
Keeping Drivers Alert: A Solution for
Monitoring Driver Attention in Assisted-Driving

Vehicles
Robert Jutreša∗, Peter Peer∗ Žiga Emeršič∗, Jihun Kim†

∗ Faculty of Computer and Information Science/Computer Vision Laboratory, Ljubljana, Slovenia
† School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea

rj7149@student.uni-lj.si, peter.peer@fri.uni-lj.si, ziga.emersic@fri.uni-lj.si, soji@knu.ac.kr

Abstract—The advent of the new industrial revolution has
led to a surge in the number of self-driving and assisted-
driving vehicles on the roads. Although this development en-
hances the overall quality of life, it also poses new challenges
and risks. One such difficulty is the need for driver attention
in the event of system errors. To overcome this issue, a driver
monitoring system is necessary to ensure that the driver
remains focused and can take control if necessary, while also
sending alerts in case of driver distraction. To address this
challenge, we propose a method that employs a convolutional
neural network based on the ResNet architecture. This
system can recognize selected types of driver distractions in
captured infrared images. We experimented with different
depths of the ResNet architecture to determine the most
optimal results. The best model achieved an accuracy rate
of 94% in detecting various forms of driver distraction.

Keywords—drowsy driving, distraction detection, CNN,
ResNet

I. INTRODUCTION

The topic of Highly Automated Driving (HAD) has
been widely discussed in recent times, with leading com-
panies such as Tesla and Waymo spearheading this tech-
nological revolution. However, there have been reports of
accidents resulting from driver distraction or failure to
intervene promptly if necessary. This research seeks to
address this issue through a feasibility study of deploying
a Convolutional Neural Network (CNN) model in a Driver
State Monitoring System (DSMS) to achieve accurate clas-
sification outcomes. To this end, a dataset of driver images
engaged in distraction tasks was collected, and a model
was chosen based on related work, the implementation of
which was then optimized. Our objective is to develop
a model that can accurately identify driver distraction in
real-world driving scenarios.

II. RELATED WORK

Gonçalves et al. [1] defined the important monitor-
ing characteristics of DSMS for HAD. They said this
introduces a new paradigm where driving performance
metrics are no longer viable, and approaches like detect-
ing engagement in nondriving tasks or fatigue-countering
behaviors are becoming more important. They defined
several distraction and fatigue indicators, based on eye
and body behavior. Among these yawning was the one
we focused on the most.

In 2021 Kashevnik et al. published a literature review
paper [2], in which they outlined the process of developing
a distraction detection system from sensor data acquisition
to data processing and so forth. They also reviewed multi-
ple papers that had neural network (NN) based solutions,
which were using either self-created datasets or the AUC
Distracted Driver Dataset [3], [4], the purpose of which is
detecting driver distraction using driver posture from a side
view. Most of the reviewed papers achieved an accuracy
of 92% and above, which we set as our target benchmark.
Mase et al. [5] also performed their tests on the AUC
Distracted Driver Dataset. They employed the InceptionV3
CNN architecture achieving accuracy in line with accura-
cies reported in papers reviewed by Kashevik et al.
Craye et al. [6] based their approach on using RGB-
D cameras to capture driver state and classifying into
one of five distinct classes including making a phone
call, drinking, etc. They used the AdaBoost classifier and
Hidden Markov Model achieving an accuracy of 90%
for distraction detection. This approach is most in line
with our own among the reviewed literature and thus
represents the secondary benchmark for our metrics. The
big difference from our proposed approach is the focus on
the position of the driver’s arms through a 3D point cloud
and gaze estimation through iris localization. In contrast,
we decided to focus primarily on the usage of convolution
filters.
Liu et al. [7] approached the detection of driver detection
problems, using their own developed system and dataset,
where they used Support Vector Machines (SVM) and
other methods of Semi-Supervised Machine Learning,
achieving results as high as 97% accuracy. While not
related to our work, as they used head and gaze positions
and rotations as measures for their classification, it is
important to acknowledge this different approach as it can
also produce valuable results.
Fernandez et al. [8] made a study on the success of
different approaches and techniques when approaching
the problem of driver distraction detection (including the
above mentioned [6], [7]), where they outlined some of the
important areas to consider when developing such a sys-
tem. Among these, they drew attention to the importance
of different factors that modulate distractions, including
but not limited to factors outside of the vehicle (traffic,

MIPRO 2023/SP 1963

road accidents) and the driver’s emotional state.

III. METHODOLOGY

A. Data Overview

(a) Neutral (b) Drowsy

(c) Phone (d) Cigarette

Fig. 1: Examples of images from each class in the train
set

For our research, we used a dataset provided by the
National Information Society Agency (NIA) of South
Korea. The Driver Status Information Images for Pre-
venting Drowsy Driving dataset [9] was developed for
use with AI technology and the development of service
applications that monitor the driver’s condition through
changes in facial expressions and feature points. The
dataset is composed of over 250, 000 images of frontal
views of 1, 000 subjects using an infrared camera with cor-
responding labels captured in three different settings, those
being real-world driving images, images from a semi-
controlled environment, and images from a controlled
environment. The labeling provided for the images consists
of bounding box locations and locations of facial key
points as well as driver identification (gender, age, etc.)
and object information. The object information includes
data about the presence or absence of various occlusions
(sunglasses, masks, etc.) and objects such as phones and
cigarettes, in addition to data about the subjects’ eyes and
mouth (visibility, etc.).

B. Model Selection

As our problem was at its core a multi-label problem,
we decided it would be a good choice to take it on using
a CNN-based approach [10]. Kashevnik et al. [2] reported
that most reviewed papers had achieved the best quality
results using a CNN with a ResNet [11] architecture.
According to the available data we decided on testing
various depths of this architecture.

IV. EXPERIMENTS

A. Image Selection and Preprocessing

Due to the size of the original dataset, the number
of images had to be limited due to time and hardware
limitations. This subset was selected from both real-world
driving images and images from a controlled environment.
The set of images from a semi-controlled environment
was omitted. From these two groups, a random sample of
26, 000 images was selected without replacement. Among
these, 6, 500 belong to each of the 4 classes that were de-
fined using the provided labeling. These 4 classes included
3 that classified a form of distraction and one neutral class.
The classification schema was as follows:

• Image was classified as "subject is distracted by a
phone" if there is a phone present in the image (e.g.
Fig. 1c).

• Image was classified as "subject is distracted by a
cigarette" if there is a cigarette present in the image
(e.g. Fig. 1d).

• If the mouth of the subject isn’t visible, the image was
classified as "subject is drowsy" if they had their eyes
closed (assuming eyes aren’t obscured), otherwise,
the image was classified as "subject is drowsy" if
they were yawning (mouth is opened) (e.g. Fig. 1b).

• If none of the above were applicable to an image it
was classified as "neutral" (e.g. Fig. 1a).

The images were then cropped based in such a way that
they included the face of the subject, and potentially
present phones or cigarettes. Lastly, these images were
morphed to the shape of 224× 224 which is the standard
input size of the ResNet architecture.

TABLE I: Values of Applied Perturbations

Feature Range
brightness [0.8, 1.2]
rotation [◦] [−5, 5]
width shift 0.1 of image width
height shift 0.1 of image height
shear [◦] [0, 0.1]
zoom [0.9, 1.1]

B. Model set up and Parametrization

All models were implemented using the open-source
Python library TensorFlow [12] and following their im-
plementation instructions. The exception to this were the
ResNet-18 and ResNet-34 implementations, where the
publicly available image-classifiers pip package was used.
All tested models used the same set of selected images
split into the train and test sets with the latter consisting of
20% of all images. The train set was then additionally split
into the validation set, again with a 20% ratio, resulting
in 16640 images in the train set, 4160 images in the
validation set, and 5200 images in the test set. The ratio
of images between classes was preserved. When loading
the images into the programs additional prepossessing
was applied in accordance with the documentation and

1964 MIPRO 2023/SP

https://github.com/qubvel/classification_models

perturbation to images in the test set. The ranges and
values of applied perturbations can be seen in Table I and
were selected based on what changes could be present
in a real-world setting. The horizontal flip attribute is
excluded from this table as it doesn’t have a value to list
(parametrization is boolean).

TABLE II: Batch Size and Parameter Count of Models

ResNet Batch Size Number of parameters
Trainable Nontrainable

18 60 11, 708, 359 7, 942
34 60 21, 816, 519 15, 366
50 40 25, 636, 868 53, 120
101 20 44, 655, 108 105, 344
152 20 60, 321, 796 151, 424

All of the tested models shared this configuration when
loading the images as well as the previously defined input
shape. In addition to this they initialized with weights
trained on ImageNet [13], to take advantage of transfer
learning, frozen on top of the model since we were
working with a closed set evaluation problem and a 2D
average pooling layer at the end of the model. To this
was attached a dense layer utilizing the rectified linear
activation function (ReLu) with an output size of 1024
nodes, and lastly a dense layer utilizing the softmax
function to give out the required predictions. All models
used the Adam optimizer [14] and a universal early
stopping system configured to reduce the learning rate by
a factor of 0.5 when necessary (i.e. after 20 epochs without
improvement), and stop the learning process when it
reaches 1e−10. Categorical cross-entropy and categorical
accuracy were also universally used as measures during
training. The information about the batch size used for
each model and the trainable/nontrainable parameter count
of the models can be seen in Table II.

V. RESULTS AND DISCUSSION

The first section below presents the numerical results
of the experiments, while the second section provides
commentary on those results. It is important to take into
context how the experiments were run. The models were
trained and tested on a personal computer equipped with
an AMD Ryzen 9 5950X 16-Core processor, 16 GiB×4
3200 MHz RAM, NVIDIA GeForce RTX 3070 graphics
card with 8 GiB of video memory, and a 1 TB Samsung
SSD 970 EVO NVMe drive. Used software included the
Tensorflow 2.11 library for GPU and CUDA 11.7, the
latest version of the image-classifiers package as well
as necessary accompanying packages. All the times were
averaged over multiple runs.

A. Results

Several statistical and empirical data points were col-
lected during training and testing. The first set of data,
seen in Table III, represents both the training and eval-
uation time of each model depth. The times listed are
the execution times of the model training code blocks.

The inconsistencies here are attributed to the varied batch
size for different models (set as high as allowed by the
hardware limitations for each model) and the configured
early stopping preventing further training of some models
at an earlier stage than others.

cigarette drowsy neutral phone
cig

ar
et

te
dr

ow
sy

ne
ut

ra
l

ph
on

e

0.99 0.00077 0 0.0046

0 0.93 0.057 0.014

0.0031 0.12 0.84 0.035

0.0015 0.0015 0.00077 1

Fig. 2: ResNet-34 confusion matrix.

cigarette drowsy neutral phone

cig
ar

et
te

dr
ow

sy
ne

ut
ra

l
ph

on
e

0.99 0.0031 0.0054 0

0.0023 0.94 0.052 0.0023

0.00077 0.18 0.82 0.0023

0.0023 0.0062 0.0038 0.99

Fig. 3: ResNet-50 confusion matrix.

The results of statistical measurements done for model
evaluation can be seen in the following figures. Fig. 2 and
Fig. 3 show computed confusion matrices, showing the
class-specific accuracy, of the two best-performing models
according to statistical measurements done during model
evaluation. Full results of this can be seen in Fig. 4. In
the Figure the y-axis is limited, to clarify the differences
between model implementations.

B. Discussion

When comparing the data it was important to consider
the nature of the application of such a model. As the model
is aimed toward HAD applications, it must be fast as well
as accurate. With this in mind, it is quite easy to determine

MIPRO 2023/SP 1965

TABLE III: Training and Evaluation time of various model depths

ResNet Training time [min] Evaluation time [s] Batch Size Epochs Training
18 60 7.1 60 26
34 120 7.2 60 51
50 77 8.7 40 34

101 163 16 20 55
152 109 22 20 28

ResNet18 ResNet34 ResNet50 ResNet101 ResNet152
9090

91

929292

93

949494

Pe
rc

en
ta

ge

Precision
Recall
F1
Accuracy

Fig. 4: Comparison of different model depths (y axis limited for clarity).

the optimal depth among the ones tested for the ResNet
architecture.
Firstly looking at Table II, we can see that the ResNet-18
and ResNet-34 implementations would take up the least
amount of resources based on their parameter count (size
of the model), with the ResNet-50 implementation not far
behind. The ResNet-101 and ResNet-152 implementations
could be deemed too big for a lightweight computer
installed in a car. When looking at Table III, we can
see that all of the models would perform well in a real-
world situation when regarding their evaluation speed of
a provided image. According to Zhuk et. al. [15] the
response time of a driver is between 0.773 and 2.43
seconds, meaning that even the slowest model (ResNet-
152 which takes 4ms to evaluate a single image) would
be sufficient to classify the current state of the driver in
negligible time. The training speed is in this case, not an
important factor as models would be installed in the HAD
system with already trained weights.
Next, we should look at the metric data seen in Fig. 4
(note that the y axis is limited for clarity). We can see that
again the lower-depth versions return better results when
it comes to classification. In particular, the ResNet-34
implementation outperforms the others across all metrics,
followed by the ResNet-50 implementation.
Lastly, to compare these two we look at the produced
confusion matrices seen in Fig. 2 and Fig. 3. Even tho
they are mostly similar, we can see that ResNet-34 has
slightly higher rates of classifying the images correctly, as
well as a slightly lower rate of miss-classifying the neutral
as the drowsy class.
This was the most common problem when it came to the
classification of every implemented depth of the ResNet

architecture. As the images in the phone and cigarette
classes had the items in question present in the image,
and the models were loaded with pre-trained weights on
the ImageNet dataset, the classification of these posed no
issues. On the other hand, the drowsy and neutral classes
had to be fine-tuned, and due to the nature of the dataset or
our process of sampling, the images from the two classes
might not have been distinct enough.
To better understand the classification described in Sec-
tion IV-A, an example of the provided labels can be seen
in Fig. 5. The labels presented locations and annotations
for selected facial features and objects, and thus some gen-
eralization had to be done when classifying images based
on those labels. While the "phone" and "cigarette" classes
were straightforward, the labels didn’t allow for much
variability when choosing the features for the "drowsy"
class. Thus we looked at the visibility and openness of the
mouth and eyes in order to classify images as "drowsy".
For this, we made assumptions that the subject was alone
in the vehicle, and thus not talking to anyone, as well
as that the potential miss-classification of a non-drowsy
state as drowsy in a real-world scenario is better than vice
versa. Because of these assumptions, no images, where the
mouth was labeled as opened, were classified as "neutral"
only "drowsy".

VI. CONCLUSION

The results of this research are promising. Based
on available information a fitting CNN model was
selected, and experiments were run to find the optimal
implementation of the selected model. In the end, this
proved to be the ResNet-34 implementation, proving
to not only produce the most accurate classification

1966 MIPRO 2023/SP

{
"FileInfo": {
...

},
"UserInfo": {
...

},
"Accessory": {
"Mask": false,
"Glasses": false,
"Cap": false

},
"Annotation": 1,
"ObjectInfo": {

"KeyPoints": {
...

},
"BoundingBox": {

"Face": {
"isVisible": true,
"Position": [...]

},
"Leye": {

"isVisible": true,
"Opened": true,
"Position": [...]

},
"Reye": {

"isVisible": true,
"Opened": true,
"Position": [...]

},
"Mouth": {

"isVisible": true,
"Opened": true,
"Position": [...]

},
"Cigar": {

"isVisible": false,
"Position": [...]

},
"Phone": {

"isVisible": false,
"Position": [...]

}
}
}

}

Fig. 5: Data Labeling Schema

while remaining lightweight enough for it to be feasibly
implemented in a HAD application. In addition to this we
also matched and surpassed the set benchmarks outlined
in Section II.
Possible improvements and future work could include
further tests on already mentioned implementations, in
an attempt to improve both the accuracy and portability
of the model. This could include expanding the number

of samples taken from the database, testing it on other
possible databases, introducing new classes, freezing
layers of the model, or in other ways altering the training
to lower the number of parameters. Furthermore, an
actual prototype setup involving both an infrared camera
and a computer to test the appropriateness of the model
in a real-world application could be made, together with
long-term tracking of both – motion and emotion.

REFERENCES

[1] J. Goncalves and K. Bengler, “Driver state monitoring systems–
transferable knowledge manual driving to had,” Procedia Manu-
facturing, vol. 3, pp. 3011–3016, 2015.

[2] A. Kashevnik, R. Shchedrin, C. Kaiser, and A. Stocker, “Driver
distraction detection methods: A literature review and framework,”
IEEE Access, vol. 9, pp. 60 063–60 076, 2021.

[3] Y. Abouelnaga, H. M. Eraqi, and M. N. Moustafa, “Real-time
distracted driver posture classification,” CoRR, vol. abs/1706.09498,
2017. [Online]. Available: http://arxiv.org/abs/1706.09498

[4] H. M. Eraqi, Y. Abouelnaga, M. H. Saad, and M. N. Moustafa,
“Driver distraction identification with an ensemble of convolutional
neural networks,” CoRR, vol. abs/1901.09097, 2019. [Online].
Available: http://arxiv.org/abs/1901.09097

[5] J. M. Mase, P. Chapman, G. P. Figueredo, and M. T. Torres, “A
hybrid deep learning approach for driver distraction detection,” in
2020 International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 2020, pp. 1–6.

[6] C. Craye and F. Karray, “Driver distraction detection and
recognition using RGB-D sensor,” CoRR, vol. abs/1502.00250,
2015. [Online]. Available: http://arxiv.org/abs/1502.00250

[7] T. Liu, Y. Yang, G.-B. Huang, Y. K. Yeo, and Z. Lin, “Driver dis-
traction detection using semi-supervised machine learning,” IEEE
transactions on intelligent transportation systems, vol. 17, no. 4,
pp. 1108–1120, 2015.

[8] A. Fernández, R. Usamentiaga, J. L. Carús, and R. Casado, “Driver
distraction using visual-based sensors and algorithms,” Sensors,
vol. 16, no. 11, p. 1805, 2016.

[9] N. I. S. Agency, “Driver condition information video to prevent
drowsy driving,” 2021, accessed on 9. 12. 2022. [Online].
Available: https://aihub.or.kr/aihubdata/data/view.do?currMenu=
115&topMenu=100&aihubDataSe=realm&dataSetSn=173

[10] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-
rnn: A unified framework for multi-label image classification,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online].
Available: http://arxiv.org/abs/1512.03385

[12] T. Developers, “Tensorflow,” 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.7604251

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE Conference on Computer Vision and Pattern Recognition,
2009, pp. 248–255.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[15] M. Zhuk, V. Kovalyshyn, Y. Royko, and K. Barvinska, “Research
on drivers’ reaction time in different conditions,” EasternEuropean
Journal of Enterprise Technologies, vol. 2, pp. 24–31, 04 2017.

MIPRO 2023/SP 1967

http://arxiv.org/abs/1706.09498
http://arxiv.org/abs/1901.09097
http://arxiv.org/abs/1502.00250
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=173
https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=173
http://arxiv.org/abs/1512.03385
https://doi.org/10.5281/zenodo.7604251
https://doi.org/10.5281/zenodo.7604251

