
LiDAR-Based SLAM in a 2D Simulated
Environment

Jurica Maltar∗, Domagoj Ševerdija∗
∗ J. J. Strossmayer University of Osijek, School of Applied Mathematics and Informatics, Osijek, Croatia

{jmaltar, dseverdi}@mathos.hr

Abstract—One of the best-known problems in robotics is
simultaneous localization and mapping, where the robot tries
to build the map of a place it navigates while simultaneously
determining its configuration in that space. Different sensor
modalities, e.g., LiDAR sensor(s), visual sensor(s), or their
combination, can tackle this problem. Configurations of the
robot over time are estimated using standard estimation
techniques such as the extended Kalman filter or factor
graphs. Unfortunately, one of the main issues during the
robot’s movement is the drift, which occurs due to imperfect
sensors and actuators. This can be diminished by deploying
a loop closing algorithm that detects whether an already
visited place has been observed. That being said, a SLAM
implementation itself has a steep learning curve. Therefore,
this paper provides an extensive overview of all the steps
needed to implement such a system. Also, we provide the
quantitative evaluation of our approach, where we deploy
our state-of-the-art loop closing algorithm that diminishes
drift. We showed how our loop closing approach improves the
absolute trajectory error measure compared to the standard
loop closing approach.

Keywords—SLAM, LiDAR, factor graphs, loop closing, ICP

I. INTRODUCTION

In the last few years, we have witnessed the ubiquity of
autonomous vehicles, whether the most modern electric
cars, robot vacuums, or industrial mobile robots. Such
vehicles are capable of discerning where in an environ-
ment they are and progressively building a map of that
environment. This is a well-known robotics problem called
simultaneous localization and mapping (abbr. SLAM) [1].
In SLAM, a well-built map implies good localization
results, and vice versa; good localization eventually yields
a better map.

In its essence, SLAM is an estimation problem; there-
fore, the standard estimation theory methods can be used
to tackle it, e.g., the extended Kalman filter (abbr. EKF)
as used in [2]. As mentioned by the same authors,
filter-based SLAM approaches are, in the last few years,
outperformed by factor graph-based approaches such as
ORB-SLAM [3] and LSD-SLAM [4]. The estimation
component of a SLAM system that estimates the robot’s
configurations over time is also called SLAM back-end.
Conversely, SLAM front-end deals with sensor processing,
i.e., converting the robot’s measurements over time to an
appropriate form suitable for a back-end.

Speaking of sensors, two main sensor modalities are
range sensors and visual sensors. From both types of
measurements, point clouds and images, it is possible

to extract relative transformations between measurements
and 3D points of an environment. LiDAR, which stands for
light detection and ranging, is a range sensor that is used
by many approaches [5], [6]. The key principle in these
approaches is to find relative transformations between
LiDAR scans by using the iterative closest point (abbr.
ICP) algorithm [7] or its variants. Having (a) calibrated
visual sensor(s), it is also possible to retrieve relative
transformations as well as 3D points of an environment
utilizing projective geometry [8]. Among approaches that
use visual sensors are [9], [10], while some approaches
use both of these sensor modalities, such as [11], [12].
Furthermore, it is possible to utilize another sensor modal-
ity – inertial measurement unit (abbr. IMU) that gives us
the acceleration and the rotation rate with respect to an
inertial frame, and ultimately, to improve estimation even
more [13].

Because multiple building blocks in a SLAM system
should be considered and carefully thought out, it is
challenging to implement such a system on its own. In the
upcoming chapters, we will first examine factor graphs, as
they are extensively used in state estimation for robotics.
Then, we will provide a thorough overview of our SLAM
and the experimental evaluation demonstrating how our
loop closing algorithm improves absolute trajectory error
(abbr. ATE) results compared to the naive loop closing
detection. The paper’s main contribution is the integration
of our loop closing algorithm NOSeqSLAM, previously
used only for the visual place recognition problem [14],
in the context of SLAM.

II. FACTOR GRAPHS

Factor graphs belong to the category of bipartite graphs,
so let us first define bipartite graphs. A bipartite graph
is an undirected graph (V, E) in which nodes V can be
partitioned into disjoint V1 and V2 such that an edge
{u, v} ∈ E implies either u ∈ V1 and v ∈ V2 or u ∈ V2

and v ∈ V1 [15]. With a bipartite factor graph

F = (U ∪ V, E), (1)

we estimate a stochastic process that consists of multiple
states and measurements. U and V form a partition of
nodes, while specifically, nodes from U are called factors
and nodes from V are called variables. According to the
definition for a bipartite graph in the context of factor
graphs, this means that an edge ei,l ∈ E connects a factor
ϕi ∈ U and a variable xl ∈ V . Also, in the context of factor

MIPRO 2024/RTA 2135

graphs, such an edge ei,l indicates that xl factorizes ϕi –
hence the name “factor graphs”. All variables that factorize
a factor ϕi, thus all variables xk ∈ V such that ei,k exists,
are denoted as Xl = {xk} ⊆ V .

Using a factor graph F , a stochastic process can be
factorized as

ϕ(V) =
∏

ϕi(Xi). (2)

Optimizing (2) with respect to V , an optimal set of
variables V∗ will be obtained:

V∗ =argmax
V

∏
i

ϕi(Xi) (3)

=argmin
V

∑
i

∥hi(Xi)− zi∥2Σi
, (4)

This is a nonlinear least-squares problem that can be
optimized with techniques such as the Gauss-Newton
algorithm [16] and the Levenberg-Marquardt algorithm
[17]. Upon the finalization of the optimization process (3),
an optimal set of variables V∗ represents the optimal states
of a process being estimated.

The simplest process considered for optimization with
factor graphs is called tracking, where we estimate states
X given measurements Z. A factor graph that models
tracking is shown in Fig. 1a. Then, different variable types
can be introduced, i.e., we can partition variables into
two subsets {xi} and {yi}. Such a system is called the
switching system and is depicted in Fig. 1b. Specific to
factor graphs in SLAM, i.e., in the estimation of the robot’s
states, is that both variables and factors are elements of the
special Euclidean group SE(n) which represents all rigid
motions in the n-dimensional space where n ∈ {2, 3}.
This is meaningful for variables because we want to
estimate the robot’s states over time. In addition, a relative
transformation between two states is also a rigid motion.
Therefore, this is meaningful for factors, too.

Such a variant of SLAM, the simplest one, where only
rigid motions are considered, is called pose graph opti-
mization (abbr. PGO). Technically, in PGO, we distinguish
how factors are added to a graph. If they are added
utilizing an odometry procedure between two successive
poses Ti ∈ SE(n) and Ti+1 ∈ SE(n), we are talking
about odometry factors ϕl.c.. If they are added by means
of a loop closure detection between non-successive poses
Ti ∈ SE(n) and Tj ∈ SE(n), we are talking about loop
closing factors ϕl.c. The corresponding factor graph for
PGO is shown in Fig. 1c. Furthermore, we can upgrade
PGO and introduce another type of variables – landmarks.
Then, with the third type of factors – bearing-range factors
ϕb.r. – we model the relation between the robot’s poses and
landmarks in an environment as shown in Fig. 1d. It is
easy to incorporate all these functionalities in a robotic
application by using the versatile factor graphs library
GTSAM [18].

III. SIMULATED 2D ENVIRONMENT

The environment in which the robot maneuvers is a 2D
3m× 3m square room. Inside it, we place multiple poly-

p(x1)

x1

p(x2 |x1)

x2

p(x3 |x2)

x3

p(z1 |x1) p(z2 |x2) p(z3 |x3)

(a)

p(x1)

x1 p(x2 |x1, y1)

p(y1)

y1

x2 p(x3 |x2, y2)

p(y2 | y1)

y2

x3

p(z1 |x1) p(z2 |x2) p(z3 |x3)

(b)

ϕp.(T1)

T1

ϕod.(T1, T2)

T2

ϕod.(T2, T3)

T3

ϕod.(T3, T4)

T4

ϕod.(T4, T5)

T5

ϕl.c.(T5, T2)

(c)

ϕp.(T1)

T1

ϕod.(T1, T2)

T2

ϕod.(T2, T3)

T3

l1 l2

ϕb.r.(T1, l1)
ϕb.r.(T2, l1)

ϕb.r.(T1, l2) ϕb.r.(T2, l2)

ϕb.r.(T3, l2)

(d)

Fig. 1: Factor graphs are used for (a) tracking, (b) switching systems,
(c) pose graph estimation, and (d) simultaneous localization and
mapping.

gons so that each location in the environment is distinctive,
which is an essential requirement for the localization task.
Technically, both the room and the inner “furniture” that
describes that room are defined as sequences of linear
segments (gray lines in Fig. 2). We put all these segments
in a single (n1, 2, 2)-dimensional tensor.

The robot’s sensor is also defined with linear segments.
Starting from the center of the sensor’s frame, we dis-
tribute the sensor’s beams radially every β◦

∆ from β◦
start to

β◦
end (blue lines in Fig. 2). Similarly to the environment’s

segments, we put the sensor’s segments into a single
(n2, 2, 2)-dimensional tensor. For simplicity, the sensor’s
coordinate frame is aligned with the robot’s coordinate
frame. Otherwise, we could define a relative transforma-
tion between the sensor and the robot, although it would
not make any difference in the evaluation.

Following the line-line intersection formula, given two

2136 MIPRO 2024/RTA

(a)

Fig. 2: The 2D simulated environment. The room, its inner shapes
(gray lines), and the sensor’s beams are defined as linear segments.
Using the line-line intersection formula, we can find their intersection
and simulate range measurements.

linear segments L1 and L2

L1 = (x1, y1) + t(x2 − x1, y2 − y1), t ∈ [0, 1], (5)
L2 = (x3, y3) + u(x4 − x3, y4 − y3), u ∈ [0, 1], (6)

we find their intersection by calculating

t∗ =
(x1 − x3)(y3 − y4)− (y1 − y3)(x3 − x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)
(7)

and

u∗ =
(x1 − x3)(y1 − y2)− (y1 − y3)(x1 − x2)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)
. (8)

If 0 ≤ t∗ ≤ 1 and 0 ≤ u∗ ≤ 1, then L1 and L2 intersect
at

(x∗, y∗) = (x1 + t∗(x2 − x1), y1 + t∗(y2 − y1))

= (x3 + u∗(x4 − x3), y3 + u∗(y4 − y3)). (9)

Intersections are calculated at each time step between the
environment’s and sensors’ segments. This way, we can
obtain the Euclidean distance from the start of each beam
to a line of the environment it points to and, this way,
simulate a range sensor. An important implementation
detail is that, as we put both sets of segments into
tensors, we can calculate all these intersections via matrix
operations in a vectorized way1.

The robot is a differential mobile robot drive with imple-
mented forward and inverse kinematics models as defined
in [20]. The wheel radius is r = 5cm, and the wheelbase
length is l = 10cm. Although the relative transformation
between two successive poses in two timesteps can be ob-
tained via ICP, a more robust variant is to provide an ICP

1Specifically, using the Numpy library [19].

algorithm with an estimation of what this transformation
could be. Such an estimation can be obtained with wheel
encoders. In real-world experiments, encoders are attached
to DC motors and provide us with the rate of change
between two successive angles measured, i.e., with angular
velocities. Each encoder produces a specified number of
discrete ticks in a single revolution, i.e., the number of
cycles per revolution cpr.

We simulate the encoders’ readings as follows. Say that
inverse kinematics gives us angular velocities φ̇left and
φ̇right that should be applied to motors in order to attain
a rate of change in the robot’s position and orientation ξ̇I
expressed in the global coordinate frame I . For clarity, let
us examine a single angular velocity φ̇ no matter what
wheel it is applied to. The difference between the current
and previous number of the encoder’s cycles is

∆c = ci+1 − ci =
⌊ φ̇ ·∆t · cpr

2π

⌋
(10)

where ∆t is the time between two iterations. Conversely,
a measured-by-a-wheel-encoder angular velocity will be

˙̃φ =
∆c · 2π
∆t · cpr

rad

s
. (11)

To make the simulation more realistic, we can additionally
add a normally distributed noise ϵ ∼ N (µ, σ) to (11). We
evaluate (10) and (11) for both the left and the right wheel
and this way obtain ˙̃φleft and ˙̃φright. Then, these values are
mapped via forward kinematics into ˙̃

ξi+1 that is further
used to obtain the robot’s pose in the (i + 1)-th iteration
as

I
ξ̃i+1 =

I
ξ̃i +

˙̃
ξi+1 ·∆t. (12)

The relative transformation between
I
ξ̃i and

I
ξ̃i+1, i.e.,

i
T̃ i+1 ∈ SE(2), is used as an initial guess for ICP

odometry between measurement scans obtained in the i-
th and (i+1)-th iterations. Then, an ICP-obtained relative
pose iT i+1 ∈ SE(2) is added as a factor ϕod. between
nodes Ti and Ti+1 into the factor graph.

After the world and the robot with its sensors are
defined, the next building block is the path planning
subsystem, which should navigate the robot toward a goal
while simultaneously avoiding obstacles. This system is
based on the paper [21] where we represent the robot’s
behavior as a finite-state automaton. According to its
current state and the most recent measurement scan, the
robot, as an automaton, can have the states: “move towards
a goal”, “avoid obstacles”, and, “stand still”. If the robot
moves toward a goal and it is measured that an obstacle
is near, i.e., if a sensor’s beam measures a substantially
small range, then the state shifts to the obstacle avoidance
mode. While in the obstacle avoidance state, the robot is
expected to move away from an obstacle by a safe amount
and start to move toward a goal. If it is detected that the
robot reached a goal or unhappily hit a wall, then it will
stand still.

A goal’s position Ig in the global frame should be
defined. Then, we can construct a vector from the robot’s

MIPRO 2024/RTA 2137

frame origin to a goal. Trying to attain this orientation
will eventually bring the robot to a goal. This automaton
can also be generalized for multiple goals, as we did,
where – while not all goals are reached, the robot should
move toward the next goal. Multiple goals are defined
for the purpose of the loop closing detection. Goals
are: (−2.5,−2.5), (2.5,−2.5), (2, 2), (−2.5, 2.5), once
again (−2.5,−2.5), once again (2.5,−2.5) and once again
(2.0, 2.0) Similarly, obstacle avoidance is achieved in a
way that multiple vectors, counterbalanced with respect
to their corresponding beams, are created, then aggregated
together in a single vector, which orientation the robot will
try to achieve, and this way avoid obstacles.

As the robot moves, it is inherent that the drift will
be accumulated. However, once when the robot arrives
in the same place, thus two times in the same goal,
and it is detected by the loop closing detection method
that it arrived there once again, a new drift-free relative
transformation between these measurements can be taken,
and added as a loop closing factor. According to this,
the ICP subsystem, implemented with the open-source
libpointmatcher library [22], has two roles. First, it will
give us a relative transformation iTi+1 ∈ SE(2) between
measurement scans mi ∈ Rn and mi+1 ∈ Rn. Then
in the factor graph, we use it as an odometry factor
ϕod.(Ti, Ti+1). Also, once when in a j-th iteration the robot
arrives in a place that has been seen in an i-th iteration,
i.e., the loop closing subsystem detects such a place, the
ICP will give us a relative transformation jTi ∈ SE(2)
between mj ∈ Rn and mi ∈ Rn being used as a loop
closing factor ϕl.c.(Tj , Ti).

The final ingredient of our system is the loop closing
detection method. It is based on our previous work NOSe-
qSLAM [14] where places are matched according to their
visual images. The scenario it has been used for – visual
place recognition – is another research topic on its own,
and we had to modify it for the purpose of SLAM. In
visual place recognition, we have two image streams of
the same route, namely a query dataset Q and a reference
dataset R. Then, each image Iqi ∈ Q is compared against
each image Idj

∈ R. The goal is to match images properly
according to hand-labeled ground truth data GT , i.e. to
find matches (Iqi , Id∗

qi
) ∈ Q×R,∀Iqi ∈ Q so that Id∗

qi
be-

longs to a ground-truth set GT qi ⊆ R. In SLAM, we have
a single stream of measurements,2 Be it a stream of LiDAR
scans or visual images. LiDAR scans are, by default, n-
dimensional vectors. Global descriptor techniques such
as histogram of oriented gradients [23] or feature maps
extraction with deep convolutional neural networks can
map grayscale/RGB images into n-dimensional vectors.
Therefore, we can denote all measurements in a stream,
be it from a visual sensor or a LiDAR, as

M = {m1, . . .mi, . . . ,m|M|} ⊂ Rn. (13)

2Unless multiple sensor modalities are used. However, the recording
of all these streams will take place at the same time. Therefore, we will
not have two different streams of the same route recorded at different
times by a single sensor.

TABLE I: Positional and rotational absolute trajectory errors defined
with (14) and (15) for different setups in the simulated environment.

Setup εpos. [m] εrot. [◦]
ICP odometry + NOSeqSLAM 0.02836 0.59485
ICP odometry + Naive 0.07611 1.40690
ICP odometry (w/o loop closing) 0.25755 5.01363
Wheel odometry (w/o loop closing) 0.58594 12.19906

The idea behind NOSeqSLAM is to measure the co-
sine similarity between a measurement mj together with
its temporal predecessors {mj−1, . . . ,mj−ds+1} and a
measurement mi together with its temporal predecessors
where i << j by utilizing directed acyclic graphs. For
more information, confer [14]. Ultimately, the loop closing
detection subsystem will detect if, given a most recent
measurement mj there are loop closing candidates. Say
that m∗

i is a measurement with the highest NOSeqSLAM
measure for mj . Then, as already mentioned, the ICP will
calculate the relative transformation between these two
measurements and a loop closing factor will be added.
Naively, we can perform loop closing detection where mj

is compared solely with mi without incorporating their
temporal neighbors. In the upcoming section, we will see
that NOSeqSLAM outperforms such a naive loop closing
detection.

IV. EXPERIMENTAL RESULTS

In this section, we will present the quantitative and
qualitative results of our evaluation. Quantitative results
are expressed with the absolute trajectory error (abbr.
ATE) [24] and with positional and orientational error plots.
A trajectory refers to all estimated states of the robot.
Let Ti ∈ SE(2),∀i ∈ {1, . . . , N} denote the ground
truth robot poses and let T ′

i ,∀i ∈ {1, . . . , N} denote
the corresponding estimated poses. Then, the positional
trajectory error is defined as

εpos. =

(
1

N

N∑
i=1

∥pi − pi′∥2
) 1

2

, (14)

while the orientational trajectory error is defined as

εrot. =

(
1

N

N∑
i=1

∥∢
(
RiR

T
i′
)
∥2
) 1

2

. (15)

(Ri, pi) ∈ SO(2) × R2 and (R′
i, p

′
i) ∈ SO(2) × R2 are

the corresponding rotation matrix and position vector for
Ti and T ′

i , respectively. ∢ (·) denote the angle-axis angle
extraction [25].

A. Simulated Environment

Errors (14) and (15) were evaluated for different esti-
mation setups, and the results are represented in Table I.
First, we run the robot in the simulated environment with
the ICP and loop closing detection subsystems turned off.
Therefore, the estimated trajectory in such a setup is solely
based on (12). In the next experiment, we ran the robot
with the ICP turned on but without loop closing detection.
Then, we turned on the naive loop closing detection, and in

2138 MIPRO 2024/RTA

0 5 10 15 20 25 30 35

Distance [m]

−500

−250

0

250

500

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

(a)

0 5 10 15 20 25 30 35

Distance [m]

−10

0

10

O
ri

en
t.

er
r.

[d
eg

]

θ

(b)

0 5 10 15 20 25 30 35

Distance [m]

−500

−250

0

250

500

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

(c)

0 5 10 15 20 25 30 35

Distance [m]

−10

0

10

O
ri

en
t.

er
r.

[d
eg

]

θ

(d)

0 5 10 15 20 25 30 35

Distance [m]

−500

−250

0

250

500

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

(e)

0 5 10 15 20 25 30 35

Distance [m]

−10

0

10
O

ri
en

t.
er

r.
[d

eg
]

θ

(f)

0 5 10 15 20 25 30 35

Distance [m]

−500

−250

0

250

500

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

(g)

0 5 10 15 20 25 30 35

Distance [m]

−10

0

10

O
ri

en
t.

er
r.

[d
eg

]

θ

(h)

Fig. 3: Positional errors (left) and orientational errors (right) for (a, b)
ICP odometry + NOSeqSLAM, (c, d) ICP odometry + Naive loop
closing detection, (e, f) ICP odometry without loop closing detection
and (g, h) wheel odometry only setups. Plots created with [24].

the final run, instead of the naive loop closing detection,
NOSeqSLAM was utilized. As expected, the worst run,
i.e., the highest ATE, came from the wheel-odometry-
only setup, and vice versa; the lowest ATE came from
the ICP odometry setup with ours NOSeqSLAM. From the
results, we can conclude that the wheel odometry performs
subpar compared to the ICP odometry, which is reasonable
– a wheel odometry measurement is passed as an initial
guess to ICP. Also, it is visible that our NOSeqSLAM
loop closing detection outperforms the naive loop closing
detection. The corresponding plots that show how an error
differs with respect to the length of a traversal are shown
in Fig. 3.

Qualitatively, the better an estimation of trajectory is,
the better a map that was built, and, as already mentioned,
the smaller the ATE, i.e., estimated and ground truth
trajectories are alike. This is visible in Fig. 4. Blue dots
were measured as seen by the estimated orange robot.
The worst map and the estimated robot’s pose are for the
wheel odometry-only run (Fig. 4d). Then, the map and
the estimated pose are, to an extent, better with the ICP
subsystem turned on (Fig. 4c). The significant difference
between a built map and an estimated pose is noticed when
the loop closing detection kicks in. Once again, because
NOSeqSLAM considers temporal neighbors, it is expected
that it will perform better (Fig. 4a) than the naive matching
(Fig. 4b).

B. Real-World Dataset

After finishing experiments in the last subsection, we
were curious about how our system would perform on
a real-world dataset. We picked the Intel Research Lab
dataset [26]. Unfortunately, this dataset lacks a ground-
truth trajectory. However, the raw odometry-only trajectory
and the corrected trajectory obtained with the FastSLAM,
a SLAM system presented in the same paper, are provided.

(a) (b)

(c) (d)

Fig. 4: Visualization of maps that were built (blue dots) and an
estimated robot’s pose (orange robot) with respect to the ground truth
robot’s pose (gray robot) and the ground truth world (gray lines) for
different setups.

TABLE II: Positional and rotational absolute trajectory errors defined
with (14) and (15) for different setups in the Intel Research Lab dataset
with respect to the trajectory obtained with FastSLAM [26].

Setup εpos. [m] εrot. [◦]
ICP odometry + NOSeqSLAM 0.33030 1.17689
ICP odometry (w/o loop closing) 0.80209 2.25328
Wheel odometry (w/o loop closing) 11.49560 94.49847

Qualitative performance is visible in Fig. 5. A map
built with the wheel-odometry-only system (Fig. 5d) is
bad and does not reflect the shape of the lab. By turning
on the ICP module of our system, a more coherent map is
obtained (Fig. 5c), and the lab’s shape begins to appear.
Once NOSeqSLAM is deployed, the shape is even less
disheveled (Fig. 5b) – almost like the map obtained with
FastSLAM (Fig. 5a).

Because a ground-truth trajectory is non-existent, we
declared the FastSLAM trajectory as the ground-truth
trajectory, and we evaluated (14) and (15) for different
setups like before. These results are presented in the
Table II. As expected, the ICP + loop closing system
outperforms the loop closing-only system, while the wheel
odometry-only system performs subpar with respect to
these two.

V. CONCLUSION

In this paper, we have presented how to build a range
sensor-based SLAM system. First, we looked at how to
build an environment where the robot operates. Then, we
simulated the robot itself by implementing its forward
and inverse kinematics models along with noisy encoder
readings. Onwards, the path planning was established
by considering the robot a finite-state automaton. Rigid

MIPRO 2024/RTA 2139

(a) (b)

(c) (d)

Fig. 5: Visualization of maps that were built (blue dots) and an
estimated robot’s pose (orange robot) on the Intel Research Lab dataset
for different setups.

motions between the robot’s movements were obtained
through either wheel odometry or ICP odometry. Finally,
loop closures were detected either naively or with our
NOSeqSLAM method. With the experimental evaluation
in the simulated environment, it was shown how the
ICP odometry in combination with the NOSeqSLAM
loop closing detection outperforms both quantitatively
and quantitatively other setups. Also, it was shown how
our system performs on par with a real-world dataset
compared to another SLAM system – FastSLAM.

REFERENCES

[1] S. Thrun and J. J. Leonard, Simultaneous Localization and
Mapping. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 871–889. [Online]. Available: https://doi.org/10.1007/
978-3-540-30301-5_38

[2] K. Lenac, J. Cesic, I. Markovic, I. Cvisic, and I. Petrovic, “Revival
of filtering based SLAM? Exactly sparse delayed state filter on Lie
groups,” IEEE International Conference on Intelligent Robots and
Systems, vol. 2017-September, pp. 1012–1018, 2017.

[3] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[4] J. Engel, J. Sturm, and D. Cremers, “LSD-SLAM: Large-Scale
Direct Monocular SLAM,” Proceedings of the IEEE International
Conference on Computer Vision, pp. 1449–1456, 2013.

[5] E. Mendes, P. Koch, and S. Lacroix, “Icp-based pose-graph slam,”
in 2016 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), 2016, pp. 195–200.

[6] P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F. Goulette, “Ct-
icp: Real-time elastic lidar odometry with loop closure,” in 2022
International Conference on Robotics and Automation (ICRA),
2022, pp. 5580–5586.

[7] Y. Chen and G. Medioni, “Object modelling by registration
of multiple range images,” Image and Vision Computing,
vol. 10, no. 3, pp. 145–155, 1992, range Image Understanding.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/026288569290066C

[8] R. I. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, 2nd ed. Cambridge University Press, ISBN:
0521540518, 2004.

[9] X. Gao, R. Wang, N. Demmel, and D. Cremers, “LDSO: Direct
Sparse Odometry with Loop Closure,” IEEE International Confer-
ence on Intelligent Robots and Systems, pp. 2198–2204, 2018.

[10] I. Cvisic, I. Markovic, and I. Petrovic, “SOFT2: Stereo Visual
Odometry for Road Vehicles Based on a Point-to-Epipolar-Line
Metric,” IEEE Transactions on Robotics, 2022.

[11] J. Zhang and S. Singh, “Visual-lidar odometry and mapping:
Low-drift, robust, and fast,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2015-June, no. June,
pp. 2174–2181, 2015.

[12] Y. An, J. Shi, D. Gu, and Q. Liu, “Visual-LiDAR SLAM Based
on Unsupervised Multi-channel Deep Neural Networks,” Cognitive
Computation, vol. 14, no. 4, pp. 1496–1508, 2022.

[13] L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert, “Elim-
inating conditionally independent sets in factor graphs: A unifying
perspective based on smart factors,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 4290–
4297.

[14] J. Maltar, I. Marković, and I. Petrović, “Visual place recognition
using directed acyclic graph association measures and mutual
information-based feature selection,” Robotics and Autonomous
Systems, vol. 132, p. 103598, 2020.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Third Edition, 3rd ed. The MIT Press,
2009.

[16] W. R. Esposito and C. A. Floudas, Gauss–Newton method:
Least squares, relation to Newton’s method. Boston, MA:
Springer US, 2009, pp. 1129–1134. [Online]. Available: https:
//doi.org/10.1007/978-0-387-74759-0_197

[17] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation
and theory,” in Numerical Analysis, G. A. Watson, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1978, pp. 105–116.

[18] F. Dellaert, R. Roberts, V. Agrawal, A. Cunningham, C. Beall,
D.-N. Ta, F. Jiang, lucacarlone, nikai, J. L. Blanco-
Claraco, S. Williams, ydjian, J. Lambert, A. Melim, Z. Lv,
A. Krishnan, J. Dong, G. Chen, K. Chande, balderdash devil,
DiffDecisionTrees, S. An, mpaluri, E. P. Mendes, M. Bosse,
A. Patel, A. Baid, P. Furgale, matthewbroadwaynavenio, and
roderick koehle, “borglab/gtsam,” May 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.5794541

[19] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[20] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, 2nd ed. The MIT Press, 2011.

[21] M. Egerstedt, “Control of Autonomous Mobile Robots,” Handbook
of Networked and Embedded Control Systems, pp. 767–778, 2005.

[22] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Compar-
ing ICP Variants on Real-World Data Sets,” Autonomous Robots,
vol. 34, no. 3, pp. 133–148, Feb. 2013.

[23] R. K. McConnell, “Method of and apparatus for pattern recogni-
tion,” Patent US4 567 610A, 1982.

[24] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajec-
tory Evaluation for Visual(-Inertial) Odometry,” IEEE International
Conference on Intelligent Robots and Systems, pp. 7244–7251,
2018.

[25] K. J. Waldron and J. Schmiedeler, Kinematics. Cham: Springer
International Publishing, 2016, pp. 11–36. [Online]. Available:
https://doi.org/10.1007/978-3-319-32552-1_2

[26] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An efficient
fastslam algorithm for generating maps of large-scale cyclic en-
vironments from raw laser range measurements,” in Proceedings
2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CH37453), vol. 1, 2003, pp. 206–
211 vol.1.

2140 MIPRO 2024/RTA

