
Comparison of Linear and Nonlinear Model
Predictive Control for Vehicle Path Following

Vjekoslav Diklić∗, Branimir Novoselnik ∗,
∗ Fakultet elektrotehnike i računarstva, Zagreb, Croatia

vjekoslav.diklic@fer.hr branimir.novoselnik@fer.hr

Abstract—This technical paper investigates and compares
the performance of two model predictive control algorithms
employed in the control of a ground vehicle. Both predictive
controllers are based on a simplified bicycle model of the
vehicle. The main difference is that one controller uses a non-
linear version of the bicycle model and the other one further
simplifies it by linearizing it around the operating point. The
study centers around evaluating the controllers’ effectiveness
in a dynamic scenario through the execution of a double-
lane change maneuver. By assessing trajectory tracking and
computational efficiency, this paper aims to delineate the
impact of linearization choices on the controllers’ overall
performance. Both controllers are extensively tested in real-
istic simulations on a full non-linear multi-body model of the
vehicle sourced from the CommonRoad Python library. The
results of these simulations provide insights into the trade-
offs between model accuracy and computational complexity.

Keywords—nonlinear model predictive control, linear model
predictive control, ground vehicle, bicycle model, multi-body
model

I. INTRODUCTION

The challenge of controlling a road vehicle has grown
in tandem with automotive innovation, initially stemming
from the complex interplay of mechanical components and
expanding with technological advancements. The quest for
effective vehicle control encompasses a myriad of factors,
including the need to optimize propulsion systems, ensure
stability and manoeuvrability, and implement sophisticated
control algorithms capable of adapting to diverse driving
conditions [1]. As technology has advanced, so too has
the challenge, with the integration of autonomous features,
machine learning, and sensor fusion presenting a frontier
where the pursuit of safer, more efficient, and increas-
ingly automated road transportation continues to captivate
researchers, engineers, and enthusiasts alike.

An appropriate maneuver that can be used to test the
performance of a vehicle is the so-called double lane
change (DLC) proposed by F. Borrelli et al. [2]. This
maneuver consists of two distinctive aggressive steering
actions: one lane change left and then a double lane change
right. Performing such a maneuver is a comprehensive
test of the vehicle’s stability and its behaviour on various
road surfaces. Many authors have used the DLC maneuver
to evaluate their vehicle controllers. J.Z.Y. Lu et al. [3]
used DLC for testing the proposed Blend Path Curvature
Control [3]. A. Domina et al. have evaluated the proposed
linear time-varying Model Predictive Control (MPC) al-

gorithm [4]. F. Borrelli et al. [2] have used the nonlinear
MPC approach for the DLC maneuver.

MPC has emerged as a powerful methodology in control
systems and optimization, particularly for its effectiveness
in managing complex and dynamic systems [5]. It is
characterized by its ability to predict the future behaviour
of a system and optimize control inputs based on these
predictions. The adaptability and precision of MPC make
it ideal for vehicular control, where it addresses the
intricacies of modern vehicle dynamics [6].

This technical paper presents a performance comparison
between two MPC approaches: one based on a bicycle
model and the other based on a linearised bicycle model.
The paper is organized as follows: Section II describes
the main problem addressed in this article further. Section
III presents both linear and nonlinear implementations of
MPC for the given problem. Evaluation and test results are
available in Section IV, while the conclusion is provided
in Section V.

II. PROBLEM DESCRIPTION

The solution to the vehicle path-following problem can
be decomposed into three sub-problems: vehicle modelling
and simulation, reference path definition, and controller
selection. For the vehicle model, a multi-body vehicle
model from the Python-based Common Road Vehicle
Library [7] was chosen. This model accounts for the
vertical load on all four wheels due to roll, pitch, and
yaw, as well as their individual spin and slip, incorporating
a nonlinear tire dynamics model. For tire dynamics, this
model utilizes the PAC2002 Magic Formula tire model
[8]. Such advanced vehicle and tire models are commonly
employed in motion planning for road vehicles [9].

The reference path for the vehicle’s movement is defined
by the earlier mentioned DLC maneuver,shown on fig. 1.
DLC is characterized by the following equations:

yref =
dy1

2
(1 + tanh(z1))−

dy2

2
(1 + tanh(z2)) (1)

ψref = arctan

(
dy1

· 1.2
dx1 · cosh(z1)2

− dy2
· 1.2

dx2 · cosh(z2)2

)
(2)

z1 =
shape

dx1

(X −Xs1)−
shape

2
(3)

z2 =
shape

dx2

(X −Xs2)−
shape

2
(4)

MIPRO 2024/RTA 2087



0 20 40 60 80 100 120
X [m]

1

0

1

2

3

y r
ef

 [m
]

Reference path

(a) DLC position reference.

0 20 40 60 80 100 120
X [m]

0.3

0.2

0.1

0.0

0.1

0.2

re
f [

ra
d]

Reference yaw angle

(b) DLC yaw angle reference.

Fig. 1: DLC reference values.

eqs. (1) to (4) yield the reference lateral vehicle position
yref and the reference vehicle yaw angle ψref . The
shape = 2.4 parameter influences the curvature of the
lane change, while dx1

= 25 meters and dx2
= 21.95

meters denote the longitudinal distances of the first and
second lane changes, respectively. Lateral shifts are spec-
ified by dy1 = 4.05 meters for the first and dy2 = 5.7
meters for the second lane change. The starting points for
these maneuvers are marked at Xs1 = 27.19 meters and
Xs2 = 56.46 meters along the path.

As mentioned earlier, the controller for path following
will be implemented in the form of MPC algorithm. Such
a controller requires a mathematical model of the system
it is controlling for behaviour predictions. There will be
two different mathematical models used for the MPC
controller: a linearised variant and a nonlinear variant. The
implementation of the MPC controller and the mathemat-
ical models will be further detailed in Section III.

The simulation loop comprises three primary compo-
nents: a reference path, an MPC controller, and a vehicle
model. Each simulation step begins with the current vehi-
cle state Xk, from which the reference values for lateral
position Yref and yaw angle ψref are derived using DLC

equations (eq. (1)) - (eq. (4)) form state variable px for
vehicle global position x coordinate. The current vehicle
state Xk, together with the reference values Yref and ψref ,
is then input into the MPC, which calculates the optimal
control values uk. Subsequently, uk, along with the current
vehicle state Xk, is used to compute the vehicle’s next
state.

III. MODEL PREDICTIVE CONTROLLERS

Model Predictive Control has emerged as a powerful
paradigm for dynamic systems, offering a systematic
framework for trajectory optimization and control. The
essence of MPC lies in forecasting the future state of a
dynamic system through the simulation of its mathemat-
ical model. The model utilized for predicting the future
behavior of the system is often characterized by simplicity,
featuring fewer state variables than the real system. This
approach is driven by two primary constrains. Firstly, it is
often impractical and/or impossible to model all segments
of the system due to inherent complexities. Secondly,
the adoption of a simplified model is motivated by the
computational constraints associated with the processing
time required for the calculation of the subsequent state.
MPC calculates optimal control values by minimizing the
following criterion function:

J =

N−1∑
i=0

(
xT
i Qxi + uT

i Rui

)
+ xT

NSNxN (5)

This equation represents the cost function for the predic-
tive controller in a quadratic form. Summation occurs over
the prediction horizon N , where xi and ui denote the
state and input vectors at time step i. The matrices Q, R,
and SN are the weighting matrices in the cost function.
The full nonlinear mathematical model, which is used to
describe the real system, comprises 29 state variables and
two control inputs:

• δ̇: the rate of change of the steering angle.
• a: acceleration.

The state variables are grouped into four categories: vehi-
cle body, front axle, rear axle and wheels [7]. This high-
fidelity model is used in simulations to test and validate
the developed MPC algorithm. However, the MPC algo-
rithm itself is based on a simplified mathematical model
comprising only five state variables (px, py, vx, ψ, δ), the
so-called bicycle model [10] (see fig. 2). The variables px
and py denote the current position of the vehicle within
the global coordinate system, vx represents the current
longitudinal speed of the vehicle, ψ is the yaw angle of
the vehicle’s direction, and δ corresponds to the steering
value of the front axle.

A. Vehicle bicycle model

The vehicle bicycle model represents a simplified of
a four-wheeled road vehicle. Its name implies a two-
wheeled configuration, where the front wheel serves solely
as a steering component, while the rear wheel assumes a

2088 MIPRO 2024/RTA



px

py

X

Y

WB

ψ

δ

v

vx

vy

Fig. 2: Bicycle model parameters.

passive role. Propulsion and braking forces are modelled
to act at the vehicle’s centre of mass. The global position
(px, py) of the vehicle in a bicycle model can be defined
by the following equation:

dpx
dt

= v cos(ψ),

dpy
dt

= v sin(ψ).

(6)

Velocity can be described as a function of acceleration
through time.

dv

dt
= a. (7)

The effects of steering and yaw angle are modeled using
the following equation:

dψ

dt
=

v

WB
tan(δ),

dδ

dt
= δ̇.

(8)

Now, it is possible to express everything as a state-space
system.

ẋ = f(x,u)

y = h(x,u)
(9)

where x is a state vector and u is the input vector.

x =


px
py
v
ψ
δ

 =


x1
x2
x3
x4
x5

 , u =

[
δ̇
a

]
=

[
u1
u2

]
. (10)

The complete state-space description of the bicycle model
is given as follows:

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


x3 cos(x4)
x3 sin(x4)

u2
x3

WB
tan(x5)

u1

 . (11)

The linearisation of this model will be further covered in
section III-C.

B. Model discretization

To utilize the bicycle model from section III-A as
prediction model for MPC, it is necessary to convert
it into a discrete version. The discretization process for
a continuous-time system described by the state-space

equations in eq. (9) can be achieved using the Euler
method. The Euler method is a straightforward numerical
integration technique used for approximating the solution
of ordinary differential equations ODE or, in this context,
for discretizing continuous-time systems. The basic idea
is to approximate the derivative by a finite difference and
use this approximation to update the state variables over
small time intervals. The discrete-time state update can be
achived eq. (12):

x+ = x+∆t · f(x,u) (12)

In this context, x+ refers to the state at time step k + 1,
x represents the state at time step k, ∆t is the duration of
each time step, f describes the system dynamicsand uk is
the input at time step k. By substituting 11 into eq. (12),
the discrete nonlinear bicycle model can be expressed as
follows:

x+ =


x1 +∆t · x3 cos(x4)
x2 +∆t · x3 sin(x4)

x3 +∆t · u2
x4 +∆t · x3

WB
tan(x5)

x5 +∆t · u1

 (13)

C. Linearisation

Linearisation is a method that approximates nonlinear
functions with linear counterparts around a certain op-
erating point. As the distance from the operating point
increases, the approximation error also rises. To mitigate
the impact of this issue, the common approach is to
update the operating point more frequently. Linearisation
is commonly performed by utilizing the first-order Taylor
series expansion around a operating point for a given non-
linear function. First order Taylor expression is given in
eq. (14).

f(x) ≈ f(x̄) + f ′(x̄) · (x− x̄) + . . . (14)

Here, f(x̄) corresponds to the value of the function at the
point x̄, while f ′(x̄) represents the first derivative of the
function evaluated at x̄. For a multivariate function, such
as the bicycle model given in eq. (13), denoted as f(x),
where x is a vector, the Taylor series expansion around a
point x̄ is given by eq. (15).

f(x) ≈ f(x̄) +∇f(x̄) · (x− x̄) + . . . (15)

In this context, f(x̄) signifies the value of the function
at the point x̄, while ∇f(x̄) denotes the gradient of f
evaluated at operating point defined as follows:

x =
[
x1 x2 x3 x4 x5

]T
(16)

substituting x+ from eq. (13) into eq. (15) as f(x), gives
linearised system:

x+ ≈


x1 +∆t · cos(x4)x3 −∆t · x3 sin(x4)x4
x2 +∆t · sin(x4)x3 +∆t · x3 cos(x4)x4

x3 +∆t · u2
x4 +∆t · 1

WB
(tan(x5)x3 + x3 sec

2(x5)x5)

x5 +∆t · u1


(17)

MIPRO 2024/RTA 2089



Where elements x1, x2, ..., x5 represent small offsets from
operation point. Now matrix AL for linearised version of
vehicle bicycle model matrices can be written as follows:

AL=


1 0 ∆t cos(x4) −∆t · x3sin(x4) 0
0 1 ∆t sin(x4) ∆t · x3cos(x4) 0
0 0 1 0 0

0 0 ∆ttan(x5)
WB

1 ∆tx3sec
2(x5)

WB

0 0 0 0 1


(18)

And matrix BL as follows:

BL=


0 0
0 0
0 ∆t
0 0
∆t 0

 (19)

And now system can be written as

ẋ = ALx+BLu (20)

IV. EVALUATION AND RESULTS

The evaluation simulations and MPC optimization prob-
lem solving were conducted on a personal computer
equipped with an Intel Core i7-8850H CPU, boasting
a base frequency clock of 2.60 GHz with up to 400
GFLOPS, and 64 GB of system memory. The CasADi
symbolic framework for Python [11], was employed for
defining optimization problems, while for solving op-
timization problems the Interior Point Optimizer Ipopt
[12] was utilized. Model simulation was performed us-
ing the ordinary differential equation integration function
(odeint) from the Scipy Python library [13], with a rel-
ative tolerance rtol = 10−3 and an absolute tolerance
atol = 10−6. The vehicle parameters utilized in the
evaluation were sourced from the Common Road Vehicle
Library. Specifically, for the evaluation, the vehicle with
identification id = 2 was selected, and its parameters are
presented in table I. Tire dynamics parameters were used
for dry asphalt. The evaluation involved the application
of both linear and nonlinear MPC with a sampling time
Tsample = 0.025 seconds. Both linear and nonlinear MPC
had set limitation for maximum input values:

−11.5 m/s2 ≤ a ≤ 11.5 m/s2

−0.4 rad ≤ δ̇ ≤ 0.4 rad
(21)

The required parameter for the wheelbase (WB) in the
bicycle model was set to 2.5 meters. Tests were conducted
at four different initial vehicle velocities (5, 10, 15, 17m/s)
and utilized three sizes of prediction horizons (hp)
(2, 7, 10), while the control horizon (hu) ranged from one
up to the value of the prediction horizon. This setup
resulted in a total of 76 simulations for each velocity
level, and when multiplied by the number of test velocities
(4), it equated to 152 simulations. Therefore, in total,
204 simulations were conducted for linear and nonlinear
MPC. It is noteworthy that both the linear and nonlinear

TABLE I: Vehicle parameters

Property Value

Vehicle Mass 1000 kg
Vehicle Length 4.508m
Vehicle Width 1.610m
Wheel Base 2.578m
Max. steering angle 1.066 rad
Max. steering velocity 0.4 rad/s
Max. acceleration 11.5m/s2

Max. velocity 50.8m/s

MPC formulations utilized the same Q,R,SN weighting
matrices:

Q =


20 0 0 0 0
0 20 0 0 0
0 0 5 0 0
0 0 0 200 0
0 0 0 0 0.1

 , R =

[
1 0
0 1

]
, (22)

SN =


100 0 0 0 0
0 100 0 0 0
0 0 5 0 0
0 0 0 1000 0
0 0 0 0 0.1

 . (23)

These parameters were obtained by manual adjustment in
a series of simulations with the aim of optimizing the
matching of the referent trajectory. The bicycle model
operating point for linear MPC was update with last know
state each step. The results presented in table II originate
from the best-performing MPC corresponding to a given
velocity. This determination is grounded in selecting the
configuration with the smallest mean squared error ϵ
defined in eq. (24) between the vehicle’s positional value
and the reference path value. Selection process considers
every combination of initial vehicle velocity and each of
prediction horizon hp sizes. Table II shows only control
horizons hu that are giving the best results for given
combination of velocity and prediction horizon.

ϵ =
1

2n

n∑
i=1

(px,i − px,i)
2 + (py,i − py,i)

2 (24)

The value marked with tc, representing the average time
necessary to solve the optimization problem in each step,
excludes the time to shift the operating point in the case
of a linearised model. Time tm presents maximum time
needed for solving optimization problem. Table values are
highlighted in bold font for the parameter tc to signify
the MPC configuration with the smallest optimization
solving time, whereas ϵ indicates the configuration with
the smallest error. The empty field are there to indicate
that MPC with such configuration of hp and hu is not
usable for given vehicle velocity. The dependencies of
error ϵ combined with prediction horizon size and vehicle
velocity, are illustrated in Fig. 3. figs. 4 to 7 illustrate sim-
ulation plots for the MPC configuration that exhibited the
smallest mean squared error. These figures clearly show
advantages of the linearized model in computation time, as
well as its disadvantage in performance, best demonstrated

2090 MIPRO 2024/RTA



2 4 6 8 10 12 14
Prediction horizon hp

0.1

0.2

0.3

0.4

Er
ro

r 

vel=5 m/svel=5 m/s

vel=10 m/s

vel=10 m/s

vel=15 m/s

vel=15 m/s

vel=17 m/s

vel=17 m/s

Nonlinear
Linear

Fig. 3: Path fallowing error compared the length of
prediction horizon.

TABLE II: Evaluation results.

Prediction horizont hp

2 7 10
Vel.
[m/s] Value Lin. Non.

Lin. Lin. Non.
Lin. Lin. Non.

Lin.

5

hu 2 2 3 1 10 1
tc[s] 0,00763 0,00846 0,01259 0,01468 0,01677 0,01944
tm[s] 0,01464 0,01562 0,01855 0,01953 0,03221 0,03709
ϵ 0,13698 0,17665 0,05435 0,07416 0,06168 0,06486

10

hu 2 2 7 7 10 2
tc[s] 0,00798 0,00883 0,01342 0,01541 0,01678 0,01943
tm[s] 0,01272 0,01464 0,02342 0,02827 0,02635 0,03318
ϵ 0,15954 0,33594 0,11869 0,09495 0,12384 0,09036

15

hu 7 7 10 10
tc[s] 0,01347 0,01594 0,01712 0,02084
tm[s] 0,02147 0,02636 0,03022 0,03511
ϵ 0,18050 0,15090 0,17900 0,14008

17

hu 7 7 10 10
tc[s] 0,01367 0,01595 0,01721 0,02059
tm[s] 0,02440 0,02245 0,02831 0,03513
ϵ 0,21278 0,17571 0,20699 0,16144

in the yaw rate and path following plots. Additionally,
the aforementioned differences are also present in the
corresponding values, which are bolded in table II.

V. CONCLUSION

The results shown in table table II indicate that the sizes
of the prediction horizon hp and control horizon hu are
crucial parameters for vehicle control. It is important to
emphasize that a prediction horizon that is too short limits
the top velocity at which the vehicle can be successfully
controlled with the given MPC. Increasing the prediction
horizon comes with the advantage of smaller errors in path
following, but it also requires more time to solve the opti-
mization problem in each step. The time required to solve
the optimization problem is a crucial parameter, especially
for controlling real-time systems like vehicles. On average,
the computation of nonlinear MPC was 74, 89% slower
than that of linear MPC. Additionally, the computation

0 5 10 15

15

10

5

0

5

10

[d
eg

]

 

Nonlin.
Lin.
Reference

0 25 50 75 100
2

1

0

1

2

[d
eg

]

 
Nonlin.
Lin.

0 5 10 15
Time [s]

0.010

0.015

0.020

0.025

0.030

0.035

[s
]

Computation Time
Nonlin.
Lin.

0 25 50 75 100
X [m]

1

0

1

2

3

Y 
[m

]

Path Following

Nonlin.
Lin.
Reference

Fig. 4: Results: v = 5 m/s; Lin.: hp = 7, hu = 3;
Nonlin.: hp = 10, hu = 1. Yaw angle (Ψ) and Yaw angle
error (∆Ψ), Computation Time and vehicle position (X

and Y respectively).

0 5 10 15

15

10

5

0

5

10

[d
eg

]

 
Nonlin.
Lin.
Reference

0 25 50 75 100
4

3

2

1

0

1

2

3

4

[d
eg

]
 

Nonlin.
Lin.

0 5 10 15
Time [s]

0.015

0.020

0.025

0.030

[s
]

Computation Time
Nonlin.
Lin.

0 25 50 75 100
X [m]

1

0

1

2

3

Y 
[m

]

Path Following

Nonlin.
Lin.
Reference

Fig. 5: Results: v = 10 m/s; Lin.: hp = 7, hu = 7;
Nonlin.: hp = 10, hu = 2. Yaw angle (Ψ) and Yaw angle
error (∆Ψ), Computation Time and vehicle position (X

and Y respectively).

MIPRO 2024/RTA 2091



0 5 10 15
20

15

10

5

0

5

10

[d
eg

]

 
Nonlin.
Lin.
Reference

0 25 50 75 100

6

4

2

0

2

4

6

[d
eg

]

 

Nonlin.
Lin.

0 5 10 15
Time [s]

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

[s
]

Computation Time
Nonlin.
Lin.

0 25 50 75 100
X [m]

1

0

1

2

3

Y 
[m

]

Path Following

Nonlin.
Lin.
Reference

Fig. 6: Results: v = 15 m/s; Lin.: hp = 7, hu = 7;
Nonlin.: hp = 10, hu = 10. Yaw angle (Ψ) and Yaw

angle error (∆Ψ), Computation Time and vehicle
position (X and Y respectively).

0 5 10 15

20

15

10

5

0

5

10

[d
eg

]

 
Nonlin.
Lin.
Reference

0 25 50 75 100
8

6

4

2

0

2

4

6

[d
eg

]

 

Nonlin.
Lin.

0 5 10 15
Time [s]

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

[s
]

Computation Time
Nonlin.
Lin.

0 25 50 75 100
X [m]

1

0

1

2

3

Y 
[m

]

Path Following

Nonlin.
Lin.
Reference

Fig. 7: Results: v = 17 m/s; Lin.: hp = 10, hu = 10;
Nonlin.: hp = 10, hu = 10. Yaw angle (Ψ) and Yaw

angle error (∆Ψ), Computation Time and vehicle
position (X and Y respectively).

of linear MPC was faster than that of nonlinear MPC in
98, 25% of computation instances through simulations. In
the fastest instance, linear MPC is almost 4 times faster
than nonlinear MPC, with absolute time difference of
around 24 ms. The MPC weighting matrices Q, R, and
SN can be optimized further. The operation point shift
could be updated less frequently to increase the average
time necessary to solve the optimization process faster for
MPC with the linearised bicycle model. In future work,
it should be considered to automatically tune the length
of prediction horizon and values of weighting matrices
Q, R, and SN according to the vehicle state, specifically
velocity.

REFERENCES

[1] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, p. 789–814, Jun. 2000. [Online]. Available:
http://dx.doi.org/10.1016/S0005-1098(99)00214-9

[2] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. H. , “Mpc-
based approach to active steering for autonomous vehicle systems,”
International Journal of Vehicle Autonomous Systems, vol. 3, no.
2-4, pp. 265–291, 2005.

[3] J. Z. Y. Lu, A. Abualfellat, and R. Zarringhalam, “Achieving auto-
mated vehicle path following with blend path curvature control,” in
2022 American Control Conference (ACC), 2022, pp. 3158–3163.

[4] A. Domina and V. Tihanyi, “Ltv-mpc approach for automated
vehicle path following at the limit of handling,” Sensors,
vol. 22, no. 15, 2022. [Online]. Available: https://www.mdpi.com/
1424-8220/22/15/5807

[5] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive
heuristic control,” Automatica, vol. 14, no. 5, p. 413–428, Sep.
1978. [Online]. Available: http://dx.doi.org/10.1016/0005-1098(78)
90001-8

[6] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli,
“A survey of motion planning and control techniques for
self-driving urban vehicles,” IEEE Transactions on Intelligent
Vehicles, vol. 1, no. 1, p. 33–55, Mar. 2016. [Online]. Available:
http://dx.doi.org/10.1109/TIV.2016.2578706

[7] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Com-
posable benchmarks for motion planning on roads,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2017.

[8] H. B. Pacejka, Tire and Vehicle Dynamics, 3rd ed. Oxford,
England: Butterworth-Heinemann, apr 2012.

[9] E. Bertolazzi, F. Biral, and M. D. Lio, “real-time motion planning
for multibody systems: Real life application examples,” Multibody
System Dynamics, vol. 17, no. 2–3, p. 119–139, Feb. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s11044-007-9037-7

[10] P. Polack, F. Altche, B. d’Andrea Novel, and A. de La Fortelle,
“The kinematic bicycle model: A consistent model for planning
feasible trajectories for autonomous vehicles?” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, Jun. 2017. [Online].
Available: http://dx.doi.org/10.1109/IVS.2017.7995816

[11] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization
and optimal control,” Mathematical Programming Computation,
vol. 11, no. 1, pp. 1–36, 2019.

[12] A. Wächter and L. T. Biegler, “On the implementation
of an interior-point filter line-search algorithm for large-
scale nonlinear programming,” Mathematical Programming, vol.
106, no. 1, p. 25–57, Apr. 2005. [Online]. Available: http:
//dx.doi.org/10.1007/s10107-004-0559-y

[13] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272,
2020.

2092 MIPRO 2024/RTA




