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Abstract – Automated grading systems in education have 

been around for sixty years. They have found applications in 

areas such as online learning systems where virtually an 

unlimited number of users can test their knowledge that 

would not be possible to evaluate manually. Implementations 

within Massive Open Online Courses are a good practice in 

which users can do the self-testing, and get instant feedback, 

making the learning process more efficient. Within 

universities, automated grading systems allow teachers to 

evaluate solutions and provide feedback for thousands of 

submissions in a short time. This paper presents an overview 

of methods used in automatic SQL query evaluation systems, 

from early implementations when the goal was only to 

evaluate solutions binary, to today when they enable 

functionalities like partial and configurable evaluation, rich 

and customized feedback, learning analytics, learning 

pattern detection, code quality check, plagiarism detection. 

These methods are not exclusive, and combining different 

approaches makes an automated grading system more 

comprehensive and applicable. Automatic assessment system 

of SQL queries developed at Algebra University College will 

be presented as an example of a system which uses dynamic 

and static analysis, awards partial points, and gives feedback 

to students based on the wrong parts of their solutions. 

Keywords – SQL; assessment; fully-automated; partial 

marks; the configurable assessment process 

I. INTRODUCTION 

The rising demand to educate IT professionals increases 
the burden on teachers who, during the educational process, 
often must quickly and fairly evaluate students’ solutions 
in the form of programming language code. The problem 
was recognized more than 60 years ago [1] and is present 
nowadays more than ever in IT colleges and universities. 
Online assessment systems in education have been used 
since 1961 when one of the first systems was used at 
Stanford University for the evaluation of submissions 
written in ALGOL [2].  

In database-related university courses, the main 
problem is the amount of time required to evaluate student 
solutions. The assessment process imposes a cognitive load 
that lasts for days and can result in delays and 
inconsistencies [3]. For instance, teachers included in 
research [3] spent 22 hours grading 1533 student SQL 
solutions, and the assessment process was not finished, 
since students successfully challenged given grades (66% 
of given grades were changed). Furthermore, only 33% of 
teachers finished the assessment process before the 
deadline defined by their university. This problem is often 
mitigated by involving additional teachers in the 
assessment process, but that may lead to diminished 
consistency and favoritism [4]. This additional 
inconsistency when more teachers are included in the 

grading process is more emphasized especially when partial 
grades are assigned because teachers can have different 
grading criteria [5].  

Manual feedback from the teacher helps student 
performance [6][7]. Thus, automatic feedback becomes an 
essential part of the education process, because often during 
the assessment process, an insufficient number of students 
get feedback that would help them fix the score next time 
[8]. This precise feedback is often not provided or is not 
available to most students. Automatic instant feedback 
increases students’ participation and helps them resolve 
assignments in introductory courses [9], with improved 
performance and final grades [10]. Automatic instant 
feedback can also be implemented in a system used to learn 
how to construct SQL queries, providing tips during writing 
queries [11]. It also helps teachers to increase teaching 
efficiency, with a reduced workload [12]. As will be shown 
in the remainder of the paper, automatic grading and 
feedback generation are closely related. 

II. GRADING SQL STATEMENTS  

This chapter focuses on techniques and methods 
currently used or proposed by researchers in the field for 
evaluating SQL (Structured Query Language) code used in 
relational database systems. Semi-automated systems 
provide only part of the whole grade, and teachers do the 
final grading, while in case of fully automated systems, 
teachers do not need to evaluate individuals’ solution, but 
they need to setup assessment system. Many semi-
automated or fully-automated assessment systems were 
introduced during the years 
[15][16][17][18][19][20][21][22]. Those systems are based 
on dynamic analysis, which was the first method used in 
evaluation process with automated assessment systems.  

A. Dynamic analysis 

Dynamic analysis is performed by executing student’s 
solution and by executing the correct solution assigned by 
the teacher. Both solutions use the same input datasets to be 
able to find the differences in results and give a grade that 
depends on the result sets’ similarity. Dynamic assessment 
then concludes if the student’s solution is fully correct or 
not. Typically, dynamic assessment implementation 
produces a binary decision, although, partial gradings are 
possible as with ActiveSQL but are of questionable 
application. The first generation of assessment systems 
implemented dynamic analysis with binary grading, 
without the possibility of giving partial points [15][24].  

Dynamic assessment is very sensitive to differences in 
the result sets. For instance, a small, irrelevant error like an 
extra column in a result set causes “wrong solution“ 
outcome. Depending on the database state and the question, 
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sometimes wrong solutions can return the same result set as 
the correct solution, so we must have a test database and we 
must pay attention to its content when creating questions.  

Authors in [25] used information from the physical 
query plan of the RDBMS to generate data that will cover 
each node from the physical query plan represented as an 
ordered list or relational algebra operations. To have 
covering data means to have the data adequate to test 
different situations in the queries. All the predicates from 
the query should be evaluated as TRUE to get solution data 
as a result set for the query testing. The goal is to get data 
that satisfies a coverage criterion and to populate tables 
with such test data. To achieve this, random search may be 
used to explore a set of random data, biased random search 
to explore a set of random data, but with seeded values from 
the query constants or from the seeding strategy specific for 
join operations, and the genetic algorithm may use a fitness 
function for the data from physical query plan that measure 
how close candidate solution is from covering query target. 
The idea of generating query-tailored data will improve 
automated assessment systems making them even more 
reliable during grading student solutions. Regarding 
feedback, dynamic analysis cannot provide the reason why 
the solution is wrong. To overcome that imperfection, some 
systems are giving feedback based on the comparison of 
other parameter values like row count [14].  

In conclusion, dynamic analysis is a very practical, 
popular, and widely used technique that is relatively simple 
to implement. On the other side, it does not provide partial 
grading facilities and can only provide rudimentary 
feedback. In a try to overcome that, some of the proposed 
models provide partial scoring feature comparing students’ 
solution result sets with the expected result set from the 
correct solution. Partial grade is then calculated as a 
proportion of correct cell values of the total cell values of 
the correct result set. However, this is a rather dubious 
approach with limited applicability [21s]. It should be noted 
that dynamic assessment attempts to (dis)prove 
equivalence of two queries by comparing their effects 
(outputs). Why not compare the queries themselves which 
is our problem in the first place? The following section 
describes such approach.  

B. Queries equivalence 

The problem of recognizing SQL query equivalences is 
not a simple task because of its’ undecidability [26]: two 
SQL queries can be syntactically different, but 
semantically/logically the same and both will produce the 
same result set for the same inputs. A group of authors 
proposed an automated prover which can determine the 
equivalence of SQL queries, named Cosette [27]. Cosette 
consists of two components: first component translates 
SQL queries into logic formulas, and then searches for the 
examples of input data which would show that the two 
queries are not the same, and the second component 
translates queries into K-relations, which are then validated 
for the equivalence. K-relations are the representation of 
relations in the form of mathematical functions which 
receive a tuple and return input tuples’ multiplicity, which 
can be checked to proof the equivalency [27].  

Cosette has several drawbacks due to the limitations in 
HoTT (Homotopy Type Theory) library [35] for Coq proof 

tool, on which it is based on [26]. For instance, Cosette does 
not support foreign keys because they are difficult to model 
with HoTT library in Coq [26]. To overcome this 
limitation, authors of Cosette proposed new algebraic 
structure - unbounded semiring (U-semiring). They used it 
as new formalism for SQL queries. To prove that two 
queries are semantically equal, SQL queries are converted 
into U-semiring expressions (U-expressions). In the next 
step, U-expressions are compared using UDP (U-
expression Decision Procedure) algorithm [26]. U-semiring 
may model some of the SQL features like integrity 
constraints, which was one of the main drawbacks in 
Cosette. UDP supports more different SQL queries then 
Cosette, with more powerful automated proof search [26]. 
Although these methods brought new algorithms for 
checking the equality of two SQL queries, and results were 
promising, to the best of our knowledge, their development 
for wider range of SQL features didn’t happen, probably 
due to their overall complexity. 

C. Static analysis  

Rather than proving that two SQL queries are 
equivalent, which has proven to be too difficult [26], many 
researchers turned to static analysis of SQL statements. It 
resulted in the second-generation automated assessment 
systems, which use static analysis method [13]. In 
situations when the result sets from student solution and 
correct solution are equal, without static analysis system 
cannot conclude if students’ solution fully satisfies the 
expected solution. For instance, in case when the 
assignment (and solution) explicitly calls for using joins, 
and student provides a logically equivalent solution which 
uses subqueries.  

Static analysis is the analysis of the code without 
executing it. In our context, it can be used to analyze 
structure of the SQL code, or its’ abstract syntax 
representation which is known as the abstract syntax tree 
(AST). By comparing parts of AST, the similarity of SQL 
queries may be determined [28]. AST represents the code 
written in a programming language and adjusted to contain 
only nodes that matter for the comparison, without 
elements like comments, semicolons, parenthesis, aliases, 
or any other elements without an impact on the 
functionality of the solution.  

Before creating AST, SQL codes that should be 
compared are converted into canonical forms. Canonical 
form of SQL query is again a SQL query, but without parts 
that are irrelevant for the comparison with another query 
[29]. Canonical forms of SQL queries minimize the 
syntactic differences between two queries that need to be 
compared. After the process of canonicalization, abstract 
trees are created from canonical forms. 

i) Canonicalization process 

The process of canonicalization can be divided into 
syntactical and semantic canonicalization. Examples of 
syntactical canonicalization challenges: 

1. When the solution uses the BETWEEN predicate, it is 
replaced with the equivalent relational operators 
“greater or equal to” and “smaller or equal to”, e.g.,  

A BETWEEN 5 AND 10  
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is replaced with  

A>=5 AND A<=10 [29]. 

2. When the solution uses NOT, it is converted into a 
statement without NOT, e.g., NOT (A>B) is replaced 
with A<=B. In addition, predicates that contain 
greater than are replaced with smaller then, e.g., A>B 
is replaced with B<A [29]. 

3. When the solution uses a subquery with the ORDER 
BY clause and without the TOP clause, the ORDER 
BY clause is removed because it does not change the 
result set. 

4. When the solution uses INNER JOIN, the query 
optimizer chooses optimal order during query 
execution [30], and it can be different in the correct 
solution than the order in the student solution. For 
instance, when comparing two statements: 

FROM City as c INNER JOIN Student as s 
 ON c.CityID=s.CityID 

and 

FROM Student as s INNER JOIN City as c 
 ON c.CityID=s.CityID 

Regarding functionality, those two statements are 
equal, but their abstract trees are different, and that is 
why those kinds of nodes are sorted before calculating 
the similarity of statements.  

Examples of semantic canonicalization challenges: 

1. When the solution uses the DISTINCT clause to 
remove duplicates, and they do not exist, the 
DISTINCT clause can be removed from the solution. 
The case of the primary key attribute or any other 
unique attribute in the SELECT list and as a join 
predicate, meaning the DISTINCT clause can be 
removed [29]. 

2. When a solution contains redundant joins, they can be 
removed, e.g., if the solution is: 

SELECT * FROM student  
LEFT OUTER JOIN department  
ON student.dept_id=department.id 
WHERE student.dept_name = ’Biology’ 

The condition in the WHERE clause fails if 
student_dept_name is null, and the solution can be 
rewritten to use INNER JOIN instead. 

Left or right outer join can be replaced with an inner 
join if (i) the attributes used in the join include all 
foreign key references from one side of a join to the 
other side of a join and (ii) foreign key values used in 
the join are not null [29]. 

3. When a solution contains the predicates which are 
replaceable, lexicographically least attribute will be 
used in all clauses, e.g., if the query is: 

SELECT student.dept_name FROM student  
INNER JOIN department  
ON student.dept_name=department.dept_name 
WHERE student.dept_name LIKE ’English%’ 

And because of the 
student.dept_name=department.dept_name, the 
department.dept_name attribute will be used in the 
SELECT clause too. In addition, if constant is a part 
of the equality condition, it is considered as 
lexicographically least attribute [29]. 

4. When a solution contains an ORDER BY clause with 
more than one attribute, and if the second attribute is 
functionally dependent on the first attribute, the 
second attribute is ordered the same way as the first 
attribute, and therefore, irrelevant, and can be 
removed from the solution. Similarly, when a solution 
contains GROUP BY, e.g., 

SELECT id, COUNT(*) FROM student  
INNER JOIN takes ON student.id=takes.id  
GROUP BY id, name 

and if student.id is the primary key, the attribute name 
can be removed from the GROUP BY clause [29]. 

ii) Using ASTs 

After the canonicalization process, ASTs are used to 
find the differences between students’ solution and correct 
solution. One possible approach is to calculate tree edit 
distance between students’ solution tree and correct 
solution tree [28]. It is calculated as number of 
modifications to the student solution tree until it becomes 
equivalent to the correct solution tree. This makes partial 
grading based on the number of needed modifications 
possible, but the challenge regarding this approach is the 
need to test the equivalence after each modification of the 
student solution. There is also a possibility to try all the 
edits possible at each step, again testing the equivalence at 
each step, making the number of edits exponential [29]. 
During tree similarity calculation, ASTs may be 
decomposed into smaller subtrees which are more suitable 
for the tree edit distance algorithms.  

First tree edit algorithms proposed in the late seventies 
used a hard-coded strategy and did not consider the shape 
of the trees which resulted in big differences during runtime 
[31][32]. More recent algorithms like RTED (Robust Tree 
Edit Distance) first calculate the decomposition strategy 
and then adapt to the input tree, which results in better 
runtime [33]. It is not perfect in terms of memory 
consumption for large input trees, since the strategy 
computation can use twice the memory used for distance 
computation, limiting its usage on large trees. Newer 
algorithm, AP-TED (All Path Tree Edit Distance) and 
AP-TED+ reduce the memory consumption by 2/3 
compared with the RTED algorithm [33]. This is achieved 
by releasing the memory early during decomposition.  

In addition, the AP-TED+ algorithm considers the fact 
that during the distance computation phase majority of 
subtrees contain up to two nodes, and the algorithm uses 
different functions to compute the distance when one of the 
trees is small [33]. Another approach of using ASTs is to 
check a set of grading rules against key-value pairs for each 
SQL clause within AST. Grading rules make partial 
grading possible, and they should be created by teachers, 
together with the correct solution, before assessment 
process starts. 
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iii) Without ASTs 

The abstract tree can be built when the SQL solution is 
syntactically correct. If that is not the case, the similarity 
between two SQL statements should be calculated 
differently. For that purpose, text comparison of both SQL 
statements may be done. Before the comparison, both 
solutions are normalized: tab, newline, and semicolon 
characters are replaced with whitespace, leading and 
trailing whitespaces are removed, and all double spaces are 
replaced with one whitespace. With those adjustments, the 
similarity of the two texts may be calculated using e.g. 
Levenshtein distance metric [28]. Levenshtein distance is 
calculated as the minimum number of single-character edits 
needed to transform one text into another [34]. Some 
researchers suggest value 1 as acceptable Levenshtein’s 
distance when a student can still get the maximum grade, 
and it is considered as an unintentional typo that does not 
affect student knowledge and therefore, student grade. 

D. Combined Approach 

Two main approaches are dynamic and static analysis 
[28], but combining them increases the quality of the 
automated assessment systems in general. Putting dynamic 
and static analysis into relation, the result of the dynamic 
analysis can be one of those: 

a) Candidates for correct statements 

b) Statements that cannot be executed 

c) Partially correct statements. 

The dynamic analysis may discover candidates for 
correct solutions, if they can be executed and provide the 
expected result set. The problem is that student could get 
correct result set, but without the need to use expected SQL 
clauses, and dynamic analysis cannot discover it. Example 
of this problem is when the UNION statement is used, 
instead of expected SQL clauses, and tweaks the result set 
knowing what correct result set should be. 

The static analysis is primarily used for partially correct 
statements, but it can also be used for students’ solutions 
that dynamic analysis confirmed as potentially correct, 
preventing the fraud like in previous example. In addition, 
queries that are different in their syntax can be semantically 
equal, which makes the problem more complex [33]. 

III. AUTOMATIC ASSESSMENT SYSTEM OF SQL 

QUERIES DEVELOPED AT ALGEBRA UNIVERSITY COLLEGE  

In this chapter, an automatic assessment system of SQL 
queries developed at Algebra University College will be 
presented as an example of a system which uses dynamic 
and static analysis, and therefore may award partial points 
and give feedback to students, focused on the wrong parts 
of their solutions. This system uses an input from the 
teacher: the correct SQL query solution, and the grading 
rules with the deducting percentage of maximum points in 
case of errors. During static analysis, the AST of student 
solutions are compared with AST of the correct SQL query 
solution. Figure 1 shows an example of the abstract tree 
application and Figure 2 shows an example of the feedback 
to student, both taken from an automatic assessment system 
used during previous exam terms.  

Example of the correct SQL query solution: 

SELECT YEAR(i.InvoiceDate) as InvYr 
 , MONTH(i.InvoiceDate) as InvMnth  
 , COUNT(i.IDInvoice) as NumberOfInvoices 
FROM Invoice as i  
 INNER JOIN Customer as c  
 ON i.CustomerID=c.IDCustomer 
INNER JOIN City as ct  
 ON ct.IDCity=c.CityID 
WHERE ct.Name='Rijeka' 
GROUP BY YEAR(i.InvoiceDate)       
 , MONTH(i.InvoiceDate) 
HAVING COUNT(i.IDInvoice)<30 

ORDER BY InvYr DESC, InvMnth 

Example of students’ solution: 

SELECT YEAR(i.InvoiceDate) as InvYr 
 , COUNT(i.IDInvoice) as NumberOfInvoices 
FROM Invoice as i  
INNER JOIN Customer as c  
 ON i.CustomerID=c.CityID 
INNER JOIN City as ct  
 ON ct.IDCity=c.CityID 
WHERE ct.Name='Split' 
GROUP BY YEAR(i.InvoiceDate) 
 , MONTH(i.InvoiceDate) 
HAVING COUNT(i.IDInvoice)<30 

ORDER BY InvYr 

Examples of the grading rules:  

a) Regarding the FROM clause:  

i) The weight in the whole query: 100% 

ii) If valid, deduct 0% of possible points 

iii) If not valid, deduct 100% of possible points 

b) Regarding the WHERE clause: 

i) The weight in the whole query: 50% 

ii) If not valid, deduct 50% of possible points 

iii) If valid, but wrong columns are included, deduct 
25% per each wrong column  

iv)  If valid, with correct columns included, but with 
wrong values included, deduct 25% per wrong value 

c) Regarding SELECT clause: 

i) The weight in the whole query: 30% 

ii) If not valid, deduct 10% per each missing column. 

Teacher grading rules used during the grading process 
can be stored in the configuration file or a database. An 
example of the set of general rules: 

{ "max_points": 4.0, 
  "clause_points_from": 50, 
  "clause_points_where": 15,   
  "clause_points_groupby": 30, 
  "clause_points_having": 15, 
  "clause_points_select": 20, 
  "clause_points_orderby": 10, 
  "parses_and_compiles": 100, 
  "wrong_results": 50 } 
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In this example, the JSON configuration file contains 
the maximum points for the correct solution and weights 
for each clause in the query. These weights represent 
percentages that will be deducted from the max_points if 
erroneous. Also, the rules state the deduction percentage if 
the solution does not parse and compile, and if it returns a 
wrong result set. Note that the latter is evaluated via 
dynamic assessment. 

A set of rules per each clause may also be defined: 

"from_each_missing_table" 
"from_each_wrong_join" 
"from_max_joins_allowed" 
"from_use_specific_join" 
"where_wrong_rows" 
"where_partial_correct_column" 
"where_use_specific_operator" 
"groupby_not_correct" 
"groupby_partial_correct_column" 
"having_wrong_number_of_rows" 
"having_missing_aggregate_function" 
"select_missing_regular_column" 
"select_missing_function_column"  
"select_missing_aggregate_column" 
"orderby_each_missing_column" 
"orderby_each_wrong_ascdesc" 
"orderby_each_wrong_column_order" 

 

An example of the rule for the HAVING clause: 

"having_missing_aggregate_function":  
 {  "status": "on", 
      "deduct": 100, 
      "hard_stop": 0  } 

 

For each of the presented grading rules, there may be a 
subset of settings that enable or disable the rule, the 
deduction percentage if the rule is not satisfied, or whether 
to stop or continue with the grading process, like in above 
example. Additional settings can also be used, e.g.: 

- specific_join in the case that student solution 
must contain required type of inner join, outer join, 
full join, or cross join in the FROM clause, 

- specific_operator in the case that specific 
operator must be used in the WHERE clause, 

 

 

Figure 1. Example of the abstract tree application 

 

Figure 2. Example of the feedback 

- num as a number for maximum joins or subqueries 
needed in student solution,  

- select_subqueries_required in the case when 
subquery must be within the SELECT clause, 

- where_subqueries_required in the case when 
subquery must be within the WHERE clause. 

The precision of the grading rules also has a great 
influence on the feedback possibilities. Feedback is 
addressed as one of the most important parts of the whole 
education process. Rich feedback is a prerequisite that 
students may become aware of their knowledge gaps and 
according to those, they can make additional effort in 
learning [8].  

In general, the usability of the feedback is recognized in 
several areas: (i) info about failure – evaluation logs as the 
source of that data, (ii) info about failed tests – info about 
how to proceed, with a hint on how to overcome an issue, 
(iii) structured report of the evaluation including details, 
e.g., execution times, resource usage, and tests passed and 
failed, and (iv) manual report – messages written by the 
instructor about a submitted solution [13]. With the static 
analysis implemented, many of the aforementioned ideas 
for feedback become possible. It is a significant 
improvement over dynamic analysis, where the feedback 
was limited to the comments about what is wrong in result 
set of the query, but without too helpful information about 
which part of the solution was wrong, and the significance 
of the error. On top of the partial grading feature, rich 
feedback is a great improvement in automated assessment 
systems. 

IV. CONCLUSION 

Automated grading systems in the educational process 
are needed more than ever. Their popularity is growing 
with the growing number of students enrolled in computer 
science courses and with the desire to improve the 
educational process. Partial grading of student SQL queries 
and rich feedback from the automated grading system could 
have a major impact on achieving this goal. The main 
problem to be solved is to prove that two SQL queries 
(exact solution and student solution) are equal. This is an 
extremely demanding task, and instead of proving the 
equivalence of SQL queries, two other approaches that use 
dynamic and static analysis have prevailed. Dynamic 
analysis is relatively simple to implement but solves only 
part of the given problem. On the other hand, static analysis 
significantly contributes to achieving the set goal - partial 
evaluation of SQL solutions and at the same time rich 
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feedback for students. Combining both methods greatly 
increases the capabilities of the system for automatic 
evaluation of SQL solutions. 
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