chosen as the
desired output. It is based on the SPICE simulator
(Simulation Program with Integrated Circuit Emphasis),
open-source computer software used to analyze and predict Figure 4. Confusion matrix of the final

model

Figure 5. F1 curve of the final model

Figure 3. F1 curve of the model with tuned

hyperparameters

1986 MIPRO 2023/SP

the behavior of electronic circuits [21]. LTspice is widely
used and accepted as the most prevalent SPICE software in
the industry, making it a valuable choice due to its high user
base.

Although ease of use, clarity, low computational
complexity and accuracy are significant benefits of the
LTspice program, the main benefit of using LTspice is its
ability to render a textual type of data and create a circuit.
This is achieved through a simple syntax that represents a
specific circuit, making digitization possible. Fig. 6 (a)
illustrates an electrical circuit in LTspice and Fig. 6 (b) its
matching syntax created in the text file.

To get a better understanding of how the syntax should
be written, several electrical circuits were manually drawn
and inspected from their correlating text format. The
conclusion was deduced for the format in which the text file
should be written generally:

• <Name of the element> <coordinates>

For instance, a random wire element is written as:

• WIRE xs ys xe ye

Where xs, ys represents the starting point, and xe ye
represents the ending point of the wire.

 Similarly, electrical components are written:

• SYMBOL res xc yc Rz

 Where xc, yc represents the center point and z
∈ {0, 360} represents the rotation of the resistor.

B. Code Implementation

The model is loaded through PyTorch’s built-in
function torch.hub.load() with custom weights as an
argument. OpenCV’s .imread() method is used to load a
new image that the user wants to digitize. With the new
image, the model makes predictions and visualizes the
results using .show() method depicted in Fig. 7. Each
element is surrounded by a bounding box with a confidence
score.

 The interpretation of the model's results is made
convenient through the use of pandas, an open-source
Python library for data analysis and manipulation [22].
Calling the .pandas().xywh[0] function on the result, a table
shown in Fig. 8 is generated containing center coordinates,
width, height, and other useful information regarding the
predicted bounding boxes.

As the WIRE elements in LTspice dictate the
connections of the circuit and the placement of the
elements, the first challenge faced was the finding of the
start and end points of the wires. Upon examination of the
junction class, it was deduced that the junction class was
composed of two or more lines that were horizontally and
vertically connected, making it a perfect match for the
endpoints of the wires. Hence, by iterating over the
junction class in the dataframe, the wire endpoints were
derived and stored in a list.

However, simply connecting every combination of
junctions is not correct, as there may not be a wire between
every junction. A solution was proposed to only connect
junctions that were horizontally or vertically aligned. This
was achieved by finding the angle of slope formed by two
given junctions.

The slope of any straight line on the X-Y plane is given
by tan θ, where θ is the angle that the straight line makes
with the positive direction of x-axis. Hence the equation
for the slope is

m = tan θ =
𝑦2−𝑦1

 𝑥2 – 𝑥1
. (1)

Where m is the slope of that straight line which is
inclined at an angle θ with the positive direction of x-axis,
and (x1, y1), (x2, y2) are coordinates of the first and second
junction, respectively.

Therefore, the angle of slope is

θ = tan-1 (m) = tan-1(
𝑦2−𝑦1

𝑥2−𝑥1
). (2)

The wire is classified as horizontal if the angle of slope
falls within 180 ± 10% or 360 ± 10%. Conversely, the wire
is classified as vertical if the angle of slope falls within 90
± 10% or 270 ± 10%. The elimination of non-orthogonal
wires leaves the initial list comprised of only valid wires.

(a) (b)

Figure 6. LTspice electrical circuit.

(a) Generated circuit, (b) circuit’s text format

Figure 7. Visualization of model inference

Figure 8. The model inference dataframe

MIPRO 2023/SP 1987

For loop was included to iterate over the list and write
the coordinates to a file, which was later opened in LTspice
for analysis. It was discovered that the wire validation
method was effective, but the wires were not perfectly
horizontal or vertical as a result of the user’s hand-drawing
or image capturing not being properly aligned. As a result,
the user was unable to interact with the wires or elements,
as LTspice only allows for manipulation of vertical and
horizontal straight wires.

To overcome this challenge, a wire alignment function
was implemented. To align the vertical wires on the x-axis,
a function looped through all the points' x-coordinates,
comparing their relative positions, and making them equal
if they satisfied a proximity condition given by a threshold
value. A similar procedure was implemented for the
alignment of the horizontal wires using the y-coordinates of
the points.

 However, the aligned wires were out of reach and could
not be manipulated by the user as they can only interact
with wires on the edges of 16 by 16-sized grids. To address
this bug and have the user be able to add, remove or modify
the wires and elements, a simple wire offset method was
implemented as shown in the following pseudocode:

The y-coordinate offset correction was also applied with
the same logic.

Similar to wires, electrical elements were also added to
the output file using the .write() built-in Python function. If
the element is placed on a wire, LTspice will automatically
connect the element in a circuit and remove the excess wire,
therefore the main challenge was determining the
appropriate rotation for these elements based on whether
they needed to lie on a horizontal or vertical wire. This
problem was resolved by splitting the list of all valid wires
into two smaller lists - horizontal_wires and vertical_wires.
By comparing whether the center of the element was
located between two junctions of a horizontal or a vertical
wire, the appropriate rotation of the elements was assigned
and included in the output file.

Upon program execution, a .asc file is generated in the
current directory containing all the wires and elements
depicted in a hand-drawn scheme and can be opened using
LTspice. Fig. 9 shows an example of the input image (a)
and its corresponding end product (b).

C. Limitations

Although providing an efficient and convenient way of
digitizing electrical schemes, there are some limitations to
the process.

One of the main limitations is the possibility of using
only six different types of elements that occur most
frequently. Excluding other elements could be problematic
for users who require a wide range of elements. On the
other hand, the computational expenses of providing more
elements are marginal, therefore, including more elements
in the future is realizable.

Another constraint is the inability to use non-orthogonal
wires, such as diagonal wires, due to the method used for
finding valid wires. Additionally, the current dataset is
insufficient and lacks the necessary data to train the model
accurately.

D. Results

A solution has been developed to meet the challenge of
creating a digitized and fully operational electrical circuit
from hand-drawn designs. By using the highly accurate
deep learning model YOLOv5, which was trained on a
custom dataset, and processing the output from the model,
a fully functional LTspice electrical circuit was created.
The digitization process involves the user inputting an
image, the model making predictions, and processing the
output to produce a file named “output.asc” that can be
opened in LTspice for simulation or measurement
purposes.

The end result was further validated by using a subset
of data from the dataset along with newly-drawn circuits.
Although the validation procedure produced positive
results, it also identified areas requiring improvement,
specifically in the heuristics of digitization, which tend to
produce errors when the drawings are complex or cluttered.

 The digitization process is nearly independent of the
drawing's complexity, making it a more efficient alternative
to manual redrawing. In most cases, the entire process can
be completed in less than a minute.

V. CONCLUSION

The proposed program for hand-drawn electrical
scheme digitization is a promising solution that can greatly
improve efficiency and reduce errors in the field of
electrical engineering. By leveraging state-of-the-art deep
learning techniques for object detection, the program
successfully automates the time-consuming and error-
prone process of redrawing hand-drawn circuits for
simulation. While further improvements and validations
are required, the program has demonstrated its potential to
offer an accessible and reliable solution for a wide range of
users.

ACKNOWLEDGMENT

I extend my heartfelt gratitude to my co-authors for
their unwavering support and assistance throughout the
entire project. I'd like to recognize the assistance of my
fellow colleagues, and lastly, it would be remiss not to
mention the support I received from Miss Bruna Duspara.

(a) (b)

Figure 9. A before-and-after example.

(a) Input image, (b) end result

1988 MIPRO 2023/SP

REFERENCES

[1] A. Torralba and A. A. Efros, "Unbiased look at dataset bias," CVPR
2011, Colorado Springs, CO, USA, 2011, pp. 1521-1528, doi:
10.1109/CVPR.2011.5995347.

[2] Thoma, Felix, Johannes Bayer, and Yakun Li.
“CircuitGraphHandDrawn.” OSF, 8 Aug. 2022. Web.

[3] Dwyer, B., Nelson, J. (2022), Solawetz, J., et. al. Roboflow
(Version 1.0) [Software]. Available from https://roboflow.com.
computer vision.

[4] Jocher, G. (2020). YOLOv5 by Ultralytics (Version 7.0) [Computer
software]. https://doi.org/10.5281/zenodo.3908559

[5] Thuan, Do. "Evolution of Yolo algorithm and Yolov5: The State-
of-the-Art object detention algorithm." (2021).

[6] Xu, Renjie & Lin, Haifeng & Lu, Kangjie & Cao, Lin & Liu,
Yunfei. (2021). A Forest Fire Detection System Based on Ensemble
Learning. Forests. 12. 217. 10.3390/f12020217.

[7] Liu, Shu, et al. "Path aggregation network for instance
segmentation." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018.

[8] Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental
improvement." arXiv preprint arXiv:1804.02767 (2018).

[9] Kluyver, T., Ragan-Kelley, B., Fernando P'erez, Granger,
B., Bussonnier, M., Frederic, J., … Willing, C. (2016). Jupyter
Notebooks – a publishing format for reproducible computational
workflows. In F. Loizides & B. Schmidt (Eds.), Positioning and
Power in Academic Publishing: Players, Agents and Agendas (pp.
87–90).

[10] Bisong, E. (2019). Google Colaboratory. In: Building Machine
Learning and Deep Learning Models on Google Cloud Platform.
Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-4470-
8_7

[11] Tsung-Yi Lin, Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., … Zitnick, C. L. (2014). Microsoft COCO:
Common Objects in Context. CoRR, abs/1405.0312. Retrieved
from http://arxiv.org/abs/1405.0312

[12] Bardenet, Rémi, et al. "Collaborative hyperparameter tuning."
International conference on machine learning. PMLR, 2013.

[13] Schmidt, Mischa, et al. "On the performance of differential
evolution for hyperparameter tuning." 2019 international joint
conference on neural networks (IJCNN). IEEE, 2019.

[14] Young, Steven R., et al. "Optimizing deep learning hyper-
parameters through an evolutionary algorithm." Proceedings of the
workshop on machine learning in high-performance computing
environments. 2015.

[15] L. Biewald, “Experiment Tracking with Weights and Biases,”
Weights & Biases. [Online]. Available: http://wandb.com/.
[Accessed: 02.02.2023.]. Software available from wandb.com

[16] Ying, Xue. "An overview of overfitting and its solutions." Journal
of physics: Conference series. Vol. 1168. IOP Publishing, 2019.

[17] Loshchilov, Ilya, and Frank Hutter. "Decoupled weight decay
regularization." arXiv preprint arXiv:1711.05101 (2017).

[18] Yao, Yuan, Lorenzo Rosasco, and Andrea Caponnetto. "On early
stopping in gradient descent learning." Constructive Approximation
26.2 (2007): 289-315.

[19] Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference
Manual. Scotts Valley, CA: CreateSpace.

[20] Paszke, Adam, et al. "Automatic differentiation in pytorch."
(2017).

[21] Quarles, Thomas L., Analysis of Performance and Convergence
Issues for Circuit Simulation, Memorandum No. UCB/ERL
M89/42, University of California, Berkeley, April 1989.

MIPRO 2023/SP 1989

