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Abstract — This paper introduces a direct trajectory 

planning approach for manipulator robots, seamlessly 

transitioning from the task space to the robot joint space, 

while adhering to kinematic (joint position and velocity 

boundaries) and dynamic (torque limits) constraints. The 

proposed method employs state-space modeling utilizing joint 

positions and their derivatives up to order n-1 as state 

variables, and the nth derivative of joint positions as the 

control signal to guarantee continuity and differentiability 

during interpolation. Furthermore, the output of the state-

space model created are the forward and differential 

kinematics of the robot, enabling interpolation with 

consideration for posture (position and orientation) and 

velocity (linear and angular) in the task space. Thereby, the 

optimal control signal computation is derived via the 

minimization of the Square Error between the state-space’s 

output with the desired final output through quasi-Newton 

optimization. Then, the calculation of joint values over time is 

achieved via the nth integration of the previously computed 

control signal using the Cauchy formula for repeated 

integration. Finally, the proposed method is validated on the 

ABB-IRB-120 robot model, where it demonstrates a unified 

solution for task-space path planning under both kinematic 

and dynamic constraints. 

Keywords - robotic trajectories, kinematic interpolation, 

robotic manipulator, inverse kinematics 

I.  INTRODUCTION 

In manipulator robot path planning, the conventional 
approach typically involves a sequential process. It begins 
with deriving inverse kinematics (IK) for each point in the 
task space. Subsequently, interpolation is performed at the 
respective time interval for each joint value obtained from 
the IK solution [1]. 

Firstly, IK involves determining the joint values 
necessary for a kinematic chain to reach a specified point in 
its workspace being able to coincide both in position and 
orientation [2]. Conventional approaches to solving this 
problem include analytical solvers and numerical 
techniques like Newton-Raphson or Jacobian inverse [3]. 
However, other strides in metaheuristic methods have 
introduced innovative stochastic solutions to the inverse 
kinematics puzzle among which stand out Particle Swarm 
Optimization (PSO) [4, 5] and Genetic Algorithms [6, 7]. 
With respect to heuristic methods, FABRIK is an algorithm 
introduced by [8] for computer graphics which outstands 

by its fast IK solution’s convergence just using vector 
operations; reason why FABRIK has had adaptations in the 
field of robotics [9, 10, 11]. 

Continuing, interpolation-based path planning methods 
involve determining joint values that connect other joint 
values within a specified time interval and satisfying 
defined boundary conditions [12]. In [13], a trajectory 
planning approach for a 6-degree-of-freedom (DoF) 
modular manipulator is proposed, utilizing polynomial 
interpolation, demonstrating enhanced trajectory accuracy 
and efficiency compared to alternative methods. Similarly, 
[14] introduces a reverse splitting and local interpolation 
method to optimize the motion trajectory of dual 
manipulator robots, resulting in the removal of redundant 
path nodes and improved path quality. Also, in [15] a 
bidirectional interpolation method for sampling-based path 
planning algorithms is presented, reducing path lengths, 
and enhancing path shape compared to other algorithms. 
For smooth interpolations in the task space, [16] employs 
dual quaternions interpolation using the SLERP technique, 
yet this approach, while accommodating velocity 
conditions, is limited to creating speed curves of class C1, 
indicating non-differentiability in acceleration within its 
interpolation domain. To address this limitation, [17] 
introduces interpolation based on logarithmic quaternion 
generating curves, offering differentiability as desired; 
however, this method does not consider speed conditions.  

On the other hand, the derivatives of angular positions 
in robots must be differentiable and continuous [18] to 
generate smooth angular trajectories without singularities. 
This ensures that joint torques, directly proportional to 
acceleration and the square of joint speed according to 
Lagrange-Euler dynamic modeling [19], remain continuous 
and differentiable, ensuring the robot actuators' smooth and 
precise movement [18]. This requirement is crucial for 
optimal end-effector movement, as emphasized in [20] with 
parallel Dexterous Twin Arms Robots (DexTAR). 

The present work presents a streamlined trajectory 
planning methodology, deviating from the conventional 
approach by initiating with state-space modeling of robot 
kinematics in joint space, which incorporates joint 
positions and their derivatives up to order n-1 as state-space 
variables, and the control signal defined as the nth 
derivative of joint positions, to ensure continuity and 
differentiability during interpolation. For the output of the 
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state-space model, forward and differential kinematics of 
the robot are considered, facilitating trajectory interpolation 
using the task space information as the target to be reached 
through the control signal computed using quasi-Newton 
optimization, which also incorporates kinematic and 
dynamic constraints—joint positions, velocities, and torque 
limits— to guarantee a cohesive trajectory. Thereby, once 
the control signal is computed, its nth integration is 
performed via the Cauchy formula which results in the joint 
values over time (interpolation). These results are reflected 
in the tests on the ABB-IRB-120 robot model, which 
validates the effectiveness of the proposed method in 
unified path planning within the task space under kinematic 
and dynamic constraints. 

The article structure is outlined as follows: Section II 
presents the robotic model (kinematics and dynamics 
parameters), state-space modeling of robot joint’s 
kinematics, and the optimization for finding the control 
signal with subsequent integration for interpolation. In 
Section III, results of the interpolation in the task space and 
in the joint space are detailed, where for the first and fourth 
joints of the robot are illustrated the angular positions with 
their derivatives and torques, also with their respective 
boundaries. Finally, section IV gives the work’s final 
conclusions. 

II. MATERIALS AND METHODS 

A. The Robot Model 

The robotic model used in this work was the ABB-IRB-
120, which is a 6-DoF compact (25 kg mass), and precise 
industrial robot manufactured by ABB, recognized for its 
small size and high payload capacity [21]. Fig 1 shows the 
robotic model, indicating the inertial reference frame, the 
kinematic parameters, its respective enumerated joints, and 
its links highlighted with different colors starting from the 
purple one as noted in the legend. 

 

Figure 1.  Links and joints of the ABB-IRB-120 robot [21] 

The Denavit-Hartenberg (DH) parameters of the robotic 
manipulator that complement the previous image are 
shown in the following table. 

TABLE I.  DENAVIT-HARTENBERG PARAMETERS OF THE ABB-
IRB-120 ROBOT 

N° 

joint 

Parameters 

θi (rad)  di (mm) αi (rad) ai (mm) 

1 θ1 290 -½π 0 

2 θ2 0 0 270 

3 θ3 0 ½π 70 

4 θ4 374 -½π 0 

5 θ5 0 ½π 0 

6 θ6 75 0 0 

 

Likewise, the data on the maximum and minimum joint 
values, the maximum velocities and maximum torques that 
each of the joints of the ABB-IRB-120 robotic manipulator 
can reach are found in Table II. 

TABLE II.  ABB-IRB-120 ROBOT JOINT LIMITS 

N° 

joint 

Joint position (deg°) Max joint 

velocity 

(deg°/s) 

Max joint 

torque (N.m) min max 

1 -165 165 250 4.8 

2 -110 110 250 4.8 

3 -70 110 250 4.8 

4 -160 160 320 4.8 

5 -120 120 320 4.8 

6 -400 400 420 2.2 

 

In the same way, in Table III are shown the dynamic 
parameters of the robotic model, where the center of mass 
is expressed relative to the frame of each link and the 
inertia tensors are expressed with respect to the center of 
mass of each link. 

TABLE III.  DYNAMIC PARAMETERS OF THE ABB-IRB-120 ROBOT 

N° 

link 

Center of mass (m) 
Inertia Tensor (kg.m2) 

Mass 

(kg) x y z 

1 -0.05 0.0 0.01 [
0.012 0 0
0 0.011 0
0 0 0.01

] 0.29 

2 0.0 0.0 0.124 [
0.064 0 0
0 0.012 0
0 0 0.064

] 0.27 

3 0.0 0.024 0.058 [
0.35 −0.23 0
−0.23 0.18 0
0 0 0.37

] 0.07 

4 -0.09 0.0 0.0 [
0.01 0 0
0 0.008 0
0 0 0.006

] 0.347 

5 0.0 0.06 0.0 [
0.002 0 0
0 0.002 0
0 0 0.002

] 0.07 

6 -0.09 0.0 0.0 [
0.001 0 0
0 0.001 0
0 0 0.001

] 0.002 

2102 MIPRO 2024/RTA



B. State-Space Kinematic Modeling 

One of the simplest motions studied in kinematics is the 
Uniformly Accelerated Rectilinear Motion (UARM), which 
exists under the assumption that acceleration is constant 
over a time interval Δ𝑡  [22]. However, if instead of the 
acceleration being constant in the given time interval Δ𝑡, 

more generally, the nth derivative of position 
𝑑𝑛𝑥

𝑑𝑡𝑛
 is instead. 

So, the equation system that describes the next position 
𝑥𝑖+1 and its derivatives after Δ𝑡 is shown below. 

 

𝑥(𝑖+1) = 𝑥(𝑖) +
𝑑𝑥(𝑖)

𝑑𝑡
Δ𝑡 +

𝑑2𝑥(𝑖)

𝑑𝑡2
Δ𝑡2

2
+⋯+

𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
Δ𝑡𝑛

𝑛!

𝑑𝑥(𝑖+1)

𝑑𝑡
=

𝑑𝑥(𝑖)

𝑑𝑡
+

𝑑2𝑥(𝑖)

𝑑𝑡2
Δ𝑡 + ⋯+

𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
Δ𝑡𝑛−1

(𝑛−1)!

⋮
𝑑𝑛−1𝑥(𝑖+1)

𝑑𝑡𝑛−1
=

𝑑𝑛−1𝑥(𝑖)

𝑑𝑡𝑛−1
+

𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
Δ𝑡

   () 

This equation system can be rewritten using the discrete 
time state-space matrices notations as is shown below. 

 �⃗�(𝑖+1) = 𝐴�⃗�(𝑖) + 𝐵𝑢(𝑖)                          () 

Where �⃗�(𝑖) = [𝑥(𝑖),
𝑑𝑥(𝑖)

𝑑𝑡
 , … ,

𝑑𝑛−1𝑥(𝑖)

𝑑𝑡𝑛−1
]
𝑇

 is a column 

vector that has the information of a single variable and its 

derivatives at the moment “i”; also 𝑢(𝑖) = [
𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
]  is the 

control vector that in this case just has a single scalar value 
corresponding with the nth derivative of the position. Thus, 
the elements of the matrices A and B are shown in the 
equalities (3) and (4) respectively, which are just in 
function of Δ𝑡 and the position derivative order “n”. 

 𝐴 =

[
 
 
 
 1 Δ𝑡 …

Δ𝑡𝑛−1

(𝑛−1)!

0 1 …
Δ𝑡𝑛−2

(𝑛−2)!

⋮ ⋮ ⋱ ⋮
0 0 … 1 ]

 
 
 
 

[𝑛×𝑛]

                   () 

 𝐵 =

[
 
 
 
 
Δ𝑡𝑛

𝑛!

Δ𝑡𝑛−1

(𝑛−1)!

⋮
Δ𝑡 ]

 
 
 
 

[𝑛×1]

                           () 

Nevertheless, the equation (2) could be used just to 
predict the values of a single variable (single joint) and its 
derivatives. So, to add all the “m” joints of a robot in a 
single state-space model, the equation (5) is presented, 

where the column vector 𝑋(𝑖) = [�⃗�1
𝑇, �⃗�2

𝑇, … , �⃗�𝑗
𝑇, … , �⃗�𝑚

𝑇 ]
(𝑖)

𝑇
 

owns orderly all the m joints of the robot and its derivatives 
at the moment “i”; also the same with the vector 𝑈(𝑖) =

[𝑢1, 𝑢2, … , 𝑢𝑗 , … , 𝑢𝑚](𝑖)
𝑇

, which has the nth derivative for 

all the robot joints and works as the control vector for the 
system. 

 𝑋(𝑖+1) = 𝔸𝑋(𝑖) + 𝔹𝑈(𝑖)                    () 

In addition, the matrices 𝔸  and 𝔹  are created by 
repeatedly placing the matrices 𝐴  and 𝐵  diagonally 
respectively according with the robot’s DoF “m” as is 
shown in equalities (6) and (7). 

 𝔸 = [

𝐴 0 … 0
0 𝐴 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝐴

]

[𝑛∙𝑚×𝑛∙𝑚]

              () 

 𝔹 = [

𝐵 0 … 0
0 𝐵 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝐵

]

[𝑛∙𝑚×𝑚]

                () 

Now, the output of the system is assumed in this work 
to be the forward kinematic (FK), computed with 
homogeneous transformation matrices, whose rows then 
are stacked with the velocity of the robot’s end-effector as 
shown in equation (8). But it can be added other variables 
in function of the joint’s acceleration, jerk, jounce, etc., 
according to the conditions of the trajectory to be 
interpolated. The FK is in function of the articulation 
positions which are represented by the articulation value 

vector �⃗�(𝑖) = [𝑥1, … , 𝑥𝑗, … , 𝑥𝑚](𝑖)
𝑇

; similar way with the 

end-effector velocity which is the result of the product of 
the Jacobian matrix of the FK with the articulation velocity 

vector �⃗̇�(𝑖) = [
𝑑𝑥1

𝑑𝑡
, … ,

𝑑𝑥𝑗

𝑑𝑡
, … ,

𝑑𝑥𝑚

𝑑𝑡
]
(𝑖)

𝑇

. Both �⃗�𝑖  and �⃗̇�𝑖  can 

be formed by rearranging the state vector 𝑋𝑖. 

 𝑌(𝑖) = [
𝐹𝐾(�⃗�(𝑖))

𝐽(�⃗�(𝑖)) ∙ �⃗̇�(𝑖)
]                             () 

To compute the array of next “k” values of the robot’s 

joint states [𝑋] = [𝑋(1), 𝑋(2), … , 𝑋(𝑘)]
𝑇
given an array of “k” 

control vectors [𝑈] = [𝑈(0), 𝑈(1), … , 𝑈(𝑘−1)]
𝑇

; it can be 

done straightforwardly using the equality (9), which uses 
the initial state vector 𝑋(0), the matrix ℳ and the prediction 

matrix ℵ. 

 [𝑋][𝑚∙𝑛∙𝑘×1] = ℳ𝑋(0) + ℵ[𝑈][𝑚∙𝑘×1]                  () 

The matrix ℳ  multiplies the vector of joint’s initial 
state 𝑋0, and it is formed by the stacking of powers of the 
matrix 𝔸 as is shown in the equation (10). 

ℳ = [

𝔸
𝔸2

⋮
𝔸𝑘

]

[𝑘∙𝑛∙𝑚×𝑛∙𝑚]

                         () 

Similarly, the prediction matrix ℵ multiplies the vector 
[𝑈] composed of the stacking of the control signal vectors 
for each prediction horizon “k”. Also, this matrix is formed 
by products between powers of the matrix 𝔸  with the 
matrix 𝔹 as noted in the equation (11). 
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 ℵ =

[
 
 
 
 

𝔹 0 … 0
𝔸𝔹 𝔹 … 0
𝔸2𝔹 𝔸𝔹 … 0
⋮ ⋮ ⋱ ⋮

𝔸𝑘−1𝔹 𝔸𝑘−2𝔹 … 𝔹]
 
 
 
 

[𝑘∙𝑛∙𝑚×𝑚∙𝑘]

      () 

C. Interpolation 

If the end-effector of a robotic manipulator has to move 
from the pose 𝑃0 to the pose 𝑃1 beginning with a velocity 
𝑉0  and ending with a velocity 𝑉1  during a period 𝑇 
beginning at 𝑡0 , it’s important to compute the optimal 
values of [𝑈]  in the equation (9); in such way that the 
equation (8) valued at 𝑋(𝑘), the last element of [𝑋], must 

meet the conditions of end position and end velocity said.  

To being, for the computation of the prediction matrix 
𝕄, it is important to know Δ𝑡 and the position derivative order 
“n”. The last one has to do with the desired smoothness of 
the trajectory. For example, if the derivative of certain 
order “c” of the joint position is required to be continuous, 
then the control signal must the following order derivative, 
this is 𝑛 = 𝑐 + 1. However, if the derivative of order “c” of 
the joint position is required to be differentiable in addition 
to being continuous, then 𝑛 = 𝑐 + 2 . Thereby, for this 
work to ensure the joint torques to be continuous and 
differentiable according to the inverse dynamic of Euler-
Lagrange equation (11), it can be inferred that joint 
positions, velocities and accelerations must be continuous 
and differentiable also, which leads to choose 𝑐 = 2 
(second derivative of joint position or acceleration) and 
then 𝑛 = 4  (fourth derivative of the joint position or 
jounce). 

 𝜏𝑖 = 𝑀(�⃗�𝑖)�⃗̈�𝑖 + 𝐶(�⃗�𝑖, �⃗̇�𝑖)�⃗̇�𝑖 + 𝐺(�⃗�𝑖)            () 

Now, to determine Δ𝑡  it’s necessary to know the 
number of divisions “k” to be carried out in the period T, so 
that the fourth derivative of joints remain constant in each 
interval. To determine the minimum value of “k”, it’s 
inferred that 𝑘 ≥ 𝑛. Consequently, the time interval Δ𝑡 can 

be computed by Δ𝑡 =
𝑇

𝑘
, and with this information the 

matrix ℳ and the prediction matrix ℵ can be formed using 
the equations (3), (4), (6), (7), (10) and (11). For this work 
a value of 𝑘 = 6 was used for a period 𝑇 = 2𝑠. 

The loss function (L) to minimize is found depending 
on the desired posture to be reached 𝑃1, the desired velocity 
𝑉1 at that pose, and the vector 𝑌(𝑘), shown in equation (8), 

which expresses the end-effector final pose and velocity at 
the end of the path, which is also depending on the time 
series of the control vectors [𝑈] as posited in equation (9). 

 𝐿(𝑃1, 𝑉1, [𝑈]) = |[
𝑃1
𝑉1
] − 𝑌(𝑘)|

2

                () 

The following step is to compute the set of control 

actions [𝑈] which can be done by any constrained non-

linear minimization strategy as shown in equation (13). 

For this work, the Quasi-Newton method was used under 

the constraints highlighted in Table II of joint positions �⃗�𝑖, 

velocities �⃗̇�𝑖  and the torques 𝜏𝑖  computed using the 

dynamic parameters of the Table III and the equation (11).  

[𝑈] = argmin
[𝑈]

{𝐿}                              () 

The optimization of (13) is performed under the 

constrains �⃗�𝑚𝑖𝑛 < �⃗�(𝑖) < �⃗�𝑚𝑎𝑥 , −𝑣𝑙 < �⃗̇�(𝑖) < 𝑣𝑙 , and 

−𝜏𝑙 < 𝜏𝑖 < 𝜏𝑙 . Where �⃗�𝑚𝑖𝑛  and �⃗�𝑚𝑎𝑥  are vectors of the 
lower and maximum values permitted for each of the “n” 
robot’s articulations; 𝑣𝑙  and 𝜏𝑙  are vectors of the limit 
values of the joint’s velocities and torques permitted. 

Finally, once the set of control signals [𝑈]  are 

computed, the interpolation of each joint values 𝑥𝑗 is done 

by integrating n-times each piecewise function 𝑓𝑗(𝑡) 
formed by each control value 𝑢𝑗,𝑖  (remembering that 1 ≤
𝑗 ≤ 𝑚 is the joint number, and 1 ≤ 𝑖 ≤ 𝑘 is the ith position 
in time) during the period T as it’s shown in equality (14). 
To do so, the Cauchy formula for repeated integration 
shown in equation (15) was used, considering 1 ≤ 𝑝 ≤ 𝑛. 

 𝑓𝑗(𝑡) =

{
  
 

  
 

𝑢𝑗,1: 𝑡0 ≤ 𝑡 < 𝑡0 + Δ𝑡

𝑢𝑗,2: 𝑡0 + Δ𝑡 ≤ 𝑡 < 𝑡0 + 2Δ𝑡

⋮
𝑢𝑗,𝑖: 𝑡0 + (𝑖 − 1)Δ𝑡 ≤ 𝑡 < 𝑡0 + 𝑖Δ𝑡

⋮
𝑢𝑗,𝑘: 𝑡0 + (𝑘 − 1)Δ𝑡 ≤ 𝑡 < 𝑡0 + 𝑇

       () 

 
𝑑(𝑛−𝑝)𝑥𝑗(𝑡)

𝑑𝑡(𝑛−𝑝)
=

1

𝑝!
∫ (𝑡 − 𝑤)𝑝𝑓𝑗(𝑤)𝑑𝑤
𝑡

𝑡0
            () 

D. Observations 

Granted that the loss function (12) has to do with the 

FK of the robot, this expression if formed by the 

trigonometric functions’ sine and cosine which endow the 

loss function with non-linearity. For this reason, the 

optimization is a non-convex problem, although the 

constrains are linear. Also, because the solution also solves 

the problem of IK, a problem which has infinite solutions, 

this is why the solution obtained can be non-global. 

However, this happens meanly if the system is redundant. 

Then, if the kinematic chain is non-redundant, the problem 

can be simplified by using IK to find the final joint values, 

and then using the Jacobian matrix to calculate the joint 

velocities. And with these values the only thing that would 

be left would be to optimize equation (9) where no 

trigonometric functions are involved, and the problem 

would be convex. However, the objective of the proposed 

method is not to use previous solutions of IK, which could 

bias the results obtained. But IK can be used to check if 

the target posture is achievable, to rule out problems that 

have no solution. 

On the other hand, the chosen period T must be realistic 

for the robot to achieve its objective. Opting for an 

excessively short time might lead to accelerations and 

torques that violate restrictions, preventing the solver from 

converging to a solution. It's essential to highlight that this 

is an interpolation issue, not a control problem. Unlike 

nonlinear control problems where convergence is assured 
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without specifying the time, in this scenario, the desired 

time for the robot to reach its goal is predetermined. 

III. RESULTS 

Considering the manipulator begins its movement with 
all its joints in the zero position as well as its temporal 
derivatives. The goal is the end-effector of the manipulator 
after 2 seconds reaching the task-space pose and the task-
space velocity shown in Table IV. 

TABLE IV.  TARGETS OF THE END-EFFECTOR 

Target Pose 

Position (m) Orientation (rad) 

𝒙 𝒚 𝒛 Pitch 𝜽 Roll 𝜻 Yaw 𝝋 

-0.0813 0.2866 0.1322 -0.3131 0.0382 -1.9557 

Target Velocity 

Linear (m/s) Angular (rad/s) 

𝒗𝒙 𝒗𝒚 𝒗𝒛 𝝎𝒙 𝝎𝒚 𝝎𝒛 

-0.1532 0.1648 0.1582 0.1769 0.0309 0.0487 

 

To give a better illustration of what the previously 
proposed task represents for the robot, Fig. 2 shows an 
illustration where ABB-IRB-120 is observed with all its 
joints at zero which leads to the axes of the end-effector to 
be perfectly aligned with the axes of the inertial reference 
frame (red for the x axis, green for the y axis and green for 
the z axis). The figure also shows the axes of the new target 
posture of the robot, as well as the vector of the target 
linear velocity (light blue arrow) and the target angular 
velocity (purple arrow with oriented arc). 

 

Figure 2.  ABB-IRB-120 with its target position and velocity in task-

space 

Thus, by minimizing the loss function (12) by the 
constrained Quasi-Newton method, the optimized control 
signal 𝑢𝑗 for each joint along the given period are found. 

Graphically, it can be appreciated in Fig.3 that after 138 
iterations, lasting 5.42s, the cost function reached the 
minimum value of 6.26611 ∙ 10−12  which is relatively 
near zero; meaning that at the end of the given period, the 
manipulator’s end-effector reached the target pose and the 
target velocity in the task-space, and the optimized control 
signals allowed this to be achieved. 

 

Figure 3.  Values of the cost function in each iteration 

Then, integrating consecutively these control signals 
using the formula (15) the interpolation of the joints and 
their derivatives are arrived. To illustrate this fact, in Fig.4 
these results are shown for the first and fourth joints of the 
robot, where it was graphed the control signals or the fourth 
derivative of the joint positions (𝑢1 and 𝑢4) as well as their 
repetitive integrations over time until reaching the joint 
values, and also the torques (𝑇1 and 𝑇4) computed through 
equation (11). In addition, it can be appreciated that for 
joint positions, velocities and torques, their values are kept 
within the boundaries (red lines) given in Table II. 

 

Figure 4.  Control signals, derivatives and torques of the first and fourth 

manipulator’s joint and its torques 

Finally, with the joint values over time computed, these 
values can be used in the FK equation of the robot to 
recreate the trajectory in the task-space that the robot's end 
effector must travel during the given period. The result of 
this operation is shown in Fig.5, where it can be 
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appreciated the path and the axes of the end-effector, which 
corroborates that this reached the objective of its trajectory 
at the end. 

 

Figure 5.  Result of the interpolation in the task-space of the robot ABB-

IR-120 

IV. CONCLUSIONS 

In summary, the methodology outlined in this study 
successfully executed trajectory planning within the joint-
space of the ABB-IRB-120 robotic model without prior 
knowledge of the inverse kinematics solution for the given 
targets in the task-space. This was achieved by modeling 
the kinematics of the robot considering the joint positions 
and their derivatives for the state vector, and the direct 
together with the differential kinematics for the output 
vector of the system. Thus, by defining the specified target 
posture and target velocity of the end-effector in the task-
space; the approach seamlessly computed the control 
signals of the joints within the predefined motion duration 
using the constrained Quasi-Newton method, just having a 
low error of 6.26611 ∙ 10−12  on the manipulator’s end-
effector pose and velocity with respect to the previous 
defined task-space target at the end of the path. Crucially, 
the method took into account both kinematic constraints, 
encompassing joint positions and velocities considerations, 
and dynamic constraints related to joint torques. The 
obtained results not only guaranteed the continuity and 
differentiability up to the second derivative (C2 curves) in 
both task-space and joint-space trajectories but also ensured 
continuity up to the third derivative. 
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