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Abstract – This paper experimentally examined the effects 

of changing the size of image patches and the number of 

transformer layers on the training time and accuracy of a 

vision transformer used for image classification. The 

transformer architecture was first introduced in 2017 as a 

new way of processing natural language and has since found 

applications in computer vision as well. In this experiment, 

we trained and tested fourteen versions of a vision 

transformer on the CIFAR-100 dataset using graphical 

processing units provided by Google Colaboratory. The 

results showed that increasing the number of transformer 

layers and decreasing the patch size both increased test 

accuracy and training time. However, learning curves 

generated by the models showed overfitting for very small 

patch sizes. Overall, changing patch size had a greater impact 

on accuracy than changing the number of transformer layers. 

The results also suggested that transformers are more 

resource-intensive to train than other models. We suppose 

that including a classification token could lead to shorter 

training times, but another experiment is needed to examine 

its influence on accuracy.  

Keywords – vision transformers; computer vision; nerual 

networks; 

I. INTRODUCTION 
Teaching machines to see and process the world around 

them similarly to a human is an increasingly popular task 
as technology is developing. Computer vision solutions are 
automating processes in manufacturing, surveillance, 
optical character recognition and robotics by reducing the 
amount of human error and decreasing operational costs 
[1], [2].  

Convolutional neural networks are currently the most 
commonly used architecture in computer vision solutions. 
Even though CNNs reach accuracies as high as 91.7% on 
certain data sets [3], on others accuracy is limited by the 
amount of data and processing power available [2]. Use 
cases such as vehicle detection, human pose estimation and 
medical imaging require higher accuracies than those 
currently achieved [2]. 

New machine learning paradigms which cope with this 
issue are emerging and being developed at an accelerated 
pace [4]. The most recent development has been the 
introduction of the vision transformer. The transformer 
architecture was first introduced in [5] as a new way of 
processing natural language and has since become the 
default in the field [6]. 

This paper explores the effect of changing the number 
of self-attention layers and size of image patches on the test 
accuracy and training time of vision transformer models. 
The relationship was explored experimentally by 
implementing a ViT on the platform Google Colaboratory 
[7]. Expected results of the experiment were that test 
accuracy would increase as image patch size decreased. 
The accuracy would ideally increase as the number of self-
attention layers increased. The training time was expected 
to increase as the number of layers increased and decrease 
as image patch size decreased. 

II. THEORETICAL BACKGROUND 

A. Neural Networks 

A neural network is a computing system which 
produces a set of outputs from a set of inputs by performing 
a complex series of computations. For classification 
purposes, its output is the likelihood that the input belongs 
to any of a number of pre-determined classes. [8] 

A neural network is made up of units called nodes, 
which are arranged in layers. A network consists of one 
input layer, multiple hidden layers and one output layer. In 
the simplest case, layers are ordered in a row, with each 
layer except for the input connected to the layer before it. 
Each node except for those in the input layer is connected 
to all the nodes in the previous layer, along with one 
additional node named the bias unit. The connection 
between every pair of nodes is assigned a value called the 
weight. This is illustrated in Fig. 1. [9] 

 

Figure 1.  Each node has a weighted connection to all nodes from the 
previous layer [9] 
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The input layer contains as many nodes as there are 
inputs. Each input node holds a floating-point value, called 
the activation, corresponding to the input it represents.  

The neural network performs calculations layer by 
layer. Each node in layer i takes the activation of a node 
from layer i-1 and multiplies it with the weight of the 
connection between them. These products, along with the 
weight of the connection with the bias unit, are summed to 
get some value S. This value is passed to an activation 
function and its output becomes the current node’s 
activation. After activations of nodes in layer i are all 
determined, the process is repeated for the following layer, 
stopping once the values in the output layer are computed 
[8]. 

The activations of the output nodes represent the output 
of the network. For classification purposes, each node in the 
output layer corresponds to one of the classes in the 
classification problem. The activation of a node in the 
output layer represents the neural network's certainty that 
the input belongs to the respective class. The class with the 
highest certainty is considered the network’s answer to the 
classification problem [8]. 

The weights in a neural network are initially unknown 
and therefore assigned randomly. They are adjusted 
through training: a process in which a network processes a 
series of inputs with known outputs [8]. 

The type of neural network described here is a type of 
feed-forward neural network (FFNN) known as a Multi-
layer Perceptron (MLP). It is also the basis on which all 
NNs work [10], [11], [9]. 

Convolutional neural networks have been the standard 
model for image classification and have shown significant 
success on standard computer vision benchmarks, even 
surpassing human-level performance on some [12]. 
However, there are still open problems which they face 
such as: difficulty to justify their successes theoretically, 
difficulty recognizing image manipulations designed to 
trick them, and difficulty giving multiple labels to images 
and describing the contents of an image [12]. 

The vision transformer (ViT), a neural network 
architecture inspired by the golden standard for natural 
language processing could prove successful in solving 
some of these issues. Apart from achieving higher 
accuracies on several public datasets than the best CNNs 
[13], the ViT also had a shorter training time. They have 
shown promise in various recognition tasks, generative 
modeling, multi-modal tasks, video processing, and 3D 
analysis [14]. 

B. Vision Transformers 

The transformer is a neural network architecture whose 
job is to learn the context created by a set of inputs [15]. 
These inputs, called tokens, are all parts of a larger whole, 
e.g., words in a sentence or patches of an image. The 
transformer is able to use the relationships between these 
tokens to assign a new meaning to each of them, one which 
conveys the context in which each token is situated [6]. A 
transformer is composed of a number of identical layers 
called encoder blocks. 

The initial input to the transformer is given to the first 
encoder in the stack. Each subsequent encoder receives as 
inputs the outputs of the encoder below it. The output of the 
final encoder is the output that is returned by the 
transformer [5].  An encoder block consists of 2 layers: a 
layer of self-attention, whose output becomes the input to 
the second layer – a feed-forward neural network. Self-
attention is a transformer’s primary mechanism of action.  

Information about each token is embedded in a vector, 
where each value in the vector describes a particular aspect 
of the token. In the case of the vision transformer, each 
token embedding is a representation of a patch of an image. 
There are a few steps to turning an image into a sequence 
of token embeddings. 

The input image comes in the form of a tensor: a H×W 
matrix, where each cell in the matrix contains C values, one 
for each of the primary colors, also called channels. 

The image is broken down into N patches of size P×P 
(𝑁 =

𝐻𝑊

𝑃2 ). The patches are then flattened into (𝐶𝑃2 )-
dimensional vectors and made into rows of the matrix 𝒙𝒑 

of dimensions 𝑁 × (𝐶𝑃2). Next, these N flattened patches 
are transformed via a linear projection E into N D-
dimensional vectors.  This linear projection is learned 
during the training process. The results of these 
transformations are called patch embeddings [13]. 

The final piece of information that is included in the 
token embedding for a particular patch is its position in the 
image. This is done by adding a D-dimensional position 
embedding to the patch embedding. The position needs 
only reflect the patch’s 1D position in the 𝒙𝒑 matrix.  The 
exact position embeddings are also one of the parameters 
that are learned through training [13]. 

The number of the transformer’s outputs is the same as 
its number of inputs. Each output represents the 
contextualized embedding corresponding to one of the 
input tokens. Every output embedding will therefore 
contain information about the entire image, but the focus of 
its “knowledge” is on the specific image patch it 
corresponds to. It is then somewhat, but not entirely, 
suitable to classify the image based on one specific token 
[6]. 

For this reason, a special classification token is passed 
as input along with the image patch tokens. This token 
initially contains no information about the image, but as it 
is passed through the encoder stack along with other tokens, 
it gets imbued with context that is not localised to any 
specific part of the image [6]. It is the value of the output 
corresponding to this token that is used to classify the image 
at the end. The initial value of the classification token’s 
embedding is a parameter learned through training [13]. 

The transformer’s input can be summarized with the 
formula: 

       𝒛𝟎 = [𝒙𝒄𝒍𝒂𝒔𝒔; 𝒙𝒑
𝟏𝑬; 𝒙𝒑

𝟐𝑬; … ; 𝒙𝒑
𝑵𝑬] + 𝑬𝒑𝒐𝒔         (1) 

 

where: each row represents a token embedding passed as 
input to the transformer, 𝒙𝒄𝒍𝒂𝒔𝒔  represents the initial 
embedding for the classification token,  𝒙𝒑

𝒊  represents the i-
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th row of the matrix 𝒙𝒑  of flattened image patches, 𝑬 ∈

ℝ(𝑃2𝐶)×𝐷  is the linear projection which transforms a 
flattened image patch into a D-dimensional patch 
embedding, 𝑬𝒑𝒐𝒔 ∈ ℝ(𝑁+1)×𝐷  is the matrix of positional 
embeddings, where row i represents the positional 
embedding of token i. 

Self-attention is the mechanism that allows the 
transformer to gain a further understanding of a token by 
examining the tokens which surround it. The token being 
contextualized in the current step is called the query token 
and the surrounding tokens are called key tokens. 

Given a query token and a sequence of key tokens, self-
attention computes a weighted average of values assigned 
to the key tokens. Each weight is computed during run-time 
and is dependent on the relationship between the query 
token and a corresponding key token. If the relationship is 
in some respect strong, the weight associated with that key 
will be greater, increasing the influence of the value 
attached to the key on the final output [6]. 

The process is implemented using 3 2D matrices: the 
key, query, and value matrices, all of which are learned 
during training. Each of the token embeddings received as 
input is multiplied by the key matrix and the query token 
embedding is multiplied by the query matrix. Every one of 
the transformed keys is then multiplied via cross-product 
with the transformed query to obtain an attention score, 
which serves as a measure of similarity between a key and 
the query. Then, each of the initial key token embeddings 
is multiplied by the values matrix and by its attention score. 
These final embeddings are added together to reach the 
final result [6]. 

Vision transformers use multi-headed self-attention. 
The sequence of operations described above is performed 
by every attention head, only with different parameters in 
the key, query, and value matrices. This way, one output 
embedding is calculated by each attention head. These 
embeddings are passed as input to a feed-forward neural 
network to combine them into a single embedding [6]. 

A vision transformer takes an image as input and 
segments it into N equal-sized patches. These patches are 
transformed via a linear projection into patch embeddings. 
The embeddings, along with one classification embedding, 
pass through a number of encoder blocks composed of 

 

Figure 2.  Overview of vision transformer architecture [13] 

multi-headed self-attention and feed-forward neural 
networks. The last encoder in the stack outputs N+1 
contextualized embeddings corresponding to the N+1 input 
tokens.  

The embedding corresponding to the classification 
token is given as input to a multi-layer perceptron whose 
number of outputs is the same as the number of classes in 
the classification problem [13]. The output activations will 
be the desired probability distribution for the input image 
over all classes in the dataset. A complete overview is given 
in Fig. 2. 

III. EXPERIMENTAL METHODOLOGY 
An experiment was conducted to obtain primary data 

which will be used to answer the research question. 14 
versions of a vision transformer were trained and tested on 
the platform Google Colaboratory [7]. All code was run on 
graphical processing units provided by Colab. The ViTs 
were programmed in Python 3.0 using TensorFlow’s 
Keras, adapting code by [16]. 

A. Variables 

Independent variables in models are:  
• Number of transformer layers – The values chosen 

for the experiment were 2, 4, 8, 16. The values are 
in geometric progression so that changes in the 
dependent variables are clearly noticeable.  

• Image patch size – The values chosen for the 
experiment were 2px, 4px, 8px, and 16px. Images 
in the data set are 32px × 32px. 
 

The two independent variables were manipulated 
within the code. The only exceptions to the range of values 
chosen were pairs (P, L)∈{(2,8), (2,16)} because the 
training of these models exceeded usage limits set by 
Colab.   

We examined the following dependent variables: 
• Training time – When training a TensorFlow 

model, an overview of the training process is 
output to the terminal. Among the values in this 
summary is the time taken to train the model. This 
is the value taken for this dependent variable. 

• Accuracy – Among the values in the overview of 
model training is the test accuracy achieved after 
training. This is the value taken for this dependent 
variable. Accuracy is the quotient of the number of 
images whose classes were correctly identified and 
the total number of images in the test set. Accuracy 
was chosen as an evaluation metric to be able to 
compare results to [3], [13]. 
 

B. Dataset 

The dataset used for the training and testing of the 
models is CIFAR-100 which contains 60 000 images of 
dimensions 32× 32 pixels [17]. Each image is assigned to a 
class which describes the contents of the image. There are 
100 classes with 600 images per class, examples of which 
can be seen in Figure 3 below.  
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Figure 3.  10 randomly selected images from 10 classes in CIFAR-100 

During each run, the dataset was split into 3 groups 
called the training, validation, and test sets.  For each run, 
the test set consisted of the same set of 10 000 randomly 
selected images such that there are 100 images in each of 
the 100 classes. The validation set always consisted of  
5 000 images and the test set of the remaining 45 000, 
though the exact images were randomly selected at the start 
of each run. 

C. Model Layers 

Each of the 14 models consisted of 3 parts: the input 
image processing layer, multi-headed self-attention, and the 
classification head. In the input processing layer, 322

𝑃2  image 
patches of dimensions P×P are created and linearly projected 
into 322

𝑃2   patch embeddings of dimension 32. The parameters 
of the linear projection are learned during training. This is 
implemented with Keras layer Conv2D [18].  

Next, come L encoder blocks are implemented 
according to [13]. The first layer in the block is Keras Layer 
Normalization [19], which normalizes the activations of the 
layer that came before it. Doing this helps reduce training 
time [20]. This becomes the input to Keras Multi-Head 
Attention layer with 4 attention heads [21]. The outputs of 
this layer are added to the inputs to the block and passed to 
another normalization layer. Then, an MLP with one 64-
node layer and one 32-node layer is attached. Finally, the 
outputs of the MLP are added to the outputs of the multi-
head attention layer and the inputs to the block.  

The classification head first normalizes the outputs of 
the final MHA block, then flattens the set of embedding 
vectors into a single vector. This is passed to a dense layer 
with 2048 nodes and then to another with 1024 nodes. A 
dense layer with 100 nodes corresponding to the 100 
classes in CIFAR-100 gives the final output. 

The models were trained in 200 epochs with batch size 
100. 

 

Figure 4.  Multi-Headed Attention Layer Block 

IV. RESULTS 

A. Model Training Time 

Training models with more transformer layers resulted 
in longer training times, as is shown in TABLE 1. 
Decreasing patch size, and therefore increasing the number 
of patches led to longer training times, with the exception 
of the transition from (P=16, L=4) to (P=8, L=4). These 
results have a common reason. Both increasing the number 
of patches and the number of self-attention layers resulted 
in a larger number of trainable parameters in the model 
(TABLE 2). 

After processing each batch of input images, the 
transformer adjusts a large proportion (determined by the 
dropout rate) of parameters. Each calculation resulting 
from inputting an image takes one operation per parameter, 
and each adjustment of a parameter requires a machine to 
do at least one operation. Considering the fact that the 
number of operations a machine has to do is directly 
proportional to the time taken to complete them all, it 
follows that increasing the number of parameters would 
necessarily lead to an increase in training time. However, 
the decrease in training time seen in the transition from (P 
= 16, L = 4) to (P = 8, L = 4) where the increase in the 
parameter number is still present suggests that the 
relationship between parameter number and training time is 
not so straightforward. 

TABLE 1. TRAINING TIME IN SECONDS [22] 

Size of 
patch 

Number of self-attention layers 

2 4 8 16 

16 802       1143 1171 3121 

8        803 1059 1930 3303 

4 1121 1814 3219 6011 

2 5931 10 895 × × 
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TABLE 2. NUMBER OF TRAINABLE PARAMETERS [22] 

Size 
of 

patch 

Number of self-attention layers 

2 4 8 16 

16 2 531 780 2 574 020 2 6585 00 2 827 460 

8 3 299 780 3 342 020 3 426 500 3 595 460 

4 6 440 900 6 483 140 6 567 620 6 736 580 

2 19 022 660 19 064 900 × × 

Decreasing patch size from P=8 to P=4 with L=16 leads 
to an increase in parameter number of 3 141 120  and a near 
doubling of training time. At the same time, increasing the 
number of layers from L=8 to L=16 with P=4 leads to an 
increase in parameter number of just 168 960 but a near 
doubling in training time. This suggests that some 
parameters either require more operations to be adjusted or 
more operations are needed to compute outputs in a specific 
layer. The increase in parameter number resulting from a 
decrease in patch size is almost entirely due to the third to 
last layer in a model: a dense layer converting all 
transformer outputs into outputs. Adding another 
transformer layer increases parameter number by 21 120, 
regardless of the initial shape of the input. This result 
complied with a study performed by [23]. 

Examining the structure of these two layers gives us a 
possible explanation as to why one is more computationally 
intense than the other. During self-attention, each of the N 
outputs need to consider all N outputs from the previous 
layer, all of which vectors, and perform a series of matrix 
multiplications to get a result. This means that calculating 
all N outputs result in an order of magnitude of N2 

operations, assuming that matrix multiplication takes an 
order of magnitude of 1 operations. Given that the models 
are working with 4 attention heads each and with L  layers, 
the final number of operations for this stack of layers is an 
order of magnitude of N2 × L. On the other hand, the third 
final dense layer in the model flattens these N vectors into 
a single vector of dimension 32 × N which becomes its 
input, and returns 2048 outputs. Each of these 2048 outputs 
require the processing of all inputs, which is done by a 
single matrix multiplication, resulting in a number of 
operations in an order of magnitude of N. This means that 
as N and L increase, the time taken for the transformer 
encoder to process the image grows at least a whole order 
of magnitude faster than the time it takes for the MLP to 
process it. 

This does not give an explanation for the decrease in 
training time from (P = 16, L = 4) to (P = 8, L = 4) The best 
answer which can be offered is either randomization steps 
during training, or the Google Colab platform assigning 
different types of GPUs to these two runs. 

B. Model accuracy 

Decreasing patch size always led to an increase in test 
accuracy, as is shown in TABLE 3. Increasing the number 
of self-attention layers generally led to an increase in 
accuracy, with the exception of the transition from (P = 16, 
L = 4) to (P = 16, L = 8). However, none of the accuracies 
obtained with these models comes close to accuracies 
achieved by convolutional neural networks of comparable 

size [3]. Searching for the reasons for this leads us to 
examine the learning curves produced by the models.  

 Learning curves [22] for models with the same patch 
size have nearly the same shapes, whereas learning curves 
for models with the same number of transformer layers 
differ greatly. This tells us that patch size could have a 
greater impact on accuracy than the number of layers. The 
test accuracy generally displays this pattern, despite great 
variation in the ranges of values obtained for one fixed 
variable, as shown in  

TABLE 4 and TABLE 5 below. We can see that range 
expressed as the percentage of the mean when the number 
of transformer layers is kept constant is nearly always 
greater than the same value when patch size is kept 
constant. This suggests that changing patch size has a 
greater percentage impact on accuracy than changing the 
number of transformer layers does.  

Observing the learning curves for P=2, P=4, and P=8,   
we determine they are consistent with signs of overfitting.  
For example, on the accuracy graph for P=4 ∧ L=8 we see 
that training accuracy decreases logarithmically as epochs 
go on, reaching a final accuracy of around 80%. The 
validation accuracy increases significantly within the first 
25 epochs, then slows down its increase until it plateaus 
after the 100th epoch at around 40% accuracy. Overfitting 
can be solved by having a dataset with more training 
images, which could suggest why the ViT trained by [13] 
achieved such high accuracies: their models were pre-
trained on datasets with 15 and 300 million images. 

We can see that with increasing patch size the training 
and validation accuracy curves began to converge, as did 
the training and validation loss curves. This is consistent 
with signs of underfitting. Even though the training and 
validation accuracy curves for P=16 converge, they are 
both worryingly low at around 28% during the entire run. 
Increasing patch size while keeping the projection 
dimension constant led to the network trying to encode 
more data into the same projection vector, losing useful 
information in the process. 

TABLE 3.TEST ACCURACY (%) [22] 

Size of 
patch 

Number of self-attention layers 

2 4 8 16 

16 28.77 29.31 28.8 29.48 

8 32.76 35.12 36.17 36.94 

4 35.20 39.43 41.81 44.19 

2 35.82 38.88 × × 
 

TABLE 4. RANGE OF ACCURACIES FOR CONSTANT PATCH 
SIZE [22] 

Size of patch 
Range of 

accuracies 
Mean accuracy 

Range as % 
of the mean 

16 0.71 29.09 2.44 

8 4.18 35.25 11.86 

4 8.99 40.16 22.39 
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TABLE 5. RANGE OF ACCURACIES FOR CONSTANT NUMBER 
OF TRANSFORMER LAYERS [22] 

Number of 
layers 

Range of 
accuracies 

Mean 
accuracy 

Range as % 
of the mean 

2 7.05 33.14 21.27 

4 10.11 35.69 28.33 

V. CONCLUSION 
This paper experimentally investigated the effects of 

changing the size of image patches and number of 
transformer layers on the training time and test accuracy of 
a vision transformer.  

The results confirmed that training time increases with 
decreasing patch size and increasing number of transformer 
layers. Both of these changes correspond to an increase in 
the number of trainable parameters in the model, which 
leads to increasing the number of operations a machine has 
to perform, ultimately resulting in more training time. The 
results also showed that adding transformer layers has a 
greater impact on increasing training time than decreasing 
patch size. In particular, the change in training time per 
change in parameter number was generally significantly 
greater for parameters added by transformer layers. This 
suggests that transformers are inherently more resource 
intensive to train, confirming results by [23]. 

The experiment results have shown that models 
increasingly exhibited signs of underfitting as patch size 
increased, as well as that they overfit for small patch sizes. 
Increasing the number of transformer layers was shown to 
always increase the test accuracy of the models. However, 
this trend does not promise to continue indefinitely, since it 
could lead to overfitting and a corresponding fall in 
accuracy. Changing patch size has a greater impact on 
accuracy than changing the number of transformer layers.  

There are a number of limitations to the chosen 
methodology. Firstly, GPU type was not controlled for. 
Google Colab is likely to have assigned different GPUs to 
different model runs, which could have influenced training 
time data, and perhaps led to the inconsistency previously 
observed. Secondly, because of usage limitations for free 
accounts on Google Colab, we were unable to run 
experiments for two additional values of 𝑃 and 𝐿, resulting 
in a limited overview of the effects of the independent 
variables on training time and accuracy.  

Though it is likely that including a classification token 
could lead to shorter training times, it is a question what its 
influence would be on the accuracy. Another experiment 
could be conducted to determine the exact relationship. 
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