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Abstract—Based on the dual quaternion formalism, the dy-
namics of a fixed wing UAV are formulated for path tracking, by
incorporating the nonlinear gyroscopic terms. A control strategy
is developed by exploiting the logarithmic map of the unit dual
quaternion so as to ensure asymptotic stability in the three-
dimensional space. The control and stabilization of the UAV, is
carried out using dual quaternion parameterized dynamics such
that a state feedback control law comprising of a PD controller
ensures the simultaneous attitude and position tracking. Simu-
lation results are presented to illustrate the applicability of this
integrated approach in the tracking of a three-directional path.

Index Terms—Dual quaternion, path tracking, attitude and
position control, PD controller, YAK-54 UAV

I. INTRODUCTION

The motion of a rigid body usually consists of both rotation
and translation. The use of quaternions in modelling of the
rotational kinematics is popular since it allows the dynamics
of a rigid body to be completely defined in the 3D space
while providing a double covering of the SO(3) configuration
space, and they are easy to deal with. Other methods also
exist that can be used for modelling of rotational kinematics
including Euler angles, Rodrigues parameters and transforma-
tion matrices, each having its’ own advantages. The quaternion
formulation has been used in rigid bodies [1], [2], satellites [3],
quadrotor [4] and fixed wing [5], [7] unmanned aerial vehicles
(UAVs), for attitude representation, control and modelling. For
instance, in [5], a controller based on quaternion formulation
was compared to a classical Euler-based attitude controller for
attitude control of a highly maneuverable fixed wing aircraft.
Repeated tracking of agile path maneuvers by a pilot can
be challenging, and oftenly sub-optimal due to the unstable
behaviour of the UAVs. Nevertheless, by using a quaternion-
based attitude tracker designed in [8] to track agile maneuvers
in a small fixed wing UAV, it was shown that the maneuver
tracking could repeated severally with considerable precision.

However, since quaternion formulation only models the
rotation motion, another formulation is required to handle the
translation kinematics, i.e. the rotation and translation motions
are handled independently. This is not desirable due to the
natural coupling between these two motions. A dual quaternion

which borrows heavily from dual numbers, consists of a unit
quaternion and a translation transformation based on the unit
quaternion, and can therefore be configured to track these two
motions simultaneously. Hence, the rotation and translation
motions are represented using a single quantity, a unit dual
quaternion [9]. This representation is compact [10], easier and
convenient to use, and the algebra involved turns out to be
simpler by allowing straightforward algebraic manipulations.

Dual quaternions have been used to represent rigid body dy-
namics [11], robotics systems [12], satellite systems [13], un-
manned aerial vehicles and spacecraft system dynamics [14],
[15]. A PID controller was applied in [16] for trajectory track-
ing in a tilt-rotor UAV parameterized using dual quaternion-
based system dynamics. A hybrid PID controller based on
dual quaternion for pose tracking control was proposed in
[17] where an integral term was introduced to compensate
for constant disturbances. It was also shown that the hysteretic
switching of a hybrid controller could avoid unwinding caused
by the topological constraints. Sliding mode control were
proposed for spacecrafts in [18], and for rigid body in [19]
for the coordinated position and attitude control based on dual
quaternion formalization. Other recent applications include
in the control of a micro robot [20], rigid body [21], and
quadrotor UAVs [16], [22]. In the literature of [23] and [13],
it was shown that asymptotic convergence of the tracking
error, and stability of the closed loop dynamics parameterized
using dual quaternions are guaranteed for continuous feedback
control laws.

In this paper, path tracking of a fixed wing UAV based on
dual quaternion parameterized kinematics for the integrated
tracking of both the rotational and translational motions is
presented. In contrast to [24], [25], where the gyroscopic
terms in the Newton’s equation are neglected, in this work the
design takes into account the contribution of these terms as
provided for in [26] since they are important especially when
dealing with agile maneuvers. The dynamic and kinematic
equations of motion are presented, and used in the path track-
ing simulations where a PD feedback controller is designed
using the dual quaternion error, composed of the integrated
attitude and position error. The rest of the paper is organized as
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follows: Section II briefly introduces the quaternion and dual
quaternion principles, and the related algebra while Section III
provides the rigid body dynamics and kinematics. Section IV
presents the PD controller by exploiting the dual quaternion
logarithmic mapping. Section V gives the simulation results
and discussions, and the conclusions are given in Section VI.

II. MATHEMATICAL PRELIMINARIES

A. Quaternions

Quaternions are also known as hyper complex numbers
since they can be represented by one real and three imaginary
numbers as q∆

= qs + q1î + q2ĵ + q3k̂ where , such that
î2 = ĵ2 = k̂2 = îĵk̂ = −1. An alternative representation is
given by q = [η, ε]T where η ∈ R1 and ε = [q1, q2, q3] ∈ R3

are the scalar and vector parts respectively, such that the
product space q ∈ R1 × R3 ∼= R4. A unit quaternion can
then be defined as

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)
n

]T
.

where θ is a rotation angle and n is a three-dimensional vector
representing the axes. The conjugate of a quaternion is given
as

q∗ = q−1 = [η,−εT ]T .

The product of two quaternions is given as q1 · q2. The
logarithm of a quaternion is ln(q) = [0, θ2n

T ]T ∼= θ
2n, for

0 ≤ θ < 2π. Other basic operations involving quaternions
can be found in [27]. The time derivative of a quaternion is
dependent on the angular velocity vector and is shown in (1):

q̇ =
1

2

[
0 −ωT

ω −S(ω)

]
q =

1

2
T (q)ω̄ (1)

where T (q) =
[
η −εT
ε ηI + S(ε)

]
and ω̄ =

[
0
ω

]
. The quan-

tity S(·) is a vector cross-product operator such that S(v) = 0 −v3 v2
v3 0 −v1
−v2 v1 0

, for a vector v = (v1, v2, v3)
T .

B. Dual Quaternions

A dual quaternion is defined as

q̂ = qr + ϵqd

where qr ∈ R4 and qd ∈ R4 are the real part and dual
part of the dual quaternion respectively, such that qr is a unit
quaternion and qd is the translation transformation. The dual
operator ϵ, is defined as ϵ2 = 0 such that ϵ ̸= 0. Using this
analogy, a 3D motion consisting of a rotation q := R ∈ R3×3,
followed by a translation p⃗ ∈ R3 can be represented using a
dual quaternion as:

q̂ = qr +
ϵ

2
q · p⃗ (2)

Equation (2) can be represented as

q̂ =

[
cos

θ̂

2
, sin

θ̂

2
n̂

]

where θ̂ = θ + ϵd is the dual angle about the screw axis n̂,
see [9]. The product of two dual quaternions is expressed as
q̂1 ◦ q̂2. The logarithmic mapping of a unit dual quaternion can
be defined as ln q̂ = 1

2 (θ + ϵp⃗), where θ is a rotation angle
of qr. The norm of the dual quaternion q̂ is given by ∥q̂∥ =√
q̂ ◦ q̂∗, where the dual quaternion conjugate q̂∗ = q∗r + ϵq∗d .

The difference between two dual quaternions, q̂a, and q̂b is
expressed as

q̂ab = q̂∗a ◦ q̂b. (3)

For a unit dual quaternion, the relationships qr · qr = I, and
qr · qd = 0 must be satisfied at all times. The time derivative
of a unit dual quaternion (2) is given as

˙̂q =
1

2
q̂ ◦ ξ (4)

where ξ is known as a twist, and is expressed as ξ = ω +
ϵ(⃗̇p+ω× p⃗). Other basic operations of dual quaternions follow
closely those of dual numbers, see [28].

III. UAV MATHEMATICAL MODEL

Due to the advantages of using a quaternion, q in attitude
representation, and the integral role they can play in track-
ing the orientation of a flying vehicle for a complete flight
envelope, we employ them to model the dynamics of a UAV.
The general equations of motion describing the dynamics, and
orientation of a UAV in the body frame can be written as:

V̇b =
1

m
Fb − ωb × Vb (5)

ω̇b = J−1 [Mb − ωb × (Jωb) ] (6)

q̇ =
1

2
q ⊗ ωb (7)

where the translational velocity Vb = [u, v, w]
T , angular

velocity ωb = [p, q, r]
T , and J is the inertia matrix. The

forces, Fb and moments, Mb act on the aircraft, and are
resolved in the body frame.

Equation (7) can be represented in the form of (1) with,
ω̄ = [0, ωb]

T . The forces, and moments in the three coordinate
axes are represented as in (8) and (9) respectively.

Fb

q̄S
= F aero+F grav+F thr =

 Cx

Cy

Cz

+gw+
 thr

0
0

 (8)

Mb

q̄S
=


b
(
Clββ + Clp

b
2Va

p+ Clr
b

2Va
r + Clδaδa + Clδrδr

)
c̄
(
Cmαα+ Cmq

c̄
2Va

q + Cmδeδe

)
b
(
Cnββ + Cnp

b
2Va

p+ Cnr
b

2Va
r + Cnδaδa + Cnδrδr

)


(9)
The various variables are described as (Cx, Cy, Cz)

T
=

Rs
b(−CD, CY ,−CL)

T , CD = CD0 +CL
2
/
πArKOsw, CY =

Cyββ + Cyp
b

2Va
p + Cyr

b
2Va

r + Cyδaδa + Cyδrδr, CL =

CL0 + CLαα, gw = mg[− sin θ, sinϕ cos θ, cosϕ cos θ]
T , thr

is the thrust, and Rs
b is a rotation matrix from the body frame

to stability frame. The dynamic pressure q̄ = 1
2ρVa

2, where ρ
is the air density, S is the wing area, b is the wing span, and
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c̄ is the mean aerodynamic chord. The velocity, Va, sideslip
angle, β and angle of attack, α which are derived components
of Vb, are computed as:

V̇a = − q̄S
m
CDW

+
thr

m
CαCβ + gw(1)

β̇ =
q̄S

mVa
CYW

+ Γ1 −
thr

mVa
CαSβ +

gw(2)

Va

α̇ = − q̄S

mVaCβ
CLW + q − Γ2 −

thr

mVaCβ
Sα +

gw(3)

VaCβ

where CDW
= CDCβ − CY Sβ , CYW

= CY Cβ + CDSβ ,
CLW = CL + CLq

c̄
2Va

q + CLδeδe, Γ1 = pSα − rCα,
Γ2 = Tβ(pCα + rSα). The C(·) are the aerodynamic stability
and control derivatives, and Cα, Sβ represent the trigonometry
functions of the respective subscript variables. Equation (6)
can then be expressed as:

Jω̇b = −S(ωb)Jωb + f(x) +D(x)ωb +G(x)u (10)

where x = (Va, α, β), and u represent the control deflections
[δa, δe, δr]

T . The composition of the components in (10) is:

f(x) = q̄S

 b(Cl0 + Clββ)
c̄(Cm + Cmαα)
b(Cn0 + Cnβ

β)

 (11)

D(x) = q̄S


b2

2Va
Clp 0 b2

2Va
Clr

0 c̄2

2Va
Cmq 0

b2

2Va
Cnp 0 b2

2Va
Cnr

 (12)

G(x) = q̄S

 bClδa
0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr

 (13)

With this breakdown, a set of control deflections u can be
designed to achieve tracking of a desired orientation q in (7).
With some re-organization of (5) and (8), it is realized that
the thrust force can be used as the design variable for the
translation dynamics (5), where the Euler angles in (8) are
given as: ϕ

θ
ψ

 =

 atan2 (2(qsq1 + q2q3), q
2
s + q23 − q21 − q22)

asin (2(qsq2 − q1q3))
atan2 (2(qsq3 + q1q2), q

2
s + q21 − q22 − q23)



IV. CONTROLLER DESIGN

A. Dual Quaternion Formulation

The translation and rotational equations (5-6) representing
the dynamics of a rigid body in the body coordinate frame can
be rewritten as: {

m(p̈b + ωb × ṗb) = f
Jω̇b + ωb × Jωb = τ

(14)

where m is the mass of the vehicle, pb is the position vector
in the body frame, f are forces acting on the body, ωb is the
angular velocity, J is the inertia matrix, and τ are the control

torques. Using (4), the rotational kinematics of a rigid body
expressed using a unit dual quaternion is given as

˙̂q =
1

2
q̂ ◦ ξb (15)

where ξb = ωb+ϵ(ṗb+ωb×pb). Differentiating ξb with respect
to time results to

ξ̇b = ω̇b + ϵ(p̈b + ω̇b × pb + ωb × ṗb). (16)

Substituting the second relation of (14) into (16), and carrying
out some rearrangements, results into (17),

ξ̇b = F̂ + Û (17)

where F̂ = a + ϵ(a × pb + ωb × ṗb), Û = J−1τ +
ϵ(f

/
m+ J−1τ × pb) and a = −J−1ωb × Jωb. Equations

(16)-(19) form the system dynamics parameterized using the
unit dual quaternion.

B. Error Dynamics

Let qd, pd, ωd, ω̇d be the desired attitude, position, angular
velocity, and acceleration respectively. The desired configu-
ration using dual quaternion formalization q̂d, is q̂d = qd +
ϵ
2qd · pd. Therefore, the tracking error between the current
configuration, q̂ and a desired configuration, q̂d is given as

q̂e = q̂∗d ◦ q̂. (18)

Equation (18) can be written in the form of (2) as

q̂e = qe +
1

2
qe ◦ peb (19)

where qe = q∗d · q is the quaternion error [29] and peb = pb −
Adq∗e pd. Ad∗ represents the adjoint transformation of a vector
i.e. Adqv = q · v · q∗ for a vector v. The error dynamics can
thus be expressed as:

˙̂qe =
1

2
q̂e ◦ ξeb (20)

where ξeb = ξb − Adq̂∗e ξd and Adq̂∗e ξd = q̂∗e ◦ ξd ◦ q̂e.
Taking the time derivative of ξeb , and making some algebraic
manipulations see [14] [16], the expression in (21) is obtained.

ξ̇eb = ξ̇b −Adq̂∗e ξd −
[
0̂, Adq̂∗e ξd × ξeb

]
(21)

Substituting (17) into (21), results into

ξ̇eb = F̂ + Û −Adq̂∗e ξd −
[
0̂, Adq̂∗e ξd × ξeb

]
(22)

C. Controller

The objective is to design a control law to asymptotically
track the desired target, that is q̂ should converge to q̂d
asymptotically as t→ ∞. Similarly, ωb should converge to ωd

that is, ξeb → 0̂ as t → ∞. If this is achieved, then it implies
that (q, pb) simultaneously converges to (qd, pd) respectively.
The PD controller described in [22], which is formulated based
on the logarithmic mapping of the dual quaternion Lie-algebra
is used. The control law is given as in (23), which includes a
feedforward compensation.

Û = −2k̂p ln q̂e − k̂vξ
e
b − F̂ +Adq̂∗e ξd +Adq̂∗e ξd × ξeb (23)
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The gains (k̂p, k̂v) > 0 are as k̂p = kp+ϵkp and k̂v = kv+ϵkv
such that similar gains are applied to the real, and dual parts.

From the relations subsequent to (19),

Û = J−1τ + ϵ(f
/
m+ J−1τ × pb) (24)

which is in dual vector format, and can be rewritten as
Û = r(Û) + ϵd(Û), where r(Û) = J−1τ , and d(Û) =

(f
/
m+ r(Û)× pb). Rearranging the terms reveals that:

f = m
(
d(Û)− r(Û)× pb

)
τ =

(
Jr(Û)

)
From τ , ω̇b can be extracted from (16), and consequently the
control deflections u, in (10). Moreover, from f , then p̈b can
be extracted from (14), and subsequently ṗb and pb through
numerical integration.

V. SIMULATIONS

The unmanned aerial vehicle used in this experiment
is YAK-54 UAV whose physical properties are given in
[30], and the aerodynamic coefficients are given in Table
1. The mass of the vehicle is 12.755kg, the Oswald con-
stant, KOsw was taken as 0.85, and the maximum thrust
was calculated to be about 150N . The initial values of the

TABLE I
YAK-54 UAV AERODYNAMIC COEFFICIENTS

Coeff. Value Coeff. Value

CD0 0.0526 CDα −0.0863

CYβ
−0.3462 CYp 0.0073

CYr 0.2372 CYδr
0.1928

CL0 0.1470 CLα 4.5363

CLq 5.1515 CLδe
0.3762

Clβ −0.0255 Clp −0.3817

Clr 0.0504 Clδa
0.3490

Clδr
0.0154 Cm0 −0.0018

Cmα −0.3701 Cmq −8.5026

Cmδe
−0.8778 Cnβ 0.0954

Cnp −0.0156 Cnr −0.1161

Cnδa
−0.0088 Cnδr

−0.0996

UAV were set as qnb(0) = [0.9932, 0.0324, 0.0626, 0.0929]
T ,

ωnb(0) = [0.01, 0.01, 0.01]
T
rad/s, pb = [1, 1,−99]

T
m,

ṗb = [30, 0, 0]
T
m/s for the attitude, angular velocity, position

and velocity respectively. The velocity was to be maintained
at 30m/s throughout the path tracking. The gains k for the
controller were set as kp = 10 and kv = 24 respectively.

Applying the properties of YAK-54 UAV in the dynamic
model presented in Section III, and the controller discussed in
Section IV, path tracking is investigated for the path described
in [31]. The path consists of different motions including a
straight-line section, a spiral section and a half circle turn in
such a manner that there is smooth transitions between the
sections.
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Fig. 1. UAV position during path tracking, and tracking errors

The tracking of the relative positions of the path is shown
in Fig. 1 and the associated 3D motion is shown in Fig. 2. Due
to the initial position and attitude values, and their coupling,
the position tracking errors are large during the initial transient
stage. Thereafter, the tracking errors lie to within acceptable
deviations along the path as shown in position error graph
in Fig. 1. Moreover, due to the use of numeric integration,
position errors can be propagated through the simulation.

Fig. 2. Tracking of the 3D path

In Fig. 3, the evolution of the attitude trajectories using
the quaternion, qnb for the attitude tracking are shown. The
corresponding orientation vis-à-vis the desired orientation us-
ing Euler angles are shown in Fig. 4. The initial errors in
orientation are attributable to the controller adjusting the UAV
from its initial pose to the desired pose, which too has an effect
on the position tracking due to the dual quaternion coupling.
The associated angular velocity components during tracking
are shown in Fig. 5.
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Fig. 3. Tracking and the evolution of the quaternion trajectory
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Fig. 4. Tracking of the attitude expressed in Euler angles
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Fig. 5. Angular velocity components during tracking

The velocity through the path tracking is shown in Fig. 6,
alongside the thrust force. The velocity is relatively constant
at 30m/s as the thrust ensure that the UAV maintains a steady
velocity while it tracks the desired path. From about 8-10 secs,
the thrust increases steadily in response to the steep change in
the z position, and later on returns to normal range after that
maneuver has been cleared. The control deflections during the
path tracking are shown in Fig. 7.
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Fig. 6. Evolution of velocity, and the thrust force
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Fig. 7. Control signals during path tracking

VI. CONCLUSIONS

This paper has presented the integrated attitude and position
tracking of a fixed wing UAV based on dual quaternion
parameterized dynamics. A PD controller using simple state
feedback while exploiting the mathematical simplicity and
logarithmic mapping of a dual quaternion was used to achieve
the asymptotic tracking. The formulation presented here does

MIPRO 2024/RTA 2085



not cancel the nonlinear gyroscopic terms in the control
dynamics, and thus a practical formulation with complete
parameterization of the dynamics. The numerical simulation
results presented have exemplified the applicability of this
formalism to control and track a desired three directional path
using a UAV.
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