
Optimizing Vision Transformer Performance
with Customizable Parameters

E. Ibrahimovic
The Second Gymnasium, Sarajevo, Bosnia and Hercegovina

emira1.ibrahimovic@gmail.com

Abstract – This paper experimentally examined the effects

of changing the size of image patches and the number of

transformer layers on the training time and accuracy of a

vision transformer used for image classification. The

transformer architecture was first introduced in 2017 as a

new way of processing natural language and has since found

applications in computer vision as well. In this experiment,

we trained and tested fourteen versions of a vision

transformer on the CIFAR-100 dataset using graphical

processing units provided by Google Colaboratory. The

results showed that increasing the number of transformer

layers and decreasing the patch size both increased test

accuracy and training time. However, learning curves

generated by the models showed overfitting for very small

patch sizes. Overall, changing patch size had a greater impact

on accuracy than changing the number of transformer layers.

The results also suggested that transformers are more

resource-intensive to train than other models. We suppose

that including a classification token could lead to shorter

training times, but another experiment is needed to examine

its influence on accuracy.

Keywords – vision transformers; computer vision; nerual

networks;

I. INTRODUCTION
Teaching machines to see and process the world around

them similarly to a human is an increasingly popular task
as technology is developing. Computer vision solutions are
automating processes in manufacturing, surveillance,
optical character recognition and robotics by reducing the
amount of human error and decreasing operational costs
[1], [2].

Convolutional neural networks are currently the most
commonly used architecture in computer vision solutions.
Even though CNNs reach accuracies as high as 91.7% on
certain data sets [3], on others accuracy is limited by the
amount of data and processing power available [2]. Use
cases such as vehicle detection, human pose estimation and
medical imaging require higher accuracies than those
currently achieved [2].

New machine learning paradigms which cope with this
issue are emerging and being developed at an accelerated
pace [4]. The most recent development has been the
introduction of the vision transformer. The transformer
architecture was first introduced in [5] as a new way of
processing natural language and has since become the
default in the field [6].

This paper explores the effect of changing the number
of self-attention layers and size of image patches on the test
accuracy and training time of vision transformer models.
The relationship was explored experimentally by
implementing a ViT on the platform Google Colaboratory
[7]. Expected results of the experiment were that test
accuracy would increase as image patch size decreased.
The accuracy would ideally increase as the number of self-
attention layers increased. The training time was expected
to increase as the number of layers increased and decrease
as image patch size decreased.

II. THEORETICAL BACKGROUND

A. Neural Networks

A neural network is a computing system which
produces a set of outputs from a set of inputs by performing
a complex series of computations. For classification
purposes, its output is the likelihood that the input belongs
to any of a number of pre-determined classes. [8]

A neural network is made up of units called nodes,
which are arranged in layers. A network consists of one
input layer, multiple hidden layers and one output layer. In
the simplest case, layers are ordered in a row, with each
layer except for the input connected to the layer before it.
Each node except for those in the input layer is connected
to all the nodes in the previous layer, along with one
additional node named the bias unit. The connection
between every pair of nodes is assigned a value called the
weight. This is illustrated in Fig. 1. [9]

Figure 1. Each node has a weighted connection to all nodes from the
previous layer [9]

MIPRO 2023/SP 1951

The input layer contains as many nodes as there are
inputs. Each input node holds a floating-point value, called
the activation, corresponding to the input it represents.

The neural network performs calculations layer by
layer. Each node in layer i takes the activation of a node
from layer i-1 and multiplies it with the weight of the
connection between them. These products, along with the
weight of the connection with the bias unit, are summed to
get some value S. This value is passed to an activation
function and its output becomes the current node’s
activation. After activations of nodes in layer i are all
determined, the process is repeated for the following layer,
stopping once the values in the output layer are computed
[8].

The activations of the output nodes represent the output
of the network. For classification purposes, each node in the
output layer corresponds to one of the classes in the
classification problem. The activation of a node in the
output layer represents the neural network's certainty that
the input belongs to the respective class. The class with the
highest certainty is considered the network’s answer to the
classification problem [8].

The weights in a neural network are initially unknown
and therefore assigned randomly. They are adjusted
through training: a process in which a network processes a
series of inputs with known outputs [8].

The type of neural network described here is a type of
feed-forward neural network (FFNN) known as a Multi-
layer Perceptron (MLP). It is also the basis on which all
NNs work [10], [11], [9].

Convolutional neural networks have been the standard
model for image classification and have shown significant
success on standard computer vision benchmarks, even
surpassing human-level performance on some [12].
However, there are still open problems which they face
such as: difficulty to justify their successes theoretically,
difficulty recognizing image manipulations designed to
trick them, and difficulty giving multiple labels to images
and describing the contents of an image [12].

The vision transformer (ViT), a neural network
architecture inspired by the golden standard for natural
language processing could prove successful in solving
some of these issues. Apart from achieving higher
accuracies on several public datasets than the best CNNs
[13], the ViT also had a shorter training time. They have
shown promise in various recognition tasks, generative
modeling, multi-modal tasks, video processing, and 3D
analysis [14].

B. Vision Transformers

The transformer is a neural network architecture whose
job is to learn the context created by a set of inputs [15].
These inputs, called tokens, are all parts of a larger whole,
e.g., words in a sentence or patches of an image. The
transformer is able to use the relationships between these
tokens to assign a new meaning to each of them, one which
conveys the context in which each token is situated [6]. A
transformer is composed of a number of identical layers
called encoder blocks.

The initial input to the transformer is given to the first
encoder in the stack. Each subsequent encoder receives as
inputs the outputs of the encoder below it. The output of the
final encoder is the output that is returned by the
transformer [5]. An encoder block consists of 2 layers: a
layer of self-attention, whose output becomes the input to
the second layer – a feed-forward neural network. Self-
attention is a transformer’s primary mechanism of action.

Information about each token is embedded in a vector,
where each value in the vector describes a particular aspect
of the token. In the case of the vision transformer, each
token embedding is a representation of a patch of an image.
There are a few steps to turning an image into a sequence
of token embeddings.

The input image comes in the form of a tensor: a H×W
matrix, where each cell in the matrix contains C values, one
for each of the primary colors, also called channels.

The image is broken down into N patches of size P×P
(𝑁 =

𝐻𝑊

𝑃2). The patches are then flattened into (𝐶𝑃2)-
dimensional vectors and made into rows of the matrix 𝒙𝒑

of dimensions 𝑁 × (𝐶𝑃2). Next, these N flattened patches
are transformed via a linear projection E into N D-
dimensional vectors. This linear projection is learned
during the training process. The results of these
transformations are called patch embeddings [13].

The final piece of information that is included in the
token embedding for a particular patch is its position in the
image. This is done by adding a D-dimensional position
embedding to the patch embedding. The position needs
only reflect the patch’s 1D position in the 𝒙𝒑 matrix. The
exact position embeddings are also one of the parameters
that are learned through training [13].

The number of the transformer’s outputs is the same as
its number of inputs. Each output represents the
contextualized embedding corresponding to one of the
input tokens. Every output embedding will therefore
contain information about the entire image, but the focus of
its “knowledge” is on the specific image patch it
corresponds to. It is then somewhat, but not entirely,
suitable to classify the image based on one specific token
[6].

For this reason, a special classification token is passed
as input along with the image patch tokens. This token
initially contains no information about the image, but as it
is passed through the encoder stack along with other tokens,
it gets imbued with context that is not localised to any
specific part of the image [6]. It is the value of the output
corresponding to this token that is used to classify the image
at the end. The initial value of the classification token’s
embedding is a parameter learned through training [13].

The transformer’s input can be summarized with the
formula:

 𝒛𝟎 = [𝒙𝒄𝒍𝒂𝒔𝒔; 𝒙𝒑
𝟏𝑬; 𝒙𝒑

𝟐𝑬; … ; 𝒙𝒑
𝑵𝑬] + 𝑬𝒑𝒐𝒔 (1)

where: each row represents a token embedding passed as
input to the transformer, 𝒙𝒄𝒍𝒂𝒔𝒔 represents the initial
embedding for the classification token, 𝒙𝒑

𝒊 represents the i-

1952 MIPRO 2023/SP

th row of the matrix 𝒙𝒑 of flattened image patches, 𝑬 ∈

ℝ(𝑃2𝐶)×𝐷 is the linear projection which transforms a
flattened image patch into a D-dimensional patch
embedding, 𝑬𝒑𝒐𝒔 ∈ ℝ(𝑁+1)×𝐷 is the matrix of positional
embeddings, where row i represents the positional
embedding of token i.

Self-attention is the mechanism that allows the
transformer to gain a further understanding of a token by
examining the tokens which surround it. The token being
contextualized in the current step is called the query token
and the surrounding tokens are called key tokens.

Given a query token and a sequence of key tokens, self-
attention computes a weighted average of values assigned
to the key tokens. Each weight is computed during run-time
and is dependent on the relationship between the query
token and a corresponding key token. If the relationship is
in some respect strong, the weight associated with that key
will be greater, increasing the influence of the value
attached to the key on the final output [6].

The process is implemented using 3 2D matrices: the
key, query, and value matrices, all of which are learned
during training. Each of the token embeddings received as
input is multiplied by the key matrix and the query token
embedding is multiplied by the query matrix. Every one of
the transformed keys is then multiplied via cross-product
with the transformed query to obtain an attention score,
which serves as a measure of similarity between a key and
the query. Then, each of the initial key token embeddings
is multiplied by the values matrix and by its attention score.
These final embeddings are added together to reach the
final result [6].

Vision transformers use multi-headed self-attention.
The sequence of operations described above is performed
by every attention head, only with different parameters in
the key, query, and value matrices. This way, one output
embedding is calculated by each attention head. These
embeddings are passed as input to a feed-forward neural
network to combine them into a single embedding [6].

A vision transformer takes an image as input and
segments it into N equal-sized patches. These patches are
transformed via a linear projection into patch embeddings.
The embeddings, along with one classification embedding,
pass through a number of encoder blocks composed of

Figure 2. Overview of vision transformer architecture [13]

multi-headed self-attention and feed-forward neural
networks. The last encoder in the stack outputs N+1
contextualized embeddings corresponding to the N+1 input
tokens.

The embedding corresponding to the classification
token is given as input to a multi-layer perceptron whose
number of outputs is the same as the number of classes in
the classification problem [13]. The output activations will
be the desired probability distribution for the input image
over all classes in the dataset. A complete overview is given
in Fig. 2.

III. EXPERIMENTAL METHODOLOGY
An experiment was conducted to obtain primary data

which will be used to answer the research question. 14
versions of a vision transformer were trained and tested on
the platform Google Colaboratory [7]. All code was run on
graphical processing units provided by Colab. The ViTs
were programmed in Python 3.0 using TensorFlow’s
Keras, adapting code by [16].

A. Variables

Independent variables in models are:
• Number of transformer layers – The values chosen

for the experiment were 2, 4, 8, 16. The values are
in geometric progression so that changes in the
dependent variables are clearly noticeable.

• Image patch size – The values chosen for the
experiment were 2px, 4px, 8px, and 16px. Images
in the data set are 32px × 32px.

The two independent variables were manipulated
within the code. The only exceptions to the range of values
chosen were pairs (P, L)∈{(2,8), (2,16)} because the
training of these models exceeded usage limits set by
Colab.

We examined the following dependent variables:
• Training time – When training a TensorFlow

model, an overview of the training process is
output to the terminal. Among the values in this
summary is the time taken to train the model. This
is the value taken for this dependent variable.

• Accuracy – Among the values in the overview of
model training is the test accuracy achieved after
training. This is the value taken for this dependent
variable. Accuracy is the quotient of the number of
images whose classes were correctly identified and
the total number of images in the test set. Accuracy
was chosen as an evaluation metric to be able to
compare results to [3], [13].

B. Dataset

The dataset used for the training and testing of the
models is CIFAR-100 which contains 60 000 images of
dimensions 32× 32 pixels [17]. Each image is assigned to a
class which describes the contents of the image. There are
100 classes with 600 images per class, examples of which
can be seen in Figure 3 below.

MIPRO 2023/SP 1953

Figure 3. 10 randomly selected images from 10 classes in CIFAR-100

During each run, the dataset was split into 3 groups
called the training, validation, and test sets. For each run,
the test set consisted of the same set of 10 000 randomly
selected images such that there are 100 images in each of
the 100 classes. The validation set always consisted of
5 000 images and the test set of the remaining 45 000,
though the exact images were randomly selected at the start
of each run.

C. Model Layers

Each of the 14 models consisted of 3 parts: the input
image processing layer, multi-headed self-attention, and the
classification head. In the input processing layer, 322

𝑃2 image
patches of dimensions P×P are created and linearly projected
into 322

𝑃2 patch embeddings of dimension 32. The parameters
of the linear projection are learned during training. This is
implemented with Keras layer Conv2D [18].

Next, come L encoder blocks are implemented
according to [13]. The first layer in the block is Keras Layer
Normalization [19], which normalizes the activations of the
layer that came before it. Doing this helps reduce training
time [20]. This becomes the input to Keras Multi-Head
Attention layer with 4 attention heads [21]. The outputs of
this layer are added to the inputs to the block and passed to
another normalization layer. Then, an MLP with one 64-
node layer and one 32-node layer is attached. Finally, the
outputs of the MLP are added to the outputs of the multi-
head attention layer and the inputs to the block.

The classification head first normalizes the outputs of
the final MHA block, then flattens the set of embedding
vectors into a single vector. This is passed to a dense layer
with 2048 nodes and then to another with 1024 nodes. A
dense layer with 100 nodes corresponding to the 100
classes in CIFAR-100 gives the final output.

The models were trained in 200 epochs with batch size
100.

Figure 4. Multi-Headed Attention Layer Block

IV. RESULTS

A. Model Training Time

Training models with more transformer layers resulted
in longer training times, as is shown in TABLE 1.
Decreasing patch size, and therefore increasing the number
of patches led to longer training times, with the exception
of the transition from (P=16, L=4) to (P=8, L=4). These
results have a common reason. Both increasing the number
of patches and the number of self-attention layers resulted
in a larger number of trainable parameters in the model
(TABLE 2).

After processing each batch of input images, the
transformer adjusts a large proportion (determined by the
dropout rate) of parameters. Each calculation resulting
from inputting an image takes one operation per parameter,
and each adjustment of a parameter requires a machine to
do at least one operation. Considering the fact that the
number of operations a machine has to do is directly
proportional to the time taken to complete them all, it
follows that increasing the number of parameters would
necessarily lead to an increase in training time. However,
the decrease in training time seen in the transition from (P
= 16, L = 4) to (P = 8, L = 4) where the increase in the
parameter number is still present suggests that the
relationship between parameter number and training time is
not so straightforward.

TABLE 1. TRAINING TIME IN SECONDS [22]

Size of
patch

Number of self-attention layers

2 4 8 16

16 802 1143 1171 3121

8 803 1059 1930 3303

4 1121 1814 3219 6011

2 5931 10 895 × ×

1954 MIPRO 2023/SP

TABLE 2. NUMBER OF TRAINABLE PARAMETERS [22]

Size
of

patch

Number of self-attention layers

2 4 8 16

16 2 531 780 2 574 020 2 6585 00 2 827 460

8 3 299 780 3 342 020 3 426 500 3 595 460

4 6 440 900 6 483 140 6 567 620 6 736 580

2 19 022 660 19 064 900 × ×

Decreasing patch size from P=8 to P=4 with L=16 leads
to an increase in parameter number of 3 141 120 and a near
doubling of training time. At the same time, increasing the
number of layers from L=8 to L=16 with P=4 leads to an
increase in parameter number of just 168 960 but a near
doubling in training time. This suggests that some
parameters either require more operations to be adjusted or
more operations are needed to compute outputs in a specific
layer. The increase in parameter number resulting from a
decrease in patch size is almost entirely due to the third to
last layer in a model: a dense layer converting all
transformer outputs into outputs. Adding another
transformer layer increases parameter number by 21 120,
regardless of the initial shape of the input. This result
complied with a study performed by [23].

Examining the structure of these two layers gives us a
possible explanation as to why one is more computationally
intense than the other. During self-attention, each of the N
outputs need to consider all N outputs from the previous
layer, all of which vectors, and perform a series of matrix
multiplications to get a result. This means that calculating
all N outputs result in an order of magnitude of N2

operations, assuming that matrix multiplication takes an
order of magnitude of 1 operations. Given that the models
are working with 4 attention heads each and with L layers,
the final number of operations for this stack of layers is an
order of magnitude of N2 × L. On the other hand, the third
final dense layer in the model flattens these N vectors into
a single vector of dimension 32 × N which becomes its
input, and returns 2048 outputs. Each of these 2048 outputs
require the processing of all inputs, which is done by a
single matrix multiplication, resulting in a number of
operations in an order of magnitude of N. This means that
as N and L increase, the time taken for the transformer
encoder to process the image grows at least a whole order
of magnitude faster than the time it takes for the MLP to
process it.

This does not give an explanation for the decrease in
training time from (P = 16, L = 4) to (P = 8, L = 4) The best
answer which can be offered is either randomization steps
during training, or the Google Colab platform assigning
different types of GPUs to these two runs.

B. Model accuracy

Decreasing patch size always led to an increase in test
accuracy, as is shown in TABLE 3. Increasing the number
of self-attention layers generally led to an increase in
accuracy, with the exception of the transition from (P = 16,
L = 4) to (P = 16, L = 8). However, none of the accuracies
obtained with these models comes close to accuracies
achieved by convolutional neural networks of comparable

size [3]. Searching for the reasons for this leads us to
examine the learning curves produced by the models.

 Learning curves [22] for models with the same patch
size have nearly the same shapes, whereas learning curves
for models with the same number of transformer layers
differ greatly. This tells us that patch size could have a
greater impact on accuracy than the number of layers. The
test accuracy generally displays this pattern, despite great
variation in the ranges of values obtained for one fixed
variable, as shown in

TABLE 4 and TABLE 5 below. We can see that range
expressed as the percentage of the mean when the number
of transformer layers is kept constant is nearly always
greater than the same value when patch size is kept
constant. This suggests that changing patch size has a
greater percentage impact on accuracy than changing the
number of transformer layers does.

Observing the learning curves for P=2, P=4, and P=8,
we determine they are consistent with signs of overfitting.
For example, on the accuracy graph for P=4 ∧ L=8 we see
that training accuracy decreases logarithmically as epochs
go on, reaching a final accuracy of around 80%. The
validation accuracy increases significantly within the first
25 epochs, then slows down its increase until it plateaus
after the 100th epoch at around 40% accuracy. Overfitting
can be solved by having a dataset with more training
images, which could suggest why the ViT trained by [13]
achieved such high accuracies: their models were pre-
trained on datasets with 15 and 300 million images.

We can see that with increasing patch size the training
and validation accuracy curves began to converge, as did
the training and validation loss curves. This is consistent
with signs of underfitting. Even though the training and
validation accuracy curves for P=16 converge, they are
both worryingly low at around 28% during the entire run.
Increasing patch size while keeping the projection
dimension constant led to the network trying to encode
more data into the same projection vector, losing useful
information in the process.

TABLE 3.TEST ACCURACY (%) [22]

Size of
patch

Number of self-attention layers

2 4 8 16

16 28.77 29.31 28.8 29.48

8 32.76 35.12 36.17 36.94

4 35.20 39.43 41.81 44.19

2 35.82 38.88 × ×

TABLE 4. RANGE OF ACCURACIES FOR CONSTANT PATCH
SIZE [22]

Size of patch
Range of

accuracies
Mean accuracy

Range as %
of the mean

16 0.71 29.09 2.44

8 4.18 35.25 11.86

4 8.99 40.16 22.39

MIPRO 2023/SP 1955

TABLE 5. RANGE OF ACCURACIES FOR CONSTANT NUMBER
OF TRANSFORMER LAYERS [22]

Number of
layers

Range of
accuracies

Mean
accuracy

Range as %
of the mean

2 7.05 33.14 21.27

4 10.11 35.69 28.33

V. CONCLUSION
This paper experimentally investigated the effects of

changing the size of image patches and number of
transformer layers on the training time and test accuracy of
a vision transformer.

The results confirmed that training time increases with
decreasing patch size and increasing number of transformer
layers. Both of these changes correspond to an increase in
the number of trainable parameters in the model, which
leads to increasing the number of operations a machine has
to perform, ultimately resulting in more training time. The
results also showed that adding transformer layers has a
greater impact on increasing training time than decreasing
patch size. In particular, the change in training time per
change in parameter number was generally significantly
greater for parameters added by transformer layers. This
suggests that transformers are inherently more resource
intensive to train, confirming results by [23].

The experiment results have shown that models
increasingly exhibited signs of underfitting as patch size
increased, as well as that they overfit for small patch sizes.
Increasing the number of transformer layers was shown to
always increase the test accuracy of the models. However,
this trend does not promise to continue indefinitely, since it
could lead to overfitting and a corresponding fall in
accuracy. Changing patch size has a greater impact on
accuracy than changing the number of transformer layers.

There are a number of limitations to the chosen
methodology. Firstly, GPU type was not controlled for.
Google Colab is likely to have assigned different GPUs to
different model runs, which could have influenced training
time data, and perhaps led to the inconsistency previously
observed. Secondly, because of usage limitations for free
accounts on Google Colab, we were unable to run
experiments for two additional values of 𝑃 and 𝐿, resulting
in a limited overview of the effects of the independent
variables on training time and accuracy.

Though it is likely that including a classification token
could lead to shorter training times, it is a question what its
influence would be on the accuracy. Another experiment
could be conducted to determine the exact relationship.

REFERENCES

[1] “Computer Vision Use Cases in Manufacturing | Altamira

Softworks.” https://www.altamira.ai/blog/computer-vision-in-
manufacturing/ (accessed Nov. 06, 2022).

[2] A. A. Khan, A. A. Laghari, and S. A. Awan, “Machine Learning in
Computer Vision: A Review,” EAI Endorsed Transactions on

Scalable Information Systems, vol. 8, no. 32, pp. e4–e4, Apr. 2021,
doi: 10.4108/EAI.21-4-2021.169418.

[3] “CIFAR-100 Benchmark (Image Classification) | Papers With
Code.” https://paperswithcode.com/sota/image-classification-on-
cifar-100 (accessed Nov. 06, 2022).

[4] R. Pugliese, S. Regondi, and R. Marini, “Machine learning-based
approach: global trends, research directions, and regulatory
standpoints,” Data Science and Management, vol. 4, pp. 19–29,
Dec. 2021, doi: 10.1016/J.DSM.2021.12.002.

[5] A. Vaswani et al., “Attention Is All You Need.” 2017. doi:
10.48550/arXiv.1706.03762.

[6] I. Turc, “Transfer learning and Trasformer models (ML Tech
Talks),” YouTube, Jun. 22, 2021.
https://www.youtube.com/watch?v=LE3NfEULV6k

[7] “Google Colaboratory,” Google.
https://colab.research.google.com/

[8] “Machine Learning - Linear Regression with Multiple Variables |
Coursera.” https://www.coursera.org/learn/machine-learning-
course/home/week/4 (accessed Nov. 26, 2022).

[9] “What are Neural Networks? | IBM.”
https://www.ibm.com/cloud/learn/neural-networks (accessed Nov.
26, 2022).

[10] [“Feed Forward Neural Network Definition | DeepAI.”
https://deepai.org/machine-learning-glossary-and-terms/feed-
forward-neural-network (accessed Nov. 27, 2022).

[11] “Multilayer Perceptron Definition | DeepAI.”
https://deepai.org/machine-learning-glossary-and-
terms/multilayer-perceptron (accessed Nov. 26, 2022).

[12] W. Rawat and Z. Wang, “Deep convolutional neural networks for
image classification: A comprehensive review,” Neural Comput,
vol. 29, no. 9, pp. 2352–2449, Sep. 2017, doi:
10.1162/NECO_A_00990.

[13] A. Dosovitskiy et al., “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale.” 2021. doi:
10.48550/ARXIV.2010.11929.

[14] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M.
Shah, “Transformers in Vision: A Survey,” ACM Computing
Surveys (CSUR), vol. 54, no. 10s, pp. 1–41, Sep. 2022, doi:
10.1145/3505244.

[15] Y. Kilcher, “An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale (Paper Explained),” YouTube, Oct. 04,
2020. https://www.youtube.com/watch?v=TrdevFK_am4

[16] K. Salama, “Image Classification with Vision Transformer,”
Keras.io, Jan. 18, 2021.
https://keras.io/examples/vision/image_classification_with_vision
_transformer/

[17] A. Krizhevsky, G. Hinton, and et al., “Learning Multiple Layers of
Features from Tiny Images,” Toronto, ON, Canada, 2009.

[18] “Conv2D layer.”
https://keras.io/api/layers/convolution_layers/convolution2d/
(accessed Nov. 25, 2022).

[19] “LayerNormalization layer.”
https://keras.io/api/layers/normalization_layers/layer_normalizatio
n/ (accessed Nov. 25, 2022).

[20] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” Jul.
2016, doi: 10.48550/arxiv.1607.06450.

[21] “MultiHeadAttention layer.”
https://keras.io/api/layers/attention_layers/multi_head_attention/
(accessed Nov. 25, 2022).

[22] E. Ibrahimović, “Investigating the Effects of Customizable
Parameters of Vision Transformers on Their Performance,”
Extended Essay, International Baccalaureate Organization, 2022.

[23] L. Liu, X. Liu, J. Gao, W. Chen, and J. Han, “Understanding the
Difficulty of Training Transformers,” EMNLP 2020 - 2020
Conference on Empirical Methods in Natural Language Processing,
Proceedings of the Conference, pp. 5747–5763, Apr. 2020, doi:
10.48550/arxiv.2004.08249.

1956 MIPRO 2023/SP

