

An Integrated Approach to Robotic Joint

Interpolation: Kinematic Modeling and

Constraints for Smooth Trajectories

Luis Antonio Orbegoso Moreno, Edgar David Valverde Ramírez, José Luis Ruíz Rodríguez, Isac Daniel

Miñano Corro

National University of Trujillo, Trujillo, Peru

lorbegoso@unitru.edu.pe

Abstract — This paper introduces a direct trajectory

planning approach for manipulator robots, seamlessly

transitioning from the task space to the robot joint space,

while adhering to kinematic (joint position and velocity

boundaries) and dynamic (torque limits) constraints. The

proposed method employs state-space modeling utilizing joint

positions and their derivatives up to order n-1 as state

variables, and the nth derivative of joint positions as the

control signal to guarantee continuity and differentiability

during interpolation. Furthermore, the output of the state-

space model created are the forward and differential

kinematics of the robot, enabling interpolation with

consideration for posture (position and orientation) and

velocity (linear and angular) in the task space. Thereby, the

optimal control signal computation is derived via the

minimization of the Square Error between the state-space’s

output with the desired final output through quasi-Newton

optimization. Then, the calculation of joint values over time is

achieved via the nth integration of the previously computed

control signal using the Cauchy formula for repeated

integration. Finally, the proposed method is validated on the

ABB-IRB-120 robot model, where it demonstrates a unified

solution for task-space path planning under both kinematic

and dynamic constraints.

Keywords - robotic trajectories, kinematic interpolation,

robotic manipulator, inverse kinematics

I. INTRODUCTION

In manipulator robot path planning, the conventional
approach typically involves a sequential process. It begins
with deriving inverse kinematics (IK) for each point in the
task space. Subsequently, interpolation is performed at the
respective time interval for each joint value obtained from
the IK solution [1].

Firstly, IK involves determining the joint values
necessary for a kinematic chain to reach a specified point in
its workspace being able to coincide both in position and
orientation [2]. Conventional approaches to solving this
problem include analytical solvers and numerical
techniques like Newton-Raphson or Jacobian inverse [3].
However, other strides in metaheuristic methods have
introduced innovative stochastic solutions to the inverse
kinematics puzzle among which stand out Particle Swarm
Optimization (PSO) [4, 5] and Genetic Algorithms [6, 7].
With respect to heuristic methods, FABRIK is an algorithm
introduced by [8] for computer graphics which outstands

by its fast IK solution’s convergence just using vector
operations; reason why FABRIK has had adaptations in the
field of robotics [9, 10, 11].

Continuing, interpolation-based path planning methods
involve determining joint values that connect other joint
values within a specified time interval and satisfying
defined boundary conditions [12]. In [13], a trajectory
planning approach for a 6-degree-of-freedom (DoF)
modular manipulator is proposed, utilizing polynomial
interpolation, demonstrating enhanced trajectory accuracy
and efficiency compared to alternative methods. Similarly,
[14] introduces a reverse splitting and local interpolation
method to optimize the motion trajectory of dual
manipulator robots, resulting in the removal of redundant
path nodes and improved path quality. Also, in [15] a
bidirectional interpolation method for sampling-based path
planning algorithms is presented, reducing path lengths,
and enhancing path shape compared to other algorithms.
For smooth interpolations in the task space, [16] employs
dual quaternions interpolation using the SLERP technique,
yet this approach, while accommodating velocity
conditions, is limited to creating speed curves of class C1,
indicating non-differentiability in acceleration within its
interpolation domain. To address this limitation, [17]
introduces interpolation based on logarithmic quaternion
generating curves, offering differentiability as desired;
however, this method does not consider speed conditions.

On the other hand, the derivatives of angular positions
in robots must be differentiable and continuous [18] to
generate smooth angular trajectories without singularities.
This ensures that joint torques, directly proportional to
acceleration and the square of joint speed according to
Lagrange-Euler dynamic modeling [19], remain continuous
and differentiable, ensuring the robot actuators' smooth and
precise movement [18]. This requirement is crucial for
optimal end-effector movement, as emphasized in [20] with
parallel Dexterous Twin Arms Robots (DexTAR).

The present work presents a streamlined trajectory
planning methodology, deviating from the conventional
approach by initiating with state-space modeling of robot
kinematics in joint space, which incorporates joint
positions and their derivatives up to order n-1 as state-space
variables, and the control signal defined as the nth
derivative of joint positions, to ensure continuity and
differentiability during interpolation. For the output of the

MIPRO 2024/RTA 2101

state-space model, forward and differential kinematics of
the robot are considered, facilitating trajectory interpolation
using the task space information as the target to be reached
through the control signal computed using quasi-Newton
optimization, which also incorporates kinematic and
dynamic constraints—joint positions, velocities, and torque
limits— to guarantee a cohesive trajectory. Thereby, once
the control signal is computed, its nth integration is
performed via the Cauchy formula which results in the joint
values over time (interpolation). These results are reflected
in the tests on the ABB-IRB-120 robot model, which
validates the effectiveness of the proposed method in
unified path planning within the task space under kinematic
and dynamic constraints.

The article structure is outlined as follows: Section II
presents the robotic model (kinematics and dynamics
parameters), state-space modeling of robot joint’s
kinematics, and the optimization for finding the control
signal with subsequent integration for interpolation. In
Section III, results of the interpolation in the task space and
in the joint space are detailed, where for the first and fourth
joints of the robot are illustrated the angular positions with
their derivatives and torques, also with their respective
boundaries. Finally, section IV gives the work’s final
conclusions.

II. MATERIALS AND METHODS

A. The Robot Model

The robotic model used in this work was the ABB-IRB-
120, which is a 6-DoF compact (25 kg mass), and precise
industrial robot manufactured by ABB, recognized for its
small size and high payload capacity [21]. Fig 1 shows the
robotic model, indicating the inertial reference frame, the
kinematic parameters, its respective enumerated joints, and
its links highlighted with different colors starting from the
purple one as noted in the legend.

Figure 1. Links and joints of the ABB-IRB-120 robot [21]

The Denavit-Hartenberg (DH) parameters of the robotic
manipulator that complement the previous image are
shown in the following table.

TABLE I. DENAVIT-HARTENBERG PARAMETERS OF THE ABB-
IRB-120 ROBOT

N°

joint

Parameters

θi (rad) di (mm) αi (rad) ai (mm)

1 θ1 290 -½π 0

2 θ2 0 0 270

3 θ3 0 ½π 70

4 θ4 374 -½π 0

5 θ5 0 ½π 0

6 θ6 75 0 0

Likewise, the data on the maximum and minimum joint
values, the maximum velocities and maximum torques that
each of the joints of the ABB-IRB-120 robotic manipulator
can reach are found in Table II.

TABLE II. ABB-IRB-120 ROBOT JOINT LIMITS

N°

joint

Joint position (deg°) Max joint

velocity

(deg°/s)

Max joint

torque (N.m) min max

1 -165 165 250 4.8

2 -110 110 250 4.8

3 -70 110 250 4.8

4 -160 160 320 4.8

5 -120 120 320 4.8

6 -400 400 420 2.2

In the same way, in Table III are shown the dynamic
parameters of the robotic model, where the center of mass
is expressed relative to the frame of each link and the
inertia tensors are expressed with respect to the center of
mass of each link.

TABLE III. DYNAMIC PARAMETERS OF THE ABB-IRB-120 ROBOT

N°

link

Center of mass (m)
Inertia Tensor (kg.m2)

Mass

(kg) x y z

1 -0.05 0.0 0.01 [
0.012 0 0
0 0.011 0
0 0 0.01

] 0.29

2 0.0 0.0 0.124 [
0.064 0 0
0 0.012 0
0 0 0.064

] 0.27

3 0.0 0.024 0.058 [
0.35 −0.23 0
−0.23 0.18 0
0 0 0.37

] 0.07

4 -0.09 0.0 0.0 [
0.01 0 0
0 0.008 0
0 0 0.006

] 0.347

5 0.0 0.06 0.0 [
0.002 0 0
0 0.002 0
0 0 0.002

] 0.07

6 -0.09 0.0 0.0 [
0.001 0 0
0 0.001 0
0 0 0.001

] 0.002

2102 MIPRO 2024/RTA

B. State-Space Kinematic Modeling

One of the simplest motions studied in kinematics is the
Uniformly Accelerated Rectilinear Motion (UARM), which
exists under the assumption that acceleration is constant
over a time interval Δ𝑡 [22]. However, if instead of the
acceleration being constant in the given time interval Δ𝑡,

more generally, the nth derivative of position
𝑑𝑛𝑥

𝑑𝑡𝑛
 is instead.

So, the equation system that describes the next position
𝑥𝑖+1 and its derivatives after Δ𝑡 is shown below.

𝑥(𝑖+1) = 𝑥(𝑖) +
𝑑𝑥(𝑖)

𝑑𝑡
Δ𝑡 +

𝑑2𝑥(𝑖)

𝑑𝑡2
Δ𝑡2

2
+⋯+

𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
Δ𝑡𝑛

𝑛!

𝑑𝑥(𝑖+1)

𝑑𝑡
=

𝑑𝑥(𝑖)

𝑑𝑡
+

𝑑2𝑥(𝑖)

𝑑𝑡2
Δ𝑡 + ⋯+

𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
Δ𝑡𝑛−1

(𝑛−1)!

⋮
𝑑𝑛−1𝑥(𝑖+1)

𝑑𝑡𝑛−1
=

𝑑𝑛−1𝑥(𝑖)

𝑑𝑡𝑛−1
+

𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
Δ𝑡

 ()

This equation system can be rewritten using the discrete
time state-space matrices notations as is shown below.

 �⃗�(𝑖+1) = 𝐴�⃗�(𝑖) + 𝐵𝑢(𝑖) ()

Where �⃗�(𝑖) = [𝑥(𝑖),
𝑑𝑥(𝑖)

𝑑𝑡
 , … ,

𝑑𝑛−1𝑥(𝑖)

𝑑𝑡𝑛−1
]
𝑇

 is a column

vector that has the information of a single variable and its

derivatives at the moment “i”; also 𝑢(𝑖) = [
𝑑𝑛𝑥(𝑖)

𝑑𝑡𝑛
] is the

control vector that in this case just has a single scalar value
corresponding with the nth derivative of the position. Thus,
the elements of the matrices A and B are shown in the
equalities (3) and (4) respectively, which are just in
function of Δ𝑡 and the position derivative order “n”.

 𝐴 =

[

 1 Δ𝑡 …

Δ𝑡𝑛−1

(𝑛−1)!

0 1 …
Δ𝑡𝑛−2

(𝑛−2)!

⋮ ⋮ ⋱ ⋮
0 0 … 1]

[𝑛×𝑛]

 ()

 𝐵 =

[

Δ𝑡𝑛

𝑛!

Δ𝑡𝑛−1

(𝑛−1)!

⋮
Δ𝑡]

[𝑛×1]

 ()

Nevertheless, the equation (2) could be used just to
predict the values of a single variable (single joint) and its
derivatives. So, to add all the “m” joints of a robot in a
single state-space model, the equation (5) is presented,

where the column vector 𝑋(𝑖) = [�⃗�1
𝑇, �⃗�2

𝑇, … , �⃗�𝑗
𝑇, … , �⃗�𝑚

𝑇]
(𝑖)

𝑇

owns orderly all the m joints of the robot and its derivatives
at the moment “i”; also the same with the vector 𝑈(𝑖) =

[𝑢1, 𝑢2, … , 𝑢𝑗 , … , 𝑢𝑚](𝑖)
𝑇

, which has the nth derivative for

all the robot joints and works as the control vector for the
system.

 𝑋(𝑖+1) = 𝔸𝑋(𝑖) + 𝔹𝑈(𝑖) ()

In addition, the matrices 𝔸 and 𝔹 are created by
repeatedly placing the matrices 𝐴 and 𝐵 diagonally
respectively according with the robot’s DoF “m” as is
shown in equalities (6) and (7).

 𝔸 = [

𝐴 0 … 0
0 𝐴 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝐴

]

[𝑛∙𝑚×𝑛∙𝑚]

 ()

 𝔹 = [

𝐵 0 … 0
0 𝐵 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝐵

]

[𝑛∙𝑚×𝑚]

 ()

Now, the output of the system is assumed in this work
to be the forward kinematic (FK), computed with
homogeneous transformation matrices, whose rows then
are stacked with the velocity of the robot’s end-effector as
shown in equation (8). But it can be added other variables
in function of the joint’s acceleration, jerk, jounce, etc.,
according to the conditions of the trajectory to be
interpolated. The FK is in function of the articulation
positions which are represented by the articulation value

vector �⃗�(𝑖) = [𝑥1, … , 𝑥𝑗, … , 𝑥𝑚](𝑖)
𝑇

; similar way with the

end-effector velocity which is the result of the product of
the Jacobian matrix of the FK with the articulation velocity

vector �⃗̇�(𝑖) = [
𝑑𝑥1

𝑑𝑡
, … ,

𝑑𝑥𝑗

𝑑𝑡
, … ,

𝑑𝑥𝑚

𝑑𝑡
]
(𝑖)

𝑇

. Both �⃗�𝑖 and �⃗̇�𝑖 can

be formed by rearranging the state vector 𝑋𝑖.

 𝑌(𝑖) = [
𝐹𝐾(�⃗�(𝑖))

𝐽(�⃗�(𝑖)) ∙ �⃗̇�(𝑖)
] ()

To compute the array of next “k” values of the robot’s

joint states [𝑋] = [𝑋(1), 𝑋(2), … , 𝑋(𝑘)]
𝑇
given an array of “k”

control vectors [𝑈] = [𝑈(0), 𝑈(1), … , 𝑈(𝑘−1)]
𝑇

; it can be

done straightforwardly using the equality (9), which uses
the initial state vector 𝑋(0), the matrix ℳ and the prediction

matrix ℵ.

 [𝑋][𝑚∙𝑛∙𝑘×1] = ℳ𝑋(0) + ℵ[𝑈][𝑚∙𝑘×1] ()

The matrix ℳ multiplies the vector of joint’s initial
state 𝑋0, and it is formed by the stacking of powers of the
matrix 𝔸 as is shown in the equation (10).

ℳ = [

𝔸
𝔸2

⋮
𝔸𝑘

]

[𝑘∙𝑛∙𝑚×𝑛∙𝑚]

 ()

Similarly, the prediction matrix ℵ multiplies the vector
[𝑈] composed of the stacking of the control signal vectors
for each prediction horizon “k”. Also, this matrix is formed
by products between powers of the matrix 𝔸 with the
matrix 𝔹 as noted in the equation (11).

MIPRO 2024/RTA 2103

 ℵ =

[

𝔹 0 … 0
𝔸𝔹 𝔹 … 0
𝔸2𝔹 𝔸𝔹 … 0
⋮ ⋮ ⋱ ⋮

𝔸𝑘−1𝔹 𝔸𝑘−2𝔹 … 𝔹]

[𝑘∙𝑛∙𝑚×𝑚∙𝑘]

 ()

C. Interpolation

If the end-effector of a robotic manipulator has to move
from the pose 𝑃0 to the pose 𝑃1 beginning with a velocity
𝑉0 and ending with a velocity 𝑉1 during a period 𝑇
beginning at 𝑡0 , it’s important to compute the optimal
values of [𝑈] in the equation (9); in such way that the
equation (8) valued at 𝑋(𝑘), the last element of [𝑋], must

meet the conditions of end position and end velocity said.

To being, for the computation of the prediction matrix
𝕄, it is important to know Δ𝑡 and the position derivative order
“n”. The last one has to do with the desired smoothness of
the trajectory. For example, if the derivative of certain
order “c” of the joint position is required to be continuous,
then the control signal must the following order derivative,
this is 𝑛 = 𝑐 + 1. However, if the derivative of order “c” of
the joint position is required to be differentiable in addition
to being continuous, then 𝑛 = 𝑐 + 2 . Thereby, for this
work to ensure the joint torques to be continuous and
differentiable according to the inverse dynamic of Euler-
Lagrange equation (11), it can be inferred that joint
positions, velocities and accelerations must be continuous
and differentiable also, which leads to choose 𝑐 = 2
(second derivative of joint position or acceleration) and
then 𝑛 = 4 (fourth derivative of the joint position or
jounce).

 𝜏𝑖 = 𝑀(�⃗�𝑖)�⃗̈�𝑖 + 𝐶(�⃗�𝑖, �⃗̇�𝑖)�⃗̇�𝑖 + 𝐺(�⃗�𝑖) ()

Now, to determine Δ𝑡 it’s necessary to know the
number of divisions “k” to be carried out in the period T, so
that the fourth derivative of joints remain constant in each
interval. To determine the minimum value of “k”, it’s
inferred that 𝑘 ≥ 𝑛. Consequently, the time interval Δ𝑡 can

be computed by Δ𝑡 =
𝑇

𝑘
, and with this information the

matrix ℳ and the prediction matrix ℵ can be formed using
the equations (3), (4), (6), (7), (10) and (11). For this work
a value of 𝑘 = 6 was used for a period 𝑇 = 2𝑠.

The loss function (L) to minimize is found depending
on the desired posture to be reached 𝑃1, the desired velocity
𝑉1 at that pose, and the vector 𝑌(𝑘), shown in equation (8),

which expresses the end-effector final pose and velocity at
the end of the path, which is also depending on the time
series of the control vectors [𝑈] as posited in equation (9).

 𝐿(𝑃1, 𝑉1, [𝑈]) = |[
𝑃1
𝑉1
] − 𝑌(𝑘)|

2

 ()

The following step is to compute the set of control

actions [𝑈] which can be done by any constrained non-

linear minimization strategy as shown in equation (13).

For this work, the Quasi-Newton method was used under

the constraints highlighted in Table II of joint positions �⃗�𝑖,

velocities �⃗̇�𝑖 and the torques 𝜏𝑖 computed using the

dynamic parameters of the Table III and the equation (11).

[𝑈] = argmin
[𝑈]

{𝐿} ()

The optimization of (13) is performed under the

constrains �⃗�𝑚𝑖𝑛 < �⃗�(𝑖) < �⃗�𝑚𝑎𝑥 , −𝑣𝑙 < �⃗̇�(𝑖) < 𝑣𝑙 , and

−𝜏𝑙 < 𝜏𝑖 < 𝜏𝑙 . Where �⃗�𝑚𝑖𝑛 and �⃗�𝑚𝑎𝑥 are vectors of the
lower and maximum values permitted for each of the “n”
robot’s articulations; 𝑣𝑙 and 𝜏𝑙 are vectors of the limit
values of the joint’s velocities and torques permitted.

Finally, once the set of control signals [𝑈] are

computed, the interpolation of each joint values 𝑥𝑗 is done

by integrating n-times each piecewise function 𝑓𝑗(𝑡)
formed by each control value 𝑢𝑗,𝑖 (remembering that 1 ≤
𝑗 ≤ 𝑚 is the joint number, and 1 ≤ 𝑖 ≤ 𝑘 is the ith position
in time) during the period T as it’s shown in equality (14).
To do so, the Cauchy formula for repeated integration
shown in equation (15) was used, considering 1 ≤ 𝑝 ≤ 𝑛.

 𝑓𝑗(𝑡) =

{

𝑢𝑗,1: 𝑡0 ≤ 𝑡 < 𝑡0 + Δ𝑡

𝑢𝑗,2: 𝑡0 + Δ𝑡 ≤ 𝑡 < 𝑡0 + 2Δ𝑡

⋮
𝑢𝑗,𝑖: 𝑡0 + (𝑖 − 1)Δ𝑡 ≤ 𝑡 < 𝑡0 + 𝑖Δ𝑡

⋮
𝑢𝑗,𝑘: 𝑡0 + (𝑘 − 1)Δ𝑡 ≤ 𝑡 < 𝑡0 + 𝑇

 ()

𝑑(𝑛−𝑝)𝑥𝑗(𝑡)

𝑑𝑡(𝑛−𝑝)
=

1

𝑝!
∫ (𝑡 − 𝑤)𝑝𝑓𝑗(𝑤)𝑑𝑤
𝑡

𝑡0
 ()

D. Observations

Granted that the loss function (12) has to do with the

FK of the robot, this expression if formed by the

trigonometric functions’ sine and cosine which endow the

loss function with non-linearity. For this reason, the

optimization is a non-convex problem, although the

constrains are linear. Also, because the solution also solves

the problem of IK, a problem which has infinite solutions,

this is why the solution obtained can be non-global.

However, this happens meanly if the system is redundant.

Then, if the kinematic chain is non-redundant, the problem

can be simplified by using IK to find the final joint values,

and then using the Jacobian matrix to calculate the joint

velocities. And with these values the only thing that would

be left would be to optimize equation (9) where no

trigonometric functions are involved, and the problem

would be convex. However, the objective of the proposed

method is not to use previous solutions of IK, which could

bias the results obtained. But IK can be used to check if

the target posture is achievable, to rule out problems that

have no solution.

On the other hand, the chosen period T must be realistic

for the robot to achieve its objective. Opting for an

excessively short time might lead to accelerations and

torques that violate restrictions, preventing the solver from

converging to a solution. It's essential to highlight that this

is an interpolation issue, not a control problem. Unlike

nonlinear control problems where convergence is assured

2104 MIPRO 2024/RTA

without specifying the time, in this scenario, the desired

time for the robot to reach its goal is predetermined.

III. RESULTS

Considering the manipulator begins its movement with
all its joints in the zero position as well as its temporal
derivatives. The goal is the end-effector of the manipulator
after 2 seconds reaching the task-space pose and the task-
space velocity shown in Table IV.

TABLE IV. TARGETS OF THE END-EFFECTOR

Target Pose

Position (m) Orientation (rad)

𝒙 𝒚 𝒛 Pitch 𝜽 Roll 𝜻 Yaw 𝝋

-0.0813 0.2866 0.1322 -0.3131 0.0382 -1.9557

Target Velocity

Linear (m/s) Angular (rad/s)

𝒗𝒙 𝒗𝒚 𝒗𝒛 𝝎𝒙 𝝎𝒚 𝝎𝒛

-0.1532 0.1648 0.1582 0.1769 0.0309 0.0487

To give a better illustration of what the previously
proposed task represents for the robot, Fig. 2 shows an
illustration where ABB-IRB-120 is observed with all its
joints at zero which leads to the axes of the end-effector to
be perfectly aligned with the axes of the inertial reference
frame (red for the x axis, green for the y axis and green for
the z axis). The figure also shows the axes of the new target
posture of the robot, as well as the vector of the target
linear velocity (light blue arrow) and the target angular
velocity (purple arrow with oriented arc).

Figure 2. ABB-IRB-120 with its target position and velocity in task-

space

Thus, by minimizing the loss function (12) by the
constrained Quasi-Newton method, the optimized control
signal 𝑢𝑗 for each joint along the given period are found.

Graphically, it can be appreciated in Fig.3 that after 138
iterations, lasting 5.42s, the cost function reached the
minimum value of 6.26611 ∙ 10−12 which is relatively
near zero; meaning that at the end of the given period, the
manipulator’s end-effector reached the target pose and the
target velocity in the task-space, and the optimized control
signals allowed this to be achieved.

Figure 3. Values of the cost function in each iteration

Then, integrating consecutively these control signals
using the formula (15) the interpolation of the joints and
their derivatives are arrived. To illustrate this fact, in Fig.4
these results are shown for the first and fourth joints of the
robot, where it was graphed the control signals or the fourth
derivative of the joint positions (𝑢1 and 𝑢4) as well as their
repetitive integrations over time until reaching the joint
values, and also the torques (𝑇1 and 𝑇4) computed through
equation (11). In addition, it can be appreciated that for
joint positions, velocities and torques, their values are kept
within the boundaries (red lines) given in Table II.

Figure 4. Control signals, derivatives and torques of the first and fourth

manipulator’s joint and its torques

Finally, with the joint values over time computed, these
values can be used in the FK equation of the robot to
recreate the trajectory in the task-space that the robot's end
effector must travel during the given period. The result of
this operation is shown in Fig.5, where it can be

MIPRO 2024/RTA 2105

appreciated the path and the axes of the end-effector, which
corroborates that this reached the objective of its trajectory
at the end.

Figure 5. Result of the interpolation in the task-space of the robot ABB-

IR-120

IV. CONCLUSIONS

In summary, the methodology outlined in this study
successfully executed trajectory planning within the joint-
space of the ABB-IRB-120 robotic model without prior
knowledge of the inverse kinematics solution for the given
targets in the task-space. This was achieved by modeling
the kinematics of the robot considering the joint positions
and their derivatives for the state vector, and the direct
together with the differential kinematics for the output
vector of the system. Thus, by defining the specified target
posture and target velocity of the end-effector in the task-
space; the approach seamlessly computed the control
signals of the joints within the predefined motion duration
using the constrained Quasi-Newton method, just having a
low error of 6.26611 ∙ 10−12 on the manipulator’s end-
effector pose and velocity with respect to the previous
defined task-space target at the end of the path. Crucially,
the method took into account both kinematic constraints,
encompassing joint positions and velocities considerations,
and dynamic constraints related to joint torques. The
obtained results not only guaranteed the continuity and
differentiability up to the second derivative (C2 curves) in
both task-space and joint-space trajectories but also ensured
continuity up to the third derivative.

REFERENCES

[1] Akira, Terui., Masahiko, Mikawa. (2023). Inverse kinematics and

path planning of manipulator using real quantifier elimination based
on Comprehensive Gröbner Systems. arXiv.org, abs/2305.12451
doi: 10.48550/arXiv.2305.12451

[2] Jingdong, Zhao., Xiao, Yang., Zhiyuan, Zhao., Guocai, Yang.,
Liang, Zhao. (2023). Inverse Kinematics and multi-objective
configuration optimization of the SSRMS manipulator. Advances in
Space Research, doi: 10.1016/j.asr.2023.06.058

[3] Mrunal, Kanti, Mishra., Sambaran, Ghosal., Arun, Kumar,
Samantaray., Goutam, Chakraborty. (2020). Jacobian-Based Inverse
Kinematics Analysis of a Pneumatic Actuated Continuum
Manipulator. doi: 10.1007/978-981-16-1769-0_1

[4] Alkayyali, M., & Tutunji, T. A. (2019). PSO-based algorithm for
inverse kinematics solution of robotic arm manipulators.
https://doi.org/10.1109/rem.2019.8744103

[5] Dereli, S., & Köker, R. (2019). A meta-heuristic proposal for
inverse kinematics solution of 7-DOF serial robotic manipulator:
quantum behaved particle swarm algorithm. Artificial Intelligence
Review, 53(2), 949–964. https://doi.org/10.1007/s10462-019-
09683-x

[6] Momani, S., Abo-Hammour, Z. S., & Alsmadi, O. M. (2016).
Solution of Inverse Kinematics Problem using Genetic Algorithms.
Applied Mathematics & Information Sciences, 10(1), 225–233.
https://doi.org/10.18576/amis/100122

[7] Lee, C., & Chang, J. (2021). A Workspace-Analysis-Based genetic
algorithm for solving inverse kinematics of a Multi-Fingered
anthropomorphic hand. Applied Sciences, 11(6), 2668.
https://doi.org/10.3390/app11062668

[8] Aristidou, A., & Lasenby, J. (2011). FABRIK: A fast, iterative
solver for the Inverse Kinematics problem. Graphical Models,
73(5), 243–260. https://doi.org/10.1016/j.gmod.2011.05.003

[9] Moreno, L. a. O., & Alcantara, J. H. A. (2022). An adaptation of
FABRIK algorithm for serial robot’s inverse kinematics.
https://doi.org/10.1109/icev56253.2022.9959663

[10] Santos, M. F., Molina, L., Carvalho, E. a. N., Freire, E. O.,
Carvalho, J. C. A., & Santos, P. C. (2021). FABRIK-R: an
extension developed based on FABRIK for robotics manipulators.
IEEE Access, 9, 53423–53435.
https://doi.org/10.1109/access.2021.3070693

[11] Dong, G., Huang, P., Wang, Y., & Li, R. (2022). A modified
forward and backward reaching inverse kinematics based
incremental control for space manipulators. Chinese Journal of
Aeronautics, 35(12), 287–295.
https://doi.org/10.1016/j.cja.2021.08.014

[12] Zou, Le., Zhize, Wu., Chen, Zhang., Xiao-Feng, Wang., Ding,
Zesheng., Tan, Ming. (2020). Path planning method and system
based on parameterized Thiele continued fraction interpolation.

[13] Yihua, Hu., Shulin, Zhang., Yanhui, Chen. (2023). Trajectory
planning method of 6-DOF modular manipulator based on
polynomial interpolation. Journal of Computational Methods in
Sciences and Engineering, doi: 10.3233/jcm-226672

[14] Zhe, Liu., Aiqiang, Pan., Anfeng, Jiang., Wenhe, Li., Jiawei,
Zhang., Chengchao, Bai. (2022). Research on Motion Path Planning
Method of Live Working Robot Manipulator Based on Reverse
Splitting Calculation. Journal of physics, doi: 10.1088/1742-
6596/2213/1/012031

[15] Tae-Won, Kang., Jin-Gu, Kang., Jin-Woo, Jung. (2021). A
Bidirectional Interpolation Method for Post-Processing in
Sampling-Based Robot Path Planning. Sensors, doi:
10.3390/S21217425

[16] Kenwright, B. (2023). Dual-Quaternion interpolation. arXiv
(Cornell University). https://doi.org/10.48550/arxiv.2303.13395

[17] Pu, Y., Shi, Y., Lin, X., Hu, Y., & Li, Z. (2020). C2-Continuous
orientation planning for robot End-Effector with B-Spline curve
based on logarithmic quaternion. Mathematical Problems in
Engineering, 2020, 1-16. https://doi.org/10.1155/2020/2543824

[18] Giovanni, Legnani., Giovanni, Legnani., Irene, Fassi., Alessandro,
Tasora., Dario, Fusai. (2021). A practical algorithm for smooth
interpolation between different angular positions. Mechanism and
Machine Theory, doi:
10.1016/J.MECHMACHTHEORY.2021.104341

[19] Ahmad, Taher, Azar., Fernando, E., Serrano., Nashwa, Ahmad,
Kamal., Anis, Koubaa., Adel, Ammar., Ibraheem, Kasim,
Ibraheem., Amjad, J., Humaidi. (2021). Finite Element Euler-
Lagrange Dynamic Modeling and Passivity Based Control of
Flexible Link Robot.. doi: 10.1007/978-3-030-76346-6_41

[20] Balgaisha, Mukanova. (2020). Control of Actuators Torques for
Optimal Movement along a Given Trajectory for the DexTAR
Robot. Applied and Computational Mechanics, doi:
10.22055/JACM.2020.34650.2449

[21] Barhaghtalab, M. H., Meigoli, V., Haghighi, M. R. G., Nayeri, S.
A., & Ebrahimi, A. (2018). Dynamic analysis, simulation, and
control of a 6-DOF IRB-120 robot manipulator using sliding mode
control and boundary layer method. Journal of Central South
University, 25(9), 2219-2244. https://doi.org/10.1007/s11771-018-
3909-2

[22] Gregory, A, DiLisi. (2019). Classical Mechanics, Volume 2.

2106 MIPRO 2024/RTA

