
Simulator for UAV Localization and Navigation in
Various GPS-Denied Scenarios

Mihaela Orić *, Filip Novoselnik *, Vlatko Galić *
* Protostar Labs, Osijek, Croatia

mihaela.oric@protostar.ai

Abstract — Some industries demand successful work of
UAVs in areas without GPS, for example, drone operation in
warehouses with metal roofs. Safe operation of UAVs includes
successful “Return To Home” (RTH) protocols for retaining
aircraft operation stability after losing signal and successfully
finding the way back to the flight starting point. Development
of a reliable UAV localization and navigation system is
challenging due to the high dependence on manual work and
safety concerns. To mitigate these limitations, we developed a
UAV simulation pipeline that can be used for localization and
navigation algorithm testing. The pipeline uses ROS and
connects algorithms with a 3D environment simulator and
provides a graphical interface for easy operation. Users have
the ability to input waypoints for the trajectory, start the
simulation, limit the GPS signal dynamically, and estimate
the success of return. By changing the environment,
trajectory shape, and length, various scenarios can be tested.
Simulations of RTH success with realistic constraints promise
to preserve resources in the testing stage of the UAVs
decreasing security risks.

Keywords - localization; navigation; unmanned aerial
vehicles; ROS; simulator

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) play an important
role in civil and military applications, but with Industry
4.0, their use expands into many other fields. Whether they
are used in open surroundings on long distances, such as in
military and civil applications, or in closed environments,
such as in manufacturing and warehouses, the stability of
their communication and their safety protocols need to be
on the highest level possible. An UAV equipped with
sensors can be used for visual inspections of its
surroundings, quality inspections, or inventory monitoring,
whilst one equipped with special tools and grippers can do
some physical work such as carrying light cargo [1]. When
an UAV is working in a closed environment, there is a high
chance that the GPS signal will be affected by the metal
roofing and will be of very low quality or even
unavailable. Moreover, if an UAV is used on an open field,
the signal can be disrupted by tough atmospheric
conditions, electronic interference, or by GPS jammers
that interfere with the signal deliberately [2]. To avoid
losing control of the aircraft and unexpected aircraft
behavior, methods for sensor based navigation and
localization and mapping algorithms have been developed.

To program a robot to do a specific action, for
example, move through an unfamiliar environment while
simultaneously localizing itself and mapping the

environment, a Robot Operating System (ROS) can be
used. In this paper, a robot being programmed to localize
itself and navigate through the environment is a UAV. ROS
is a robot software framework with architecture fitting for
a wide range of domains [3]. ROS has become a software
standard in robotics because of its goals which are being
peer-to-peer, tools-based, multi-lingual, thin and free, and
open-source.

ROS2 is the second generation of the Robot Operating
System which implements production-grade algorithms
and features necessary for achieving high level security
and reliability [4].

II. SYSTEM OVERVIEW

The framework presented in this paper is separated into
two parts - one side contains the simulation software with
graphical user interface, while the other side contains the
odometry algorithm. A design scheme is presented on
Figure 1.

Figure 1. Design scheme of this pipeline.

A. PX4 Autopilot
PX4, an open-source software for drone and unmanned

vehicle flight control, is used [5]. Vehicle controllers, often
called flight controllers, run a flight stack software that

MIPRO 2024/RTA 2123



controls the aircraft. PX4 flight stack controls different
vehicle frames, implements powerful safety features and
flight modes, includes various sensors and peripherals, and
is integrated with ROS. PX4 flight code can be used with
simulators where the PX4 vehicle gets modeled in a
simulated environment. Simulators supported by the PX4
core development team are Gazebo, Gazebo Classic,
jMAVSim, while the community supported simulator list is
larger. Controlling the vehicle with a PX4 controller in a
simulated world functions the same as controlling a
physical vehicle in a real-world environment which allows
users to fully test the control code and algorithms before
deploying them to a real aircraft. Its integration with
robotics APIs and the possibility of use in simulation made
it a good choice for a pipeline presented in this paper.

PX4 allows the vehicle to be put into the offboard
mode where it receives parameters such as position,
velocity, and acceleration from an external source other
than the flight stack. Offboard mode is used in this
pipeline to control the UAV through a ROS node. Offboard
ROS node publishes waypoints in the TrajectorySetpoint
message format.

PX4 software and the simulator were initially planned
to be run on ROS1 in this framework to make the
communication with the odometry algorithm easier. This
ended up being challenging and very unstable. To avoid
these complications, a decision to run PX4 software on
ROS2 instead of ROS1 was made.

B. Gazebo Simulator
Gazebo is a 3D robotics simulator recommended by the

PX4 team. It simulates real-world physics and conditions
such as gravity, wind, air pressure, etc. The role of the
simulator in this pipeline is to provide the physics and the
environment for the testing. It is important to use a
simulator that replicates the conditions of the real
environment in which the UAV will work in since those
conditions could affect the success of the flight and
algorithms. Other than world physics, Gazebo implements
a wide range of sensors used in robotics. It is developed to
fit for all simulation contexts. For successful rigid body
simulation in the Gazebo simulator, each object should
include model shape constructed from an SDF file,
collision shape files and joints and joint types. Since it is
free and open-source, the community is large and creates
many third party sensor plugins and robot assets.
Parameters and messages from the Gazebo simulator are
published as Gazebo topics on TCP/IP sockets. The
principle of sending and receiving messages in Gazebo is
based on a subscriber-publisher relationship which is the
base of ROS message exchangement. Publishers send
messages to a named channel called topic and subscribers
receive messages using callbacks. To integrate ROS2 with
Gazebo, it is necessary to establish communication
between them. Gazebo-ROS2 integration in this paper has
been established using a network bridge called
ros_gz_bridge [6]. Even though this bridge offers support
to a limited number of message types, it is suitable for this
case since it supports sensor message types needed for
visual-inertial odometry algorithms.

After setting up this bridge for bidirectional
communication, ROS2 code can read Gazebo messages
(work as a subscriber) and send messages to Gazebo (work
as a publisher). A drawback of using Gazebo as a 3D
simulator is that it does not allow easy 3D model import
that other simulation software may offer. The model
should be prepared in a specific way before the import.
Firstly, it is important to question the complexity of the
used 3D mesh since an overly large mesh can affect the
simulation performance and could cause problems for
users wanting to achieve a real-time simulation. Overly
complex meshes should be simplified or split into multiple
parts. Secondly, scale and rotation should be checked to
see if they fit Gazebo standards and edited if necessary.
The center of the mesh is at (0, 0, 0) and the front of the
mesh should point in the positive x-axis direction. Gazebo
uses the metric system so the scale of the object should be
adjusted to achieve the wanted size in meters. Thirdly, the
mesh should be exported in the Collada or SDF format.
Finally, the exported file should be added to the Gazebo
world file.

To achieve a high level of detail in the simulated
world, photogrammetry was used for 3D model creation.
Photogrammetry is a method of using photographs to
gather information and measurements of the photographed
object or area. It stitches images together using
triangulation to create a digital 3D copy of the physical
object or world. 3D models created with photogrammetry
and a sufficient number of photographs are highly detailed
and have realistic textures. By using a photogrammetric
model in this pipeline, it was possible to test the detection
of features visible on a real piece of land without
physically flying the drone there and doing the detection
while flying. Example of a photogrammetric 3D model
used in the experiments is shown on Figure 2.

Figure 2. 3D environment made using a photogrammetry tool.

C. Semi-direct Visual Odometry
Odometry algorithm estimates the position of the

aircraft relative to the starting point. While the simulator
provides the environment for the testing, the odometry
algorithm takes physics and sensor readings from the
simulator as its inputs and calculates the position of the
aircraft as the output. Visual odometry is a technique that
uses a stream of images captured with a camera mounted

2124 MIPRO 2024/RTA



to a vehicle to estimate change in position over time.
Camera sensor is a cheaper alternative to some other more
expensive sensors used for odometry, such as lidar sensors,
optical flow, and GNSS, which made it an area of interest
for computer vision and robotics engineers. The base
principle of visual odometry is calculation of pixel
displacement between multiple images [7]. Basic steps of
visual odometry are image acquisition, finding distinct
features on images, matching these features on multiple
images, and finally calculating the displacement of the
features on multiple images.

Semi-direct visual odometry (SVO) is a visual
odometry method that tracks and triangulates pixels by
relying on proven optimization methods [8]. Its speed and
competitive accuracy made it a suitable choice for the
odometry algorithm used in this pipeline. It uses two
parallel threads for estimating the position and mapping
the area. By combining visual input with the readings from
other sensors, the resulting odometry output is more robust
and less prone to drift. Camera and an inertial sensor
(IMU) are used as inputs into visual-inertial odometry
algorithms. Such a visual-inertial odometry algorithm used
in this paper is SVO Pro which is an extension of the
previously published SVO algorithm [9].

SVO Pro ROS node subscribes to the camera topic
message which is originally published by Gazebo and then
sent to ROS2 using a Gazebo ROS bridge. It also
publishes calculations to the odometry ROS1 topic.

D. ROS Bridge
PX4 and Gazebo simulator are working in ROS2,

while the SVO algorithm works in ROS1. Those two sides
of the pipeline are communicating through a bridge which
exchanges messages between ROS2 and ROS1. Bridge is
available as a ROS2 package [10]. It provides options in
selecting the direction of the communication.

It was possible to avoid using this bridge by using
previous versions of PX4 and Gazebo Classic simulator
which are integrated with ROS1. However, as ROS2
becomes the standard in robotics software, it is useful to
have a pipeline that is compatible with it. In this way, long
term usability of this pipeline is achieved. Furthermore,
setting up a ROS1-ROS2 bridge allows users to implement
a wide range of odometry algorithms which were
developed prior to ROS2 release.

E. Graphical User Interface
Starting every part of this system or any other similar

system which uses flight control, simulator, and odometry
algorithm, can be time-consuming and complex since
nodes need to be started in the correct order. Moreover,
setting the trajectory waypoints for the vehicle needs to be
done programmatically prior to starting the simulation,
which requires programmer knowledge, or specific tools
need to be used, which complicates the setup. This
pipeline avoids all those problems and simplifies the
running by connecting every step of the pipeline and
integrating basic options inside a graphical interface. This
way, users can quickly start the testing process by clicking
on a few buttons. To make trajectory input faster, easier,
more intuitive and more transparent, an interactive map of

the simulator world is available. Interface loads the
selected 3D model of the world, calculates its top view
plan and shows it as an image which then represents the
map of the world. The conversion of the 3D model to a
map proved to be more challenging than it was initially
thought because processing point clouds and calculating a
top view can be computationally demanding. However,
this step increases the quality of the interface since the
user only needs to change the 3D model but does not have
to provide the top view of the used model.

To start collecting waypoints, the user has to press the
“Start collecting waypoints” button. Waypoints are
selected by clicking on the map with the ability to delete
waypoints. Conversion from pixel locations of waypoints
selected on the map to a 3D location in the simulated
world is done in the background. This way, users can get a
better feeling of how waypoints are positioned than if the
waypoints had to be set numerically in the code.
Furthermore, there is a slider which can be used to add
rotations to each waypoint. To save the selected waypoints,
the user has to press the “Save waypoints” button.
Waypoints are saved locally before the start of the
simulation which allows them to be loaded again and
provide repeatability of tests. The interface also provides
options for GPS signal availability, which can be turned on
or turned off prior to the mission start, and also turned on
or turned off mid-flight.

Graphical User Interface was made in Python using Qt
tools [11]. Qt is a free open-source platform for creating
graphical user interfaces and applications that can be run
on multiple platforms, such as Windows and Linux. In this
paper, PySide6 module was used for Qt tools integration
with Python. Figure 3. and 4. show the graphical interface
made for this pipeline.

Figure 3. Graphical user interface of the simulator for UAV localization
and navigation.

MIPRO 2024/RTA 2125



Figure 4. Graphical user interface of the simulator for UAV localization
and navigation with waypoints selected.

III. EXPERIMENTS

Aerial photographs of a vineyard have been acquired
using a drone flying in a grid pattern. Those photgraphs
were processed using the photogrammetry software
WebODM [12]. The 3D model calculated with WebODM
was converted to an STF format which is suitable for
Gazebo and the converted model was put into a world file.
SVO Pro visual-inertial odometry algorithm was used and
topic names were adjusted so that they are named the same
in ROS1 and ROS2 side of the framework. Drone used in
the simulation was a Gazebo “gz_x500” drone model and
is shown on figure 5. Sensors added to the drone were
IMU, magnetometer, barometer and RGB camera sensor.

Figure 5. Gazebo “gz_x500” drone model.

The simulation was run multiple times with the GPS
signal turned off. Some of the more important settings
used in odometry algorithm configuration for this set of
tests include setting the pipeline to mono option, setting
grid size to 30 which can be lowered when processing
power is limited, and enabling loop closure. Three
different trajectory shapes were selected for testing
purposes with the goal of testing specific cases of
navigation. One trajectory consisted of a straight flight in
one direction and a return back to the starting position. The

point of this test was to see how well the algorithm would
perform over a long distance and how big the drift would
be. The second case was a flight with a rectangular
trajectory. This trajectory shape has multiple 90 degree
rotations which show the accumulation of the rotation
estimation error. Lastly, a trajectory with a circular shape
was set. This circular trajectory shows how well the
odometry algorithm works when the trajectory is not
straight. The results of these three test cases are shown on
figures 6., 7., and 8.

Figure 6. Straight trajectory estimation.

Figure 7. Rectangular trajectory estimation.

2126 MIPRO 2024/RTA



Figure 8. Circular trajectory estimation.

The appearance of the area above which the UAV will
fly can highly affect the success rate of the visual
odometry algorithm. An area with a high level of detail
and complex scenery allows the algorithm to be precise
and confident when matching the features since the
number of detected features would most likely be high. On
the other hand, land with a uniform appearance can cause
problems because there are not enough distinct features
that can be matched. For example, a visual odometry
algorithm running on a drone flying above a residential
area would be more successful than the same algorithm
running when the drone is flying above a large grass field.

Absolute position error (APE) metrics in meters for
each trajectory shown on figures 6., 7., and 8. are visible
on table 1.

TABLE I. ABSOLUTE POSITION ERROR METRICS

APE metric
Trajectory shape

Straight Rectangular Circular

Max APE 0.5214 4.8739 1.6818

Mean APE 0.1683 0.1908 0.1472

Median APE 0.1706 0.1183 0.1234

Min APE 0.0187 0.0177 0.0481

Root-mean-square
deviation

0.1935 0.3122 0.1787

Sum of square error 51.1318 39.0381 119.2799

Standard deviation 0.0957 0.1013 0.2471

Table 1. And figures 6., 7., and 8. show that the
proposed setup has some imperfections and that the
odometry algorithm chosen does not work perfectly.
Rectangular trajectory had the biggest error metrics, while
the algorithm worked the best on the straight trajectory
which shows that rotations propose a challenge for visual
odometry algorithms. From the estimated trajectories
visible on the figures above, it is evident that there are
some height estimation errors on some parts of the
trajectories. This can be corrected by using a barometer
sensor for height estimation. Regardless of the estimation
errors, the proposed setup would still be adequate for the
“Return To Home” use case.

These use cases and different scenarios can easily be
tested in the proposed pipeline by switching the
photogrammetric 3D model used.

IV. CONCLUSION

This paper presented implementation of a connected
pipeline for simulating GPS-denied scenarios and testing
UAV localization and navigation algorithms. Proposed
system uses ROS2 and ROS1 with a communication
bridge between them. Parts of the pipeline are connected
in a closed system that is started through a graphical
interface. Users have the possibility of changing the
odometry algorithm used and providing different 3D
models used in simulation. Experiments showed the
usability of the pipeline for testing UAV navigation in a
GPS-denied environment. This framework can be
improved by adding the option of changing algorithm
parameters through the graphical interface. Adding the
ability to change world physics settings of the simulator
through this framework would allow for faster testing of
different flying scenarios. Proposed setup uses the ROS1
and ROS2 bridge for communication between the
simulator and the odometry algorithm. However, if the
user chooses an odometry algorithm that uses ROS2, the
structure of this setup should be modified to avoid using a
communication bridge.

ACKNOWLEDGMENT

This work has been supported by European Union's
Horizon Europe research program Widening participation
and spreading excellence, through project Strengthening
Research and Innovation Excellence in Autonomous
Aerial Systems (AeroSTREAM) - Grant agreement ID:
101071270.

REFERENCES

[1] D. Mourtzis, J. Angelopoulos, N. Panopoulos, “UAVs for Industrial
Applications: Identifying Challenges and Opportunities from the
Implementation Point of View”, Procedia Manufacturing, vol. 55,
pp. 183-190, Nov 2021.

[2] “Overcoming Signal Interference in GPS Land Surveying”, Global
GPS Systems. Accessed: Jan. 20, 2024. [Online.] Available:
https://globalgpssystems.com/gnss/overcoming-signal-interference-i
n-gps-land-surveying/

[3] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, A. Ng, “ROS: an open-source Robot Operating System”,
ICRA Workshop on Open Source Software, Kobe, China, 2009.

MIPRO 2024/RTA 2127



[4] S. Macenski et al. “Robot Operating System 2: Design, architecture,
and uses in the wild”, Science Robotics, vol. 7, May 2022.
doi:10.1126/scirobotics.abm6074

[5] “Open Source Autopilot”, PX4 Autopilot. Accessed: Jan. 20, 2024.
[Online.] Available: https://px4.io/

[6] “ros_gz”, gazebosim. Accessed: Dec. 20, 2023. [Online.] GitHub
repository, Available: https://github.com/gazebosim/ros_gz

[7] M.O.A. Aqel, M.H. Marhaban, M.I. Saripan, et al. “Review of
visual odometry: types, approaches, challenges, and applications”,
SpringerPlus, vol. 5, Oct 2016. doi:
https://doi.org/10.1186/s40064-016-3573-7

[8] C. Forster, M. Pizzoli, D. Scaramuzza, “SVO: Fast Semi-Direct
Monocular Visual Odometry”, 2014 IEEE International Conference

on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp.
15-22, doi: 10.1109/ICRA.2014.6906584.

[9] Robotics and Perception Group, “SVO Pro: Semi-direct
Visual-Inertial Odometry and SLAM for Monocular, Stereo, and
Wide Angle Cameras”, University of Zurich. Accessed Jan. 20,
2024. [Online.] Available: https://rpg.ifi.uzh.ch/svo_pro.html

[10] “ros2”, ros1_bridge, Accessed: Dec. 20, 2023. [Online.] GitHub
repository, Available: https://github.com/ros2/ros1_bridge

[11] Q. Group, “The Future of Digital Experiences”, Qt Group.
Accessed: Jan. 20, 2024. [Online]. Available: https://www.qt.io/

[12] “WebODM”, OpenDroneMap. Accessed: Dec. 20, 2023. [Online.]
Available: https://www.opendronemap.org/webodm/.

2128 MIPRO 2024/RTA

https://rpg.ifi.uzh.ch/svo_pro.html
https://github.com/ros2/ros1_bridge
https://www.qt.io/



