
Partial SQL Query Assessment

Mario Fabijanić*, Igor Mekterović**

*Algebra University College/Software Engineering, Zagreb, Croatia mario.fabijanic@algebra.hr

**Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia igor.mekterovic@fer.hr

Abstract – Automated grading systems in education have

been around for sixty years. They have found applications in

areas such as online learning systems where virtually an

unlimited number of users can test their knowledge that

would not be possible to evaluate manually. Implementations

within Massive Open Online Courses are a good practice in

which users can do the self-testing, and get instant feedback,

making the learning process more efficient. Within

universities, automated grading systems allow teachers to

evaluate solutions and provide feedback for thousands of

submissions in a short time. This paper presents an overview

of methods used in automatic SQL query evaluation systems,

from early implementations when the goal was only to

evaluate solutions binary, to today when they enable

functionalities like partial and configurable evaluation, rich

and customized feedback, learning analytics, learning

pattern detection, code quality check, plagiarism detection.

These methods are not exclusive, and combining different

approaches makes an automated grading system more

comprehensive and applicable. Automatic assessment system

of SQL queries developed at Algebra University College will

be presented as an example of a system which uses dynamic

and static analysis, awards partial points, and gives feedback

to students based on the wrong parts of their solutions.

Keywords – SQL; assessment; fully-automated; partial

marks; the configurable assessment process

I. INTRODUCTION

The rising demand to educate IT professionals increases
the burden on teachers who, during the educational process,
often must quickly and fairly evaluate students’ solutions
in the form of programming language code. The problem
was recognized more than 60 years ago [1] and is present
nowadays more than ever in IT colleges and universities.
Online assessment systems in education have been used
since 1961 when one of the first systems was used at
Stanford University for the evaluation of submissions
written in ALGOL [2].

In database-related university courses, the main
problem is the amount of time required to evaluate student
solutions. The assessment process imposes a cognitive load
that lasts for days and can result in delays and
inconsistencies [3]. For instance, teachers included in
research [3] spent 22 hours grading 1533 student SQL
solutions, and the assessment process was not finished,
since students successfully challenged given grades (66%
of given grades were changed). Furthermore, only 33% of
teachers finished the assessment process before the
deadline defined by their university. This problem is often
mitigated by involving additional teachers in the
assessment process, but that may lead to diminished
consistency and favoritism [4]. This additional
inconsistency when more teachers are included in the

grading process is more emphasized especially when partial
grades are assigned because teachers can have different
grading criteria [5].

Manual feedback from the teacher helps student
performance [6][7]. Thus, automatic feedback becomes an
essential part of the education process, because often during
the assessment process, an insufficient number of students
get feedback that would help them fix the score next time
[8]. This precise feedback is often not provided or is not
available to most students. Automatic instant feedback
increases students’ participation and helps them resolve
assignments in introductory courses [9], with improved
performance and final grades [10]. Automatic instant
feedback can also be implemented in a system used to learn
how to construct SQL queries, providing tips during writing
queries [11]. It also helps teachers to increase teaching
efficiency, with a reduced workload [12]. As will be shown
in the remainder of the paper, automatic grading and
feedback generation are closely related.

II. GRADING SQL STATEMENTS

This chapter focuses on techniques and methods
currently used or proposed by researchers in the field for
evaluating SQL (Structured Query Language) code used in
relational database systems. Semi-automated systems
provide only part of the whole grade, and teachers do the
final grading, while in case of fully automated systems,
teachers do not need to evaluate individuals’ solution, but
they need to setup assessment system. Many semi-
automated or fully-automated assessment systems were
introduced during the years
[15][16][17][18][19][20][21][22]. Those systems are based
on dynamic analysis, which was the first method used in
evaluation process with automated assessment systems.

A. Dynamic analysis

Dynamic analysis is performed by executing student’s
solution and by executing the correct solution assigned by
the teacher. Both solutions use the same input datasets to be
able to find the differences in results and give a grade that
depends on the result sets’ similarity. Dynamic assessment
then concludes if the student’s solution is fully correct or
not. Typically, dynamic assessment implementation
produces a binary decision, although, partial gradings are
possible as with ActiveSQL but are of questionable
application. The first generation of assessment systems
implemented dynamic analysis with binary grading,
without the possibility of giving partial points [15][24].

Dynamic assessment is very sensitive to differences in
the result sets. For instance, a small, irrelevant error like an
extra column in a result set causes “wrong solution“
outcome. Depending on the database state and the question,

1512 MIPRO 2023/miproBIS

mailto:mario.fabijanic@algebra.hr
mailto:igor.mekterovic@fer.hr

sometimes wrong solutions can return the same result set as
the correct solution, so we must have a test database and we
must pay attention to its content when creating questions.

Authors in [25] used information from the physical
query plan of the RDBMS to generate data that will cover
each node from the physical query plan represented as an
ordered list or relational algebra operations. To have
covering data means to have the data adequate to test
different situations in the queries. All the predicates from
the query should be evaluated as TRUE to get solution data
as a result set for the query testing. The goal is to get data
that satisfies a coverage criterion and to populate tables
with such test data. To achieve this, random search may be
used to explore a set of random data, biased random search
to explore a set of random data, but with seeded values from
the query constants or from the seeding strategy specific for
join operations, and the genetic algorithm may use a fitness
function for the data from physical query plan that measure
how close candidate solution is from covering query target.
The idea of generating query-tailored data will improve
automated assessment systems making them even more
reliable during grading student solutions. Regarding
feedback, dynamic analysis cannot provide the reason why
the solution is wrong. To overcome that imperfection, some
systems are giving feedback based on the comparison of
other parameter values like row count [14].

In conclusion, dynamic analysis is a very practical,
popular, and widely used technique that is relatively simple
to implement. On the other side, it does not provide partial
grading facilities and can only provide rudimentary
feedback. In a try to overcome that, some of the proposed
models provide partial scoring feature comparing students’
solution result sets with the expected result set from the
correct solution. Partial grade is then calculated as a
proportion of correct cell values of the total cell values of
the correct result set. However, this is a rather dubious
approach with limited applicability [21s]. It should be noted
that dynamic assessment attempts to (dis)prove
equivalence of two queries by comparing their effects
(outputs). Why not compare the queries themselves which
is our problem in the first place? The following section
describes such approach.

B. Queries equivalence

The problem of recognizing SQL query equivalences is
not a simple task because of its’ undecidability [26]: two
SQL queries can be syntactically different, but
semantically/logically the same and both will produce the
same result set for the same inputs. A group of authors
proposed an automated prover which can determine the
equivalence of SQL queries, named Cosette [27]. Cosette
consists of two components: first component translates
SQL queries into logic formulas, and then searches for the
examples of input data which would show that the two
queries are not the same, and the second component
translates queries into K-relations, which are then validated
for the equivalence. K-relations are the representation of
relations in the form of mathematical functions which
receive a tuple and return input tuples’ multiplicity, which
can be checked to proof the equivalency [27].

Cosette has several drawbacks due to the limitations in
HoTT (Homotopy Type Theory) library [35] for Coq proof

tool, on which it is based on [26]. For instance, Cosette does
not support foreign keys because they are difficult to model
with HoTT library in Coq [26]. To overcome this
limitation, authors of Cosette proposed new algebraic
structure - unbounded semiring (U-semiring). They used it
as new formalism for SQL queries. To prove that two
queries are semantically equal, SQL queries are converted
into U-semiring expressions (U-expressions). In the next
step, U-expressions are compared using UDP (U-
expression Decision Procedure) algorithm [26]. U-semiring
may model some of the SQL features like integrity
constraints, which was one of the main drawbacks in
Cosette. UDP supports more different SQL queries then
Cosette, with more powerful automated proof search [26].
Although these methods brought new algorithms for
checking the equality of two SQL queries, and results were
promising, to the best of our knowledge, their development
for wider range of SQL features didn’t happen, probably
due to their overall complexity.

C. Static analysis

Rather than proving that two SQL queries are
equivalent, which has proven to be too difficult [26], many
researchers turned to static analysis of SQL statements. It
resulted in the second-generation automated assessment
systems, which use static analysis method [13]. In
situations when the result sets from student solution and
correct solution are equal, without static analysis system
cannot conclude if students’ solution fully satisfies the
expected solution. For instance, in case when the
assignment (and solution) explicitly calls for using joins,
and student provides a logically equivalent solution which
uses subqueries.

Static analysis is the analysis of the code without
executing it. In our context, it can be used to analyze
structure of the SQL code, or its’ abstract syntax
representation which is known as the abstract syntax tree
(AST). By comparing parts of AST, the similarity of SQL
queries may be determined [28]. AST represents the code
written in a programming language and adjusted to contain
only nodes that matter for the comparison, without
elements like comments, semicolons, parenthesis, aliases,
or any other elements without an impact on the
functionality of the solution.

Before creating AST, SQL codes that should be
compared are converted into canonical forms. Canonical
form of SQL query is again a SQL query, but without parts
that are irrelevant for the comparison with another query
[29]. Canonical forms of SQL queries minimize the
syntactic differences between two queries that need to be
compared. After the process of canonicalization, abstract
trees are created from canonical forms.

i) Canonicalization process

The process of canonicalization can be divided into
syntactical and semantic canonicalization. Examples of
syntactical canonicalization challenges:

1. When the solution uses the BETWEEN predicate, it is
replaced with the equivalent relational operators
“greater or equal to” and “smaller or equal to”, e.g.,

A BETWEEN 5 AND 10

MIPRO 2023/miproBIS 1513

is replaced with

A>=5 AND A<=10 [29].

2. When the solution uses NOT, it is converted into a
statement without NOT, e.g., NOT (A>B) is replaced
with A<=B. In addition, predicates that contain
greater than are replaced with smaller then, e.g., A>B
is replaced with B<A [29].

3. When the solution uses a subquery with the ORDER
BY clause and without the TOP clause, the ORDER
BY clause is removed because it does not change the
result set.

4. When the solution uses INNER JOIN, the query
optimizer chooses optimal order during query
execution [30], and it can be different in the correct
solution than the order in the student solution. For
instance, when comparing two statements:

FROM City as c INNER JOIN Student as s
 ON c.CityID=s.CityID

and

FROM Student as s INNER JOIN City as c
 ON c.CityID=s.CityID

Regarding functionality, those two statements are
equal, but their abstract trees are different, and that is
why those kinds of nodes are sorted before calculating
the similarity of statements.

Examples of semantic canonicalization challenges:

1. When the solution uses the DISTINCT clause to
remove duplicates, and they do not exist, the
DISTINCT clause can be removed from the solution.
The case of the primary key attribute or any other
unique attribute in the SELECT list and as a join
predicate, meaning the DISTINCT clause can be
removed [29].

2. When a solution contains redundant joins, they can be
removed, e.g., if the solution is:

SELECT * FROM student
LEFT OUTER JOIN department
ON student.dept_id=department.id
WHERE student.dept_name = ’Biology’

The condition in the WHERE clause fails if
student_dept_name is null, and the solution can be
rewritten to use INNER JOIN instead.

Left or right outer join can be replaced with an inner
join if (i) the attributes used in the join include all
foreign key references from one side of a join to the
other side of a join and (ii) foreign key values used in
the join are not null [29].

3. When a solution contains the predicates which are
replaceable, lexicographically least attribute will be
used in all clauses, e.g., if the query is:

SELECT student.dept_name FROM student
INNER JOIN department
ON student.dept_name=department.dept_name
WHERE student.dept_name LIKE ’English%’

And because of the
student.dept_name=department.dept_name, the
department.dept_name attribute will be used in the
SELECT clause too. In addition, if constant is a part
of the equality condition, it is considered as
lexicographically least attribute [29].

4. When a solution contains an ORDER BY clause with
more than one attribute, and if the second attribute is
functionally dependent on the first attribute, the
second attribute is ordered the same way as the first
attribute, and therefore, irrelevant, and can be
removed from the solution. Similarly, when a solution
contains GROUP BY, e.g.,

SELECT id, COUNT(*) FROM student
INNER JOIN takes ON student.id=takes.id
GROUP BY id, name

and if student.id is the primary key, the attribute name
can be removed from the GROUP BY clause [29].

ii) Using ASTs

After the canonicalization process, ASTs are used to
find the differences between students’ solution and correct
solution. One possible approach is to calculate tree edit
distance between students’ solution tree and correct
solution tree [28]. It is calculated as number of
modifications to the student solution tree until it becomes
equivalent to the correct solution tree. This makes partial
grading based on the number of needed modifications
possible, but the challenge regarding this approach is the
need to test the equivalence after each modification of the
student solution. There is also a possibility to try all the
edits possible at each step, again testing the equivalence at
each step, making the number of edits exponential [29].
During tree similarity calculation, ASTs may be
decomposed into smaller subtrees which are more suitable
for the tree edit distance algorithms.

First tree edit algorithms proposed in the late seventies
used a hard-coded strategy and did not consider the shape
of the trees which resulted in big differences during runtime
[31][32]. More recent algorithms like RTED (Robust Tree
Edit Distance) first calculate the decomposition strategy
and then adapt to the input tree, which results in better
runtime [33]. It is not perfect in terms of memory
consumption for large input trees, since the strategy
computation can use twice the memory used for distance
computation, limiting its usage on large trees. Newer
algorithm, AP-TED (All Path Tree Edit Distance) and
AP-TED+ reduce the memory consumption by 2/3
compared with the RTED algorithm [33]. This is achieved
by releasing the memory early during decomposition.

In addition, the AP-TED+ algorithm considers the fact
that during the distance computation phase majority of
subtrees contain up to two nodes, and the algorithm uses
different functions to compute the distance when one of the
trees is small [33]. Another approach of using ASTs is to
check a set of grading rules against key-value pairs for each
SQL clause within AST. Grading rules make partial
grading possible, and they should be created by teachers,
together with the correct solution, before assessment
process starts.

1514 MIPRO 2023/miproBIS

iii) Without ASTs

The abstract tree can be built when the SQL solution is
syntactically correct. If that is not the case, the similarity
between two SQL statements should be calculated
differently. For that purpose, text comparison of both SQL
statements may be done. Before the comparison, both
solutions are normalized: tab, newline, and semicolon
characters are replaced with whitespace, leading and
trailing whitespaces are removed, and all double spaces are
replaced with one whitespace. With those adjustments, the
similarity of the two texts may be calculated using e.g.
Levenshtein distance metric [28]. Levenshtein distance is
calculated as the minimum number of single-character edits
needed to transform one text into another [34]. Some
researchers suggest value 1 as acceptable Levenshtein’s
distance when a student can still get the maximum grade,
and it is considered as an unintentional typo that does not
affect student knowledge and therefore, student grade.

D. Combined Approach

Two main approaches are dynamic and static analysis
[28], but combining them increases the quality of the
automated assessment systems in general. Putting dynamic
and static analysis into relation, the result of the dynamic
analysis can be one of those:

a) Candidates for correct statements

b) Statements that cannot be executed

c) Partially correct statements.

The dynamic analysis may discover candidates for
correct solutions, if they can be executed and provide the
expected result set. The problem is that student could get
correct result set, but without the need to use expected SQL
clauses, and dynamic analysis cannot discover it. Example
of this problem is when the UNION statement is used,
instead of expected SQL clauses, and tweaks the result set
knowing what correct result set should be.

The static analysis is primarily used for partially correct
statements, but it can also be used for students’ solutions
that dynamic analysis confirmed as potentially correct,
preventing the fraud like in previous example. In addition,
queries that are different in their syntax can be semantically
equal, which makes the problem more complex [33].

III. AUTOMATIC ASSESSMENT SYSTEM OF SQL

QUERIES DEVELOPED AT ALGEBRA UNIVERSITY COLLEGE

In this chapter, an automatic assessment system of SQL
queries developed at Algebra University College will be
presented as an example of a system which uses dynamic
and static analysis, and therefore may award partial points
and give feedback to students, focused on the wrong parts
of their solutions. This system uses an input from the
teacher: the correct SQL query solution, and the grading
rules with the deducting percentage of maximum points in
case of errors. During static analysis, the AST of student
solutions are compared with AST of the correct SQL query
solution. Figure 1 shows an example of the abstract tree
application and Figure 2 shows an example of the feedback
to student, both taken from an automatic assessment system
used during previous exam terms.

Example of the correct SQL query solution:

SELECT YEAR(i.InvoiceDate) as InvYr
 , MONTH(i.InvoiceDate) as InvMnth
 , COUNT(i.IDInvoice) as NumberOfInvoices
FROM Invoice as i
 INNER JOIN Customer as c
 ON i.CustomerID=c.IDCustomer
INNER JOIN City as ct
 ON ct.IDCity=c.CityID
WHERE ct.Name='Rijeka'
GROUP BY YEAR(i.InvoiceDate)
 , MONTH(i.InvoiceDate)
HAVING COUNT(i.IDInvoice)<30

ORDER BY InvYr DESC, InvMnth

Example of students’ solution:

SELECT YEAR(i.InvoiceDate) as InvYr
 , COUNT(i.IDInvoice) as NumberOfInvoices
FROM Invoice as i
INNER JOIN Customer as c
 ON i.CustomerID=c.CityID
INNER JOIN City as ct
 ON ct.IDCity=c.CityID
WHERE ct.Name='Split'
GROUP BY YEAR(i.InvoiceDate)
 , MONTH(i.InvoiceDate)
HAVING COUNT(i.IDInvoice)<30

ORDER BY InvYr

Examples of the grading rules:

a) Regarding the FROM clause:

i) The weight in the whole query: 100%

ii) If valid, deduct 0% of possible points

iii) If not valid, deduct 100% of possible points

b) Regarding the WHERE clause:

i) The weight in the whole query: 50%

ii) If not valid, deduct 50% of possible points

iii) If valid, but wrong columns are included, deduct
25% per each wrong column

iv) If valid, with correct columns included, but with
wrong values included, deduct 25% per wrong value

c) Regarding SELECT clause:

i) The weight in the whole query: 30%

ii) If not valid, deduct 10% per each missing column.

Teacher grading rules used during the grading process
can be stored in the configuration file or a database. An
example of the set of general rules:

{ "max_points": 4.0,
 "clause_points_from": 50,
 "clause_points_where": 15,
 "clause_points_groupby": 30,
 "clause_points_having": 15,
 "clause_points_select": 20,
 "clause_points_orderby": 10,
 "parses_and_compiles": 100,
 "wrong_results": 50 }

MIPRO 2023/miproBIS 1515

In this example, the JSON configuration file contains
the maximum points for the correct solution and weights
for each clause in the query. These weights represent
percentages that will be deducted from the max_points if
erroneous. Also, the rules state the deduction percentage if
the solution does not parse and compile, and if it returns a
wrong result set. Note that the latter is evaluated via
dynamic assessment.

A set of rules per each clause may also be defined:

"from_each_missing_table"
"from_each_wrong_join"
"from_max_joins_allowed"
"from_use_specific_join"
"where_wrong_rows"
"where_partial_correct_column"
"where_use_specific_operator"
"groupby_not_correct"
"groupby_partial_correct_column"
"having_wrong_number_of_rows"
"having_missing_aggregate_function"
"select_missing_regular_column"
"select_missing_function_column"
"select_missing_aggregate_column"
"orderby_each_missing_column"
"orderby_each_wrong_ascdesc"
"orderby_each_wrong_column_order"

An example of the rule for the HAVING clause:

"having_missing_aggregate_function":
 { "status": "on",
 "deduct": 100,
 "hard_stop": 0 }

For each of the presented grading rules, there may be a
subset of settings that enable or disable the rule, the
deduction percentage if the rule is not satisfied, or whether
to stop or continue with the grading process, like in above
example. Additional settings can also be used, e.g.:

- specific_join in the case that student solution
must contain required type of inner join, outer join,
full join, or cross join in the FROM clause,

- specific_operator in the case that specific
operator must be used in the WHERE clause,

Figure 1. Example of the abstract tree application

Figure 2. Example of the feedback

- num as a number for maximum joins or subqueries
needed in student solution,

- select_subqueries_required in the case when
subquery must be within the SELECT clause,

- where_subqueries_required in the case when
subquery must be within the WHERE clause.

The precision of the grading rules also has a great
influence on the feedback possibilities. Feedback is
addressed as one of the most important parts of the whole
education process. Rich feedback is a prerequisite that
students may become aware of their knowledge gaps and
according to those, they can make additional effort in
learning [8].

In general, the usability of the feedback is recognized in
several areas: (i) info about failure – evaluation logs as the
source of that data, (ii) info about failed tests – info about
how to proceed, with a hint on how to overcome an issue,
(iii) structured report of the evaluation including details,
e.g., execution times, resource usage, and tests passed and
failed, and (iv) manual report – messages written by the
instructor about a submitted solution [13]. With the static
analysis implemented, many of the aforementioned ideas
for feedback become possible. It is a significant
improvement over dynamic analysis, where the feedback
was limited to the comments about what is wrong in result
set of the query, but without too helpful information about
which part of the solution was wrong, and the significance
of the error. On top of the partial grading feature, rich
feedback is a great improvement in automated assessment
systems.

IV. CONCLUSION

Automated grading systems in the educational process
are needed more than ever. Their popularity is growing
with the growing number of students enrolled in computer
science courses and with the desire to improve the
educational process. Partial grading of student SQL queries
and rich feedback from the automated grading system could
have a major impact on achieving this goal. The main
problem to be solved is to prove that two SQL queries
(exact solution and student solution) are equal. This is an
extremely demanding task, and instead of proving the
equivalence of SQL queries, two other approaches that use
dynamic and static analysis have prevailed. Dynamic
analysis is relatively simple to implement but solves only
part of the given problem. On the other hand, static analysis
significantly contributes to achieving the set goal - partial
evaluation of SQL solutions and at the same time rich

1516 MIPRO 2023/miproBIS

feedback for students. Combining both methods greatly
increases the capabilities of the system for automatic
evaluation of SQL solutions.

REFERENCES

[1] J. Hollingsworth, “Automatic graders for programming classes,”
Commun. ACM, vol. 3, no. 10, pp. 528–529, Oct. 1960, doi:
10.1145/367415.367422.

[2] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal, “A
survey on online judge systems and their applications,” ACM
Comput. Surv., vol. 51, no. 1, 2018, doi: 10.1145/3143560.

[3] J. Tharmaseelan, K. Manathunga, S. Reyal, D. Kasthurirathna, and
T. Thurairasa, “Revisit of automated marking techniques for
programming assignments,” in IEEE Global Engineering Education
Conference, EDUCON, 2021, vol. 2021-April, doi:
10.1109/EDUCON46332.2021.9453889.

[4] D. Fonte, D. Da Cruz, A. L. Gançarski, and P. R. Henriques, “A
flexible dynamic system for automatic grading of programming
exercises,” OpenAccess Ser. Informatics, vol. 29, pp. 129–144,
2013, doi: 10.4230/OASIcs.SLATE.2013.129.

[5] I. Albluwi, “A Closer Look at the Differences between Graders in
Introductory Computer Science Exams,” IEEE Trans. Educ., vol.
61, no. 3, pp. 253–260, 2018, doi: 10.1109/TE.2018.2805706.

[6] D. Nicol and D. MacFarlane-Dick, “Formative assessment and
selfregulated learning: A model and seven principles of good
feedback practice,” Stud. High. Educ., vol. 31, no. 2, pp. 199–218,
2006, doi: 10.1080/03075070600572090.

[7] J. Hattie and H. Timperley, “The power of feedback,” Rev. Educ.
Res., vol. 77, no. 1, pp. 81–112, 2007, doi:
10.3102/003465430298487.

[8] A. P. Cavalcanti et al., “Automatic feedback in online learning
environments: A systematic literature review,” Comput. Educ.
Artif. Intell., vol. 2, p. 100027, 2021, doi:
10.1016/j.caeai.2021.100027.

[9] S. Krusche and A. Seitz, “ArTEMiS - An automatic assessment
management system for interactive learning,” SIGCSE 2018 - Proc.
49th ACM Tech. Symp. Comput. Sci. Educ., vol. 2018-Janua, pp.
284–289, 2018, doi: 10.1145/3159450.3159602.

[10] W. Zhou, Y. Pan, Y. Zhou, and G. Sun, “The framework of a new
online judge system for programming education,” ACM Int. Conf.
Proceeding Ser., pp. 9–14, 2018, doi: 10.1145/3210713.3210721.

[11] M. H. Ying and Y. Hong, “The development of an online SQL
learning system with automatic checking mechanism,” Proc. - 7th
Int. Conf. Networked Comput. Adv. Inf. Manag. NCM 2011, pp.
346–351, 2011.

[12] X. Xie and X. Li, “Research on Personalized Exercises and
Teaching Feedback Based on Big Data,” ACM Int. Conf.
Proceeding Ser., pp. 166–171, 2018, doi:
10.1145/3232116.3232143.

[13] J. C. Paiva, C. I. Tec, and D. C. C. Fcup, “Automated Assessment
in Computer Science Education : A State-of-the-Art Review,” pp.
1–39, 2022.

[14] I. Mekterovic, L. Brkic, B. Milasinovic, and M. Baranovic,
“Building a comprehensive automated programming assessment
system,” IEEE Access, vol. 8, pp. 81154–81172, 2020, doi:
10.1109/ACCESS.2020.2990980.

[15] A. Kleerekoper and A. Schofield, “SQL tester: An online SQL
assessment tool and its impact,” Annu. Conf. Innov. Technol.
Comput. Sci. Educ. ITiCSE, pp. 87–92, 2018, doi:
10.1145/3197091.3197124.

[16] P. J. Wagner, “The sql file evaluation (sqlfe) tool: A flexible and
extendible system for evaluation of sql queries,” Annu. Conf.
Innov. Technol. Comput. Sci. Educ. ITiCSE, p. 1334, 2020, doi:
10.1145/3328778.3372599.

[17] A. Trongratsameethong, P. Vichianroj, and C. Mai, “ASQLAG -
Automated SQL Assignment Grading System for Multiple
DBMSs,” vol. 1, no. 1, pp. 41–59, 2018, doi: 10.14456/jti.2018.4.

[18] C. Kleiner, C. Tebbe, and F. Heine, “Automated grading and
tutoring of SQL statements to improve student learning,” ACM Int.

Conf. Proceeding Ser., pp. 161–168, 2013, doi:
10.1145/2526968.2526986.

[19] M. De Raadt, S. Dekeyser, and T. Y. Lee, “Do students SQLify?
Improving learning outcomes with peer review and enhanced
computer assisted assessment of querying skills,” ACM Int. Conf.
Proceeding Ser., vol. 276, pp. 101–108, 2006, doi:
10.1145/1315803.1315821.

[20] J. Castelein, M. Aniche, M. Soltani, A. Panichella, and A. Van
Deursen, “Search-based test data generation for SQL queries,”
Proceedings - International Conference on Software Engineering.
pp. 1220–1230, 2018, doi: 10.1145/3180155.3180202.

[21] A. Cumming and G. Russell, “Automatic Checking of SQL:
Computerised Grading,” Int. J. Learn. Annu. Rev., vol. 12, no. 3,
pp. 127–134, 2006, doi: 10.18848/1447-9494/cgp/v12i03/46714.

[22] J. C. Prior, “Online Assessment of SQL Query Formulation Skills,”
Ace ’03, vol. 20, pp. 247–256, 2003, [Online]. Available:
http://delivery.acm.org/10.1145/860000/858433/p247-
prior.pdf?ip=201.5.254.119&id=858433&acc=PUBLIC&key=4D
4702B0C3E38B35.4D4702B0C3E38B35.6DB1341FA924E6B8.4
D4702B0C3E38B35&CFID=525851233&CFTOKEN=96683423
&__acm__=1436149768_230e7f22b7329beb08e8473b5e50b453.

[23] P. Brusilovsky, M. V. Yudelson, S. Sosnovsky, V. Zadorozhny, D.
H. Lee, and X. Zhou, “An open integrated exploratorium for
database courses,” Proc. Conf. Integr. Technol. into Comput. Sci.
Educ. ITiCSE, vol. 1, no. 412, pp. 22–26, 2008, doi:
10.1145/1384271.1384280.

[24] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin, “SQLator - An online
SQL learning workbench,” SIGCSE Bull. (Association Comput.
Mach. Spec. Interes. Gr. Comput. Sci. Educ., vol. 36, no. 3, pp.
223–227, 2004, doi: 10.1145/1026487.1008055.

[25] J. Tuya, M. J. Suárez-Cabal, and C. De La Riva, “Full predicate
coverage for testing SQL database queries,” Actas las 16th Jornadas
Ing. del Softw. y Bases Datos, JISBD 2011, no. January, pp. 683–
684, 2011, doi: 10.1002/stvr.

[26] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu,
“Axiomatic foundations and algorithms for deciding semantic
equivalences of SQL queries,” Proc. VLDB Endow., vol. 11, no.
11, pp. 1482–1495, 2018, doi: 10.14778/3236187.3236200.

[27] S. Chu, C. Wang, K. Weitz, and A. Cheung, “Cosette: An
automated prover for SQL,” CIDR 2017 - 8th Bienn. Conf. Innov.
Data Syst. Res., 2017.

[28] J. Wang, Y. Zhao, Z. Tang, and Z. Xing, “Combining dynamic and
static analysis for automated grading SQL statements,” J. Netw.
Intell., vol. 5, no. 4, pp. 179–190, 2020.

[29] B. Chandra, A. Banerjee, U. Hazra, M. Joseph, and S. Sudarshan,
“Automated grading of SQL queries,” Proc. - Int. Conf. Data Eng.,
vol. 2019-April, pp. 1630–1633, 2019, doi:
10.1109/ICDE.2019.00159.

[30] L. Giakoumakis and C. Galindo-legaria, “Testing SQL Server ’ s
Query Optimizer : Challenges , Techniques and Experiences,” Bull.
IEEE Comput. Soc. Tech. Comm. Data Eng., pp. 1–8, 2008.

[31] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An
optimal decomposition algorithm for tree edit distance,” ACM
Trans. Algorithms, vol. 6, no. 1, pp. 146–157, 2009, doi:
10.1145/1644015.1644017.

[32] K. H. Lee, Y. C. Choy, and S. B. Cho, “An efficient algorithm to
compute differences between structured documents,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 8, pp. 965–979, 2004, doi:
10.1109/TKDE.2004.19.

[33] M. Pawlik and N. Augsten, “Tree edit distance: Robust and
memory-efficient,” Inf. Syst., vol. 56, pp. 157–173, 2016, doi:
10.1016/j.is.2015.08.004.

[34] L. Yujian and L. Bo, “A normalized Levenshtein distance metric,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1091–
1095, 2007, doi: 10.1109/TPAMI.2007.1078.

[35] J. Gross, M. Shulman, A. Bauer, P. L. Lumsdaine, A. Mahboubi,
and B. Spitters. The HoTT libary in Coq.
https://github.com/HoTT/HoTT.

MIPRO 2023/miproBIS 1517

