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Abstract—This technical paper presents the application
of various control methods on a mechatronic laboratory
setup of a rotary inverted pendulum. The full nonlinear
dynamic model of the pendulum is obtained using Euler-
Langrange method and it is further simplified for the
purpose of designing different controllers for stabilization
of the pendulum in the upright position. In particular,
we compare two nonlinear control methods (sliding mode
control and model predictive control) to two classical linear
control methods (proportional-derivative control and linear-
quadratic control). All considered control methods are briefly
explained and corresponding controllers are derived and
tested on the experimental setup.

Keywords—sliding mode control, model predictive con-
trol, linear-quadratic control, proportional-derivative control,
mechatronic system, rotary pendulum.

I. INTRODUCTION

The rotary inverted pendulum, also called the Furuta
pendulum [1], consists of a motor driven arm which rotates
around a horizontal plane with a pendulum rod attached
vertically to it at its end so it can swing freely. By
controlling the input voltage of the DC motor the goal is to
stabilize the vertical pendulum rod in the upright position
as well as to control the angle of the pendulum arm in the
horizontal plane. Because of its nonlinear dynamics and
an unstable equilibrium point while in the upright position
the pendulum is frequently used for testing various linear
and nonlinear control methods.

In this brief technical paper two nonlinear control meth-
ods are compared to two linear control methods using the
Furuta pendulum as an example. The goal is to observe
the robustness, reference tracking and overall stabilization
of the pendulum depending on the control method used
and to analyze the resulting behavior of the system.

In Section II the mathematical model of the pendu-
lum and the custom built experimental setup which is
a physical realization of the pendulum is presented. In
Section III various control methods for stabilization of
the pendulum in the upright position are discussed. In
particular, two linear methods (proportional-derivative and
linear quadratic regulators) and two nonlinear methods
(model predictive control and sliding-mode control) are
briefly described. All four control methods are tested on
the experimental setup in Section IV. Concluding remarks
are given in Section V.

II. PENDULUM MODEL AND EXPERIMENTAL SETUP

The pendulum itself consists of two perpendicular arms,
one horizontal and one vertical, attached to a DC motor
that controls the horizontal arm. The angle at which the
horizontal arm rotates is denoted as θ and the angle at
which the vertical rod rotates is denoted as α.

Differential equations that describe the dynamic behav-
ior of the pendulum are obtained using Euler-Lagrange
equations as described in [2]:

θ̈(Ĵ0 + Ĵ2 sin
2 (α))−m2L1l2 cos (α) · α̈+

+m2L1l2 sin (α) · α̇2 + α̇θ̇Ĵ2 sin (2α) = τ − b1θ̇,
(1)

θ̈m2L1l2 cos (α)− Ĵ2 · α̈+
1

2
Ĵ2 sin (2α) · θ̇2+

+ gm2l2 sin (α) = b2α̇.
(2)

In the equations above, Ĵ0 denotes the moment of inertia
of the arm around the z axis, Ĵ2 denotes the moment
of inertia of the pendulum around its pivot point, m2 is
the pendulum rod mass, l2 is the length from the center
of mass of the pendulum rod to its pivot point, L1 is
the length of the pendulum arm, b1 the viscous friction
coefficient of the DC motor, and b2 is the viscous friction
coefficient of the pendulum rod. The term τ is torque
generated by the DC motor. By neglecting the dynamics of
the electrical part of the DC motor, the generated torque
can be expressed as the following static function of the
voltage u applied to the motor and its current speed of
rotation θ̇:

τ =
ncm(u− nceθ̇)

Ra
, (3)

where n represents the gearbox ratio, Ra armature resis-
tance, and ce and cm are back EMF and torque motor
constants. With this simplification, the nonlinear pendulum
model (1)-(2) comprises four state variables (θ, α, θ̇, α̇)
and one control input variable u.

A laboratory experimental setup, as described in [3],
is shown in Fig. 1. Only the first two state variables θ
and α are directly measurable by equipped encoders on
the motor (for measuring angle θ) and on the pendulum
module (for measuring angle α). The custom-made control
board enables serial communication in real time with a
computer (through USB port) where a controller can easily
be implemented in Matlab/Simulink. The parameters of the
experimental setup are summarized in Table I.
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TABLE I: PARAMETERS OF A NONLINEAR PENDULUM MODEL.

Parameter Value Unit
Ĵ0 5.5351 · 10−4 kg ·m2

Ĵ2 3.8533 · 10−4 kg ·m2

m2 0.018 kg
L1 0.108 m
l2 0.1369 m
b1 8.3336 · 10−5 kg ·m2/s
b2 2.5 · 10−4 kg ·m2

g 9.81 m/s2

cm 0.0256 Nm/A
ce 0.0256 V s/rad
Ra 2.19 Ω
n 3.9 -

Fig. 1: The experimental setup with its main components labeled.

By linearizing nonlinear differential equations (1) and
(2) around an upright equilibrium point ((θ0, α0, θ̇0, α̇0) =
(0, 0, 0, 0)), the following linearized state equations around
the upright position are obtained:

ẋ = Ax+Bu, (4)

where x = [θ, α, θ̇, α̇]⊤ is the state vector and A ∈ R4×4

and B ∈ R4×1 are the following matrices:

A =


0 0 1 0
0 0 0 1

0
L1gl2m

2
2

D −CĴ2+Ĵ2Rab1
RaD

−L1b2l2m2

D

0 Ĵ0gl2m2

D −L1l2m2(C+Rab1)
RaD

− Ĵ0b2
D

 ,

B =


0
0

cmĴ2n
RaD

cmL1l2m2n
RaD

 ,
(5)

where C = cecmn
2 and D = Ĵ0Ĵ2 − L2

1l
2
2m

2
2.

III. CONTROLLER SYNTHESIS

A. Proportional-Derivative Regulator

The task of keeping the pendulum in the upright position
(i.e. maintaining angle α around zero) and at the same
time controlling the rotation of the pendulum arm (angle
θ) can be achieved by using a simple linear regulator
based on proportional-derivative (PD) actions. The parallel

implementation of the PD regulator can generally be
described by the following transfer function

GPD(s) = Kp +Kd
s

Tfs+ 1
, (6)

where Kp is the proportional gain, Kd is the derivative
gain and Tf is some small parasitic time constant that
was introduced to ensure that the transfer function (6) is
causal, i.e. feasible in reality (the transfer function of an
ideal derivative component Kds is not causal).

Since two angles are to be controlled simultaneously (θ
and α), two feedback loops and two corresponding PD
regulators (connected in parallel) are needed, as depicted
in Fig. 2. The control signal u can be described as follows

u = Kp,θ(θr − θ)+Kd,θ(θ̇r − θ̇)−Kp,αα−Kd,αα̇, (7)

where θr denotes the reference for the angle θ and the
reference for the angle α is simply zero (pendulum rod in
the upright position).

The derivative components of PD regulators for angles
θ and α provide an approximation of θ̇ and α̇, respectively.
In other words, the control system in Fig. 2 can be
interpreted as a state-space regulator, where Kp,θ, Kp,α,
Kd,θ and Kd,α are state-space regulator gains for all
four state variables in (4): θ, α, θ̇ and α̇, respectively.
Therefore, values of regulator gains can be obtained from
the linearized model (4) by any state-space linear control
synthesis method, such as a pole placement method [4].

B. Linear Quadratic Regulator

The basic idea of optimal control methods is to find
the best (optimal) control signals, which minimize (or
maximize) a suitably chosen criterion function. For that
purpose, a mathematical model is used to describe a
dynamic behavior of the system (i.e. the dependence of
regulated state variables and/or output variables) as a
function of control signals. In order to limit the complexity
of the underlying optimization problem, the analysis of
system dynamics is usually carried out on a limited
prediction horizon. The criterion, i.e. the cost function,
usually penalizes the deviation of the state variables from
the desired equilibrium state as well as the usage of control
variables (i.e. the energy consumed for control purposes).
The described control problem can be formulated as the
following optimization problem:

min
u0,...,uN−1

1

2
x⊤NPxN +

1

2

N−1∑
k=0

[
x⊤k Qxk + u⊤k Ruk

]
s.t xk+1 = Axk +Buk, k = 0, . . . , N − 1,

x0 = x(0).

(8)

where the cost function is quadratic (with suitably sized
weighing matrices P = P⊤ ⪰ 0, Q = Q⊤ ⪰ 0
and R = R⊤ ≻ 0), N is the length od the prediction
horizon, system dynamics are described in discrete-time by
matrices A ∈ Rn×n and B ∈ Rn×m, and x(0) is a known
initial state of the system. The solution of (8) can be
obtained analytically in closed-form and the corresponding
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Fig. 2: Inverted pendulum control system based on two PD regulators.

optimal control signals can be expressed in the form of a
control law [4]:

uk = −Gkxk, k = 0, . . . , N − 1, (9)

where Gk ∈ Rm×n is the time-varying gain matrix. In
other words, the solution of the control problem (8) is
a time-varying state-space regulator. The obtained opti-
mal controller is called finite-horizon discrete-time linear
quadratic regulator (FDLQR). The special case of FDLQR
problem (8) is obtained when N approaches infinity. In
that case, if the pair (A,B) is stabilizable and the pair
(A,Q) is observable, all controller gains Gk converge to
the stationary value G∞ and the resulting time-invariant
(static) discrete linear quadratic regulator (DLQR) in state-
space is obtained [4]:

uk = −G∞xk, k = 0, . . . (10)

A simple implementation and inherent robustness with
guaranteed gain and phase margins [5] make a DLQR
controller a popular choice for control of multiple-input
multiple-output (MIMO) systems. The regulator tuning,
which is carried out by choosing different weighing ma-
trices Q and R, is intuitive, although the relationship
between controller parameters and the specified design
goals in time-domain is not as clear as with other methods,
like pole placement. However, the main disadvantage of
LQR control is that control input and state constraints
(e.g. saturation, actuator limits, physical constraints, etc.)
cannot be systematically taken into account.

C. Model Predictive Controller

Model predictive control (MPC) is a form of optimal
control and its principal idea is very similar to the linear
quadratic control discussed in III-B, i.e. a mathematical
model is used to predict the future behavior of the dynam-
ical system as a function of input control signals and opti-
mal control signals are obtained by minimizing a suitable
cost function. The main difference is that MPC does not

rely on any assumptions regarding linearity of the system
(i.e. the mathematical model of the system dynamics can
be nonlinear) and it can also take into account additional
constraints on state variables and control input variables.

In case of a linear discrete-time system dynamic model
and linear constraints on input and state variables, the
model predictive control problem can be formulated as
follows:

min
u0,...,uN−1

1

2
x⊤NPxN +

1

2

N−1∑
k=0

[
x⊤k Qxk + u⊤k Ruk

]
s.t xk+1 = Axk +Buk, k = 0, . . . , N − 1,

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1.
xN ∈ Xf , x0 = x(0).

(11)

where the cost is the same as in (8), N is the length of the
prediction horizon, X , U and Xf are polyhedral sets that
describe constraints on state vector x and input vector u,
and x(0) is a known initial state of the system.

Unlike LQ problem (8), the MPC problem (11) cannot
be solved analytically in general. i.e. the optimization
problem (11) needs to be solved numerically at each
time sample. For that reason, the MPC problem generally
cannot be analyzed for an infinite horizon, i.e. MPC
is always implemented with a finite prediction horizon.
The solution of (11) is an optimal control sequence u⋆0,
u⋆1, . . ., u⋆N−1. However, in order to introduce feedback
to the control algorithm, only the first element of the
control sequence, u⋆0, is applied to the system. At the next
sampling instant, the new initial state of the system x(0)
is measured or estimated and the optimization problem
(11) is solved again from that new initial state and with
a shifted prediction horizon, in accordance with the so-
called receding horizon control philosophy.

The closed-loop stability under the MPC control law
u = u⋆0 is not automatically guaranteed but it can be
ensured by carefully choosing the terminal cost function
and the terminal constraint set. In particular, if the stage
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TABLE II: PARAMETERS OF A SIMPLIFIED NONLINEAR PENDULUM
MODEL.

Parameter Value Unit
am 2.5585 1/s
Kp 82.33 rad · V/s2
C 2.5 · 10−3 kg ·m2/s

Ĵp 4.252 · 10−4 kg ·m2

mp 18 ·10−3 kg
g 9.91 m/s2

lp 0.17 m
K 1.9 · 10−3 sign(cosα) kg/m2

cost is positive definite, terminal set Xf is invariant under
the local control law v(xk), all state and input constraints
are satisfied in Xf , the terminal cost is a continuous
Lyapunov function in the terminal set Xf and it decreases
along the closed loop trajectories, then the closed-loop
system under the MPC control law is asymptotically
stable and the terminal constraint set provides recursive
feasibility [6].

The common choice for the terminal controller is the
unconstrained DLQR control law, the terminal weight P
is chosen as the corresponding solution of the discrete-
time algebraic Riccati equation, and the terminal set Xf

is chosen as the maximum invariant set for the closed-
loop system under the terminal control law. Even under
the assumption that the mathematical model of the system
dynamics is linear and all state and input constraints
are linear, the resulting MPC control law is generally
nonlinear. This can be easily seen if the optimization
problem (11) is solved as a multi-parametric quadratic
program (mp-QP) for all possible values of initial state x0.
The optimizer u⋆0(x0) expressed as an explicit function of
the initial state x0 is a continuous piecewise affine function
defined on polyhedra [7].

D. Sliding Mode Controller

For sliding mode (SM) controller synthesis, a simpli-
fied nonlinear model of the Furuta pendulum is used as
described in [8]:

θ̈ = −amθ̇ +Kpu, (12)

α̈ = − C

Ĵp
α̇+

mpglp

2Ĵp
sin(α)− K

Ĵp
amθ̇ +

K

Ĵp
Kpu. (13)

Equation (12) represents the dynamics of the DC motor
which rotates the pendulum base while (13) represents the
dynamics of the inverted pendulum itself.

The constant am includes back-EMF and friction ef-
fects. Kp includes the effect of the input voltage on
the angular acceleration of the base. C represents the
pendulum friction, mp the pendulum’s mass, Ĵp is the
pendulum moment of inertia calculated at its centre of
mass, and g is the gravitation constant while K is a
constant that has a positive value for the inverted and
a negative value for non-inverted position. The control
input u still denotes the DC voltage applied to the motor.
The values of all parameters of the simplified nonlinear
pendulum model are reported in Table II.

In order to achieve control of both angles θ and α using
a single sliding surface the following transformation needs
to be applied [8]:

y = θ − Ĵp
K
α, (14)

x = ẏ − C

K
α. (15)

Equations (14) and (15) transform the system to the
following formulation:

ẋ = −mpglp
2K

sin(α), (16)

ẏ = x+
C

K
α. (17)

The design of the sliding mode controller from the equa-
tions above is described in detail in [8]. The time derivative
of the sliding surface has the form:

ṡ =
KKp

Ĵp
cos (α)u+ ψ(x, y, α, α̇), (18)

where ψ is a nonlinear function of the system states. The
sliding mode controller is stable if the sliding surface and
its derivative have opposing signs:

ṡ = −η sign(s). (19)

The final control signal for sliding mode control as pro-
posed in [8] has the following form:

u =
−Ĵp

KKp cosα
(ψ + η sign(s)). (20)

In order to reduce chattering in the control signal applied
to the experimental setup, equation (19) is replaced with:

ṡ = −η tanh(s/2). (21)

IV. EXPERIMENTAL RESULTS

All controllers discussed in Section III have been tested
on the laboratory experimental setup described in Section
II. The choice of controller parameters for each controller
is briefly discussed first and then the experimental results
are presented and analyzed.

A. PD regulator

PD regulator gains were determined by a pole placement
method as follows: Kp,θ = −1, Kp,α = 12, Kd,θ = −0.5,
Kd,α = 1.5. With such choice of controller gains all
closed-loop poles are located in the left half-plane of the
complex plane (−69.0423, −6.8722,−1.8595 ± 3.5848j)
and the closed-loop system is stable. Tf was set to 20 ms.
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B. DLQR

The continuous-time linear model (4) was discretized
using a zero-order hold (ZOH) discretization with a
sampling time of Td = 10 ms. The weighing matri-
ces Q and R were chosen as Q = diag (40, 40, 1, 1)
(where diag denotes a diagonal matrix with diagonal
elements listed in brackets) and R = 30. The optimal
gains were computed by solving the discrete algebraic
Riccati equation and the values obtained are KDLQR =
[−0.9592, 10.3582, −0.5756, 1.2128].

C. MPC

The MPC optimization problem (11) was formulated
using the same discretized linearized model that was used
to design a DLQR controller in the previous subsection.
The same DLQR controller was used as a terminal con-
troller for the MPC, the corresponding solution of the
Riccati equation was chosen as the terminal cost function
weight P , and the terminal set Xf was chosen as the
maximum invariant set for the closed-loop system under
the terminal control law, as previously discussed in Section
III. Prediction horizon length was set to N = 20. Control
input was constrained to −3 ≤ u ≤ 3. The described MPC
algorithm was implemented in Simulink using Matlab’s
MPC Toolbox.

D. SM controller

The following controller parameters for the sliding-
mode controller were used: λ = 900 and η = 80 [8]. Such
choice ensures that the control input signal is between its
maximum and minimum values ±3 V.

E. Experiments

To test all designed controllers, the following reference
for the angle θ was used: for the first 12 seconds the
reference θr remains at zero, then for the next 12 second it
switches to 60 degrees, and finally for the last 12 seconds
it goes back to zero. The pendulum rod is manually
lifted to the upright position in the first 5 seconds of the
experiment. Fig. 3 shows: (a) the response of the angle θ
(upper sub-figure), (b) the response of the angle α (sub-
figure in the middle), and (c) the applied control signal u
(lower sub-figure).

From Fig. 3 it can be seen that all designed controllers
are successful to a certain degree at controlling both angles
α and θ. They all however have a certain drift in angle
θ (Fig. 3a). For the SM controller this drift is smaller
than for other controllers because it was derived using
a nonlinear model while other controllers were designed
using a linearized model. However, the drift still exists
for the SM controller and may be explained by simplified
modelling of the pendulum, which did not include all
nonlinear effects present on the real pendulum.

The response of angle α is also the best in case of the
SM controller where the oscillations around the upright
position were the smallest (less than 1 degree). For all

other controllers these oscillations were slightly larger
(around 5 degrees on average) with jumps to almost 15
degrees in time instances when sudden change of the
reference for angle θ occurs which is accompanied by a
corresponding jump in the control signal (Fig. 3c). This
jump in the control signal is easy to understand in the
case of the PD regulator: a sudden change of the reference
signal produces an impulse in the derivative component of
the PD regulator.

The control signal is the most active in the case of
the SM controller, where chattering effect can be noticed,
which causes fast switching behavior (even if the tanh
function is used instead of sign function in (19)). For all
other controllers the control input signal remained mostly
between −1 and +1 volts, except at time instances when
the reference changes, as discussed previously.

The relatively poor tracking of angle θ for PD, DLQR
and MPC controllers can be explained by a nonlinear
effect in the system which was not taken into account.
The nonlinear effect in question is the static friction of the
motor. Since the motor is controlled by the voltage, this
means that the motor will not react if the supplied voltage
is too small (e.g. smaller than 0.5 V), which manifests
as a dead-zone at the system’s input. The easiest way to
compensate the dead-zone in this case is to add a small
offset to the control signal (e.g. +0.4 V if u > 0 and −0.4
V if u < 0) to overcome the dead-zone.

Since the control signal normally oscillates around zero
(to keep the pendulum rod in the upright position), the
described addition of an offset to the control signal is
expected to introduce a higher frequency component signal
at the system’s input (due to frequent changes between
plus and minus offsets), which is similar in effect to adding
a dither to a control signal. However, the average value
of such modified control signal should be similar to the
original control signal so the behavior of the system should
be closer to the desired behavior.

Fig. 4 shows the response of the system when the
proposed static friction compensation scheme is employed.
From Fig. 4a and Fig. 4b it is evident that PD, DLQR
and MPC perform much better than before. As expected,
this was paid by a much more active control signal as
shown in Fig. 4c, where higher frequency oscillations
were introduced to overcome the dead-zone. These higher
frequency oscillations propagated from the input to the
output of the system, as can be seen from the responses
of output angles θ and α.

V. CONCLUSION

Several control methods for stabilizing a rotary inverted
pendulum were described and tested on a real experimental
setup. All tested controllers were successful at keeping
the pendulum rod in the upright position and at the
same time tracking the reference for the pendulum arm.
Controllers derived from a linearized model were more
sensitive to unmodeled nonlinear effects such as the input
dead-zone. However, with a simple dead-zone compensa-
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(a) Reference tracking for angle θ.
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(b) Reference tracking for angle α.
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(c) Control input signal u.

Fig. 3: Experimental results for all tested controllers (without static
friction compensation).

tion scheme the response of the system was significantly
improved. Hence, in this case, adding a suitable static
friction compensation has a larger impact on the closed-
loop behavior than selecting different control solutions.
MPC was designed to emulate the infinite horizon DLQR
and PD gains were also very similar to DLQR gains, which
is why they performed similarly. Advantages of MPC
would be more obvious if the system was driven closer to
the constraints or if reference signal was explicitly taken
into account on the prediction horizon in the optimization
problem formulation.
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