A Common Pentest Output Schema for Business
Intelligence System Ingestion

Shivangi Sharma, Justin M. Pelletier, Bill Stackpole
Rochester Institute of Technology
Rochester, NY 14623
Email: jxpics@rit.edu

Abstract—Data-driven Business Intelligence process improve-
ments demand proactive digital vulnerability discovery and
exploitation enumeration. These risk discovery and analyses
practices are commonly known as penetration tests (pentests),
and have emerged as requirement for most organizations under
many compliance regimes such as the global Payment Card
Industry Data Security Standard (PCI-DSS) and the federal
Gramm-Leach Bliley Act (GLBA) in the United States. Though
a growing body of research addresses the utility of pentests as
a valuable Business Intelligence method, pentest outputs are
not standardized and require time-consuming generation and
ingestion before they can provide inputs to Business Intelligence
Systems. In this study, we examined several pentest reports
and propose a standardized schema for output generation in a
common format that is easy for Business Intelligence Systems to
ingest. We propose that this improvement will allow more rapid
delivery of accurate risk information to executives, managers,
and information technology professionals. The thirteen elements
of our standardized schema represent the first attempt at building
a pentest dimensional model, which could further ease the
translation of cybersecurity risk information into business impact
analyses and organizational risk registers.

Index Terms—business intelligence; penetration test; pentest
report; data driven BIS

I. INTRODUCTION

Penetration Testing (pentesting) is the authorized intrusion
into digital systems. The outputs provide a list of exploitable
vulnerabilities that are present in the system(s), a vulnerability
criticality assessment, and a prioritized list of recommended
remediation actions [1l]. Persons who perform these activities
are known by a variety of names such as pentesters, ethical
hackers, and white hat hackers. Organizations either do the
pentesting themselves or they take help from third parties.
These activities help prevent the loss of confidentiality, in-
tegrity, and/or availability for the organization’s digital systems
and seek to prevent attacks that could cause financial or reputa-
tional damage [2]]. Though pentests are increasingly common,
the translation of those findings into business intelligence
platforms remains a problem. Many pentesters have difficulty
conveying their results to the executives. Reporting the results
can be a tedious task that requires a considerable amount of
time and effort, as there is no standard framework for report-
ing pentest results. This can lead to omission of important
attributes of the test results in the report, or an insufficient
comprehensibility of technical details. This calls into question
the tester’s ability and knowledge and undermines the efficacy
of the pentesting process itself.

1506

For these reasons, we provide a standardized format for
penetesting reports. This is designed to reduce the time and
effort required to produce an intelligible and complete report.
By providing a standardized schema for pentesting report
outputs, we seek to support automation of these outputs for
ingestion by business intelligence systems. To do this, we
compare different penetesting reports and findings to extract
the necessary ingredients for a standardized reporting schema.

II. BACKGROUND

There are many tools and technologies—both manual and
automatic—that are used in pentesting to perform reconnais-
sance, scanning, gaining, and maintaining access.

A. Reconnaissance

Reconnaissance provides initial information is collected as
part of the observation, which helps to understand the target
and define the scope of the engagement. The information
includes gathering of IP addresses, mail servers, public do-
mains, higher-level network topology, and so on. This can
be deliberately shared during the contracting of the pentest
(white-box testing), or part of the mandate defined by a
statement of work to discover what is available (black-box
testing). Tools like Maltego provide a relatively automated
mechanism for reconnaisance activities.

B. Scanning

Scanning involves sending probes and saving the responses.
Network monitoring tools such as Wireshark, network scan-
ning tools such as Nmap, webserver vulnerability scanners like
Nikto, web-application vulnerability scanners like OWASP
Zap, and network vulnerability scanners like Nessus are pop-
ular tools for discovering common vulnerabilities. If testing a
specific application, pentesters can also use automated tools
to perform static or dynamic code analysis.

Static Analysis The application’s code is examined at rest.
Static Application Security Testing (SAST) tools use pre-
defined rules to help detect security vulnerabilities. Example
SAST tools include Bandit, SonarQube, Veracode, Flawfinder,
Cppcheck, and RATS [3]]. A relatively recent addition to
the field of Static Analysis allows Security Vulnerability
Prediction (SVP). SVP requires models to learn the rules
and detect patterns within the code that could yeild security
vulnerabilities [4]], [S]. SVP, and the Vulunerability Prediciton

MIPRO 2023/miproBIS

Review and
Finalization

Information
Collection

Report
Planning

Writing the
First Draft

Fig. 1: Phases of Report Writing

Models they are built upon, are an active area of inquiry and
have well-documented challenges to integration in automated
scanning tools [6].

Dynamic Analysis The application’s code is examined
while running. Both commercial and open source Dynamic
Application Security Testing (DAST) can be useful when the
source code is unavailable and, unlike SAST tools, are not
designed for any specific programming language. Example
DAST tools include Burp Suite, InsightAppSec, and AppScan.
Automatable DAST techiques include Web Application Secu-
rity Testing, Security API Scanning, and Behaviour Driven
Security Testing [7]].

C. Gaining and Maintaining Access

To gain access, pentesters use information from previous
stages to gain access to the application or underlying sys-
tem. To maintain access, they will deploy various types of
tools such as Remote Access Trojans, covert channels, and/or
backdoors to escalate privileges and move laterally through
a digital network. Though Gaining Access and Maintaining
Access are considered two separate steps of a pentest [,
common frameworks such as Metasploit, Powershell Empire,
and Cobalt Strike integrate tools that help pentesters both gain
and maintain access. Some—such as Caldera—specifically seek
to replicate the known tactics, techniques, and procedures of
advanced persistent threats.

Generally, these tools find and exploit vulnerabilities. Ap-
plying the findings to the organization’s business context and
providing actionable insights are beyond the scope of currently
available tools.

Once the pen testers are through with scrutinizing the
weaknesses of the system, all the details have to be combined
and presented in a report. Penetration Test Reports are a vital
part of the entire penetration testing process since it is the
proof of the test results which are presented to the company’s
Executives and Information Security team for them to take
action according to the findings. For example, which system
needs to be patched or which system needs to be upgraded,
how to take further action in terms of increasing the security,
and how to plan the security budget.

As early as 2010, Alharbi formalized through the SANS
institute an industry standard for the phases of effective
penetration test report writing [9]]; this is reflected in Figure

Il

1) Report Planning — This is the first phase of report
creation. In this, the testers will focus on the Report

MIPRO 2023/miproBIS

Objective and the timeline and will consider the target
people for whom the report is being generated.

2) Information Gathering — In this phase the tester uses
the collected data that he gathered during each step
of penetration testing. The data includes the notes that
he took during each phase of testing, the important
screenshots which he took while running the tools, the
log files of the activities, etc.

3) Writing First Draft — According to Alharbi, this step is
highly recommended since it will give the tester a good
idea what all things to mention in the report [9]. Also,
60% of the tester’s time will be utilized in creating the
first draft.

4) Review and Finalization — The first draft should be
peer-reviewed before finalizing it. All the team members
should participate in this process. Having other opinions
could definitely be beneficial for the penetration tester as
it will enhance the quality of the report and will cover all
the edge cases which the tester might have left. This step
is also beneficial for a situation where a team of testers
were involved in the same project. Once the reviews
have been collected from the peers, the report should be
finalized and should be made ready to send to the clients.

III. RELATED WORK

As early as 2010, authors such as Alharbi called for im-
provement in pentesting report schemas because their disparate
report formats led to challenges in interpreting results [9].
More recently — in 2019 — Zakaria et al. compared eight
penetration testing reports that they found online [10]. They
found some of the reports missed key information, and other
reports included much extraneous information. These findings
led the authors to call for the community to develop a common
schema.

In 2021, Alghamdi considered 20 pentest reports and de-
scribed techniques of effective report writing, which provides
some input to the minimum essential elements for pentest
reports [11]. In the same year, Barik et al. analyzed several
penetration testing tools, found disparate output formats, and
proposed a standardized format for penetration testing report-
ing [12].

In 2022, Reddy and Pelletier considered five historical
breach cases and found that the pentest output data might have
helped businesses better manage risk decisions and ultimately
avoid losses [13]. Though there has been a relatively robust
call for pentest report output standardization, as well as a
recent recognition that pentest outputs provide useful business
intelligence system inputs, to date no authors have explicitly
considered how a schema might allow ingestion to Business
Intelligence Systems.

IV. SCHEMA DESIGN

For creating the standardized schema of the penetration
testing report, we employed the Waterfall Design Model [14].
The remainder of this section describes our findings and
analysis while following this design process, organized accord-

1507

ing to the a. Research, b. Prototyping, c. Coding, d. Testing,
and e. Integration phases.

A. Step 1: Research

In Step 1, we continued research to examine best practices in
pentest reporting outputs and considered three tools to generate
outputs for our prototype schema.

We gathered six new pentest reports, which had not pre-
viously been analyzed for format and output content. Four
reports came from the Collegiate Penetration Testing Compe-
tition (CPTC) — a global penetration testing competition that
simulates real-world pentests [15], [16]. CPTC competitors
begin at eight regions across the globe and winners from
the regional level ultimately compete in a final championship
round. The CPTC organization hosts a GitHub repository
containing final participant team reports, which we included
in our inquiry as exemplars of world-class pentest reports
[L7], [18], [19]], [19]. Two reports came from professional
pentesters. One was from Red Siege Information Security [20],
a cyber security consulting firm that provides security solutions
to clients. Another came from a professional example and
included a video instruction on report formatting [21]].

We then used the Penetration Testing Execution Standards
(PTES) baseline guidance [22] to inform the necessary com-
ponents from each of the six reports we selected. According
to PTES, the reports should be broken down into two major
sections, each meant for a different audience: Executive and
Technical.

The Executive-level summary should contain high-level
information about the test. It includes a high-level summary,
findings overview, risk severity, and strategic recommenda-
tions. The target readers are upper-level management, who are
also likely to be engaged in strategic and operational level risk
management practices. These data are most likely to inform
the Business Impact Analysis and the Organizational Risk
Register. This section is written for senior managers, who are
the most frequent consumers of Business Intelligence System
information [23|].

The Technical-level detail should contain all the in-depth
information of the test in a way that informs the actual risk-
management practices at the tactical and operational levels.
It includes an introduction/summary, the methodology for the
pentest, findings, additional context as informational findings,
a conclusion, and detailed appendices containing scan results
and additional/non-critical evidence. The findings section is
arguably the most important component of the report and it
contains six key items:

1) Threat Name/Severity Level: The name of of the vul-
nerability/exploit and its severity level (i.e. critical, high,
medium, or low).

2) Description: Explains what the vulnerability and exploit
are.

3) Affected Assets: The machines in the environment af-
fected by vulnerability/exploit.

4) Recommendation/remediation: Recommended technical
solution to remediate the risk/threat.

1508

5) References: An external validation of the finding, usually
a listing in a public vulnerability or exploit database, and
further information on remediation.

6) Business Impact: A broader picture of the effect of these
risks should be mentioned in this section.

This detail allows Information Technology professionals to
understand the root of the problem and fix it. Though this level
of detail is unlikely to make it to board-level products such as
the Organizational Risk Register, granular data in this section
allow for a more data-driven Business Intelligence System,
which is important in increasingly automated sectors such as
logistics [24]].

TABLE I: Executive-level report components

Executive PTES IT Red Siege CPTC CPTIC CPTC CPIC

Summary [14] Pro C[21] F[22] O[23]
Sections TV Security

[18] [19]

Information A [20]

Summary
Finding
Overview/ Scope
Risk Severity
Representation
Strategic

Recommendation

Roadmap

TABLE II: Technical-level report components

Technical Report PTES IT | Red Siege CPTC CPTC CPTIC CPIC

Sections [14] Pro Information A [20] C [21] F [22] | O[23]
TV | Security
[18] [19]

Introduction/
Summary
Methodology
Findings
Threat Name and
Severity Level
Description

Affected Assets

A ow o

Recommendations/
Remediation

5. | References

6. | Business Impact
Informational Findings
Conclusion

Appendices

Tables [I| and || depict a comprehensive comparison of the
papers according to these components. Of note, the orange-
colored fields are addressed by this project through a standard-
ized JSON schema, which is described in later steps. These
orange-colored fields directly inform what might be generated
by automated tools and therefore should be considered in a

MIPRO 2023/miproBIS

prototype automation schema for Business Intelligence System
ingestion. In the next step, we describe this data generation and

prototyping.
B. Step 2: Prototype

To generate data for our prototype schema, we considered
outputs from three of the most popular [25] pentesting tools
— Nmap, Nikto, and OWASP ZAP - which we described
above in Section We applied those tools to exhaustively
search ports and find vulnerabilites present in an instance
of the DVWA (Damn Vulnerable Web Application), which
is a PHP and MySQL implemented web application that is
vulnerable by nature. DVWA is commonly used by the security
community to research, learn and practice penetration testing
tools [26]. In this case, it provided a useful set of output data
during prototyping.

Each of the common tools — Nmap, Nikto, and OWASP
Zap — offer a variety of output formats including XML, JSON,
HTML, and text files (among others). We found that they did
not, however, all offer the same standardized output:

¢ Nmap = XML

o Nikto = XML

« OWASP ZAP = JSON

Extracting the relevant data from these tools across multiple
formats can be very time consuming. Further, for presentation
to a Business Intelligence System (BIS), it is useful to have this
schema output to a standardized input datatype because each
entry corresponds to risk intelligence associated with each of
the organizations’ computer devices and the data those devices
store and process. Furthermore, Yusof et al. found there is an
overwhelming data integration issue across BIS that inhibits
data-driven decision making [27]. By standardizing these
datatypes, our prototype allows data-driven decision making
associated with information technology and cybersecurity risk.

In the design selection for our schema, we considered
machine-readability as a critical path requirement because
our intention was to automate pentest outputs for automatic
BIS ingestion. Both XML and JSON are valid options for
automatic machine reading. The other main design preference
was for human readability, which is likely to positively impact
technology acceptance especially among senior managers.
We also considered speed of ingestion and processing as a
secondary design goal.

Among these output formats, JSON contains a more pre-
dictable and ultimately more human-usable format than XML
[28]. Also, JSON is faster at data exchange than XML,
requires fewer bytes in transit, and is supported by many data
visualization tools [29]. Furthermore, in 2022, Yusof et al.
specifically recommended a JSON-based standardized format
as superior to XML for the overwhelming majority of Business
Intelligence Systems [27]. Therefore, our prototype schema
utilizes a standardized JSON output.

The variables used in our standardized JSON schema —
depicted in Figure [2] - each reference a different dimension
of the penetration test intelligence outputs, as in:

e address — URL

MIPRO 2023/miproBIS

o host - IP address
e port - port number
e quick scan - the scans which provide the layout of the
environment - for example, Nikto scans
o id - to differentiate vulnerabilities found
« method - the method used like ‘GET’ or ‘POST’
« alert name - the vulnerability found
o risk_level - critical, high, medium, or low
e instance_count - the number of instances on which this
vulnerability has been found on a given particular website
« solution - the remediation
« references - the proof of successful exploit
« affected scope - the IP addresses which are affected by
this vulnerability
o other information — in this the risks which do not find
any severity level, i.e., less than Low are included
This schema is noninclusive and provides a basic format and
structure that can be modified further to accommodate output
from additional tools or specific BIS integration requirements.
In particular, automated vulnerability scanners such as Nessus
provide a structured format that could be converted to this
schema. Such an integration from a vulnerability scanner
would lack the detail about the references that prove com-
promise exploited systems, but would still generally conform
with the other data types that our schema integrates.

C. Step 3: Code

This step required transformation of pentest tool outputs
into the standardized schema described above. This required
two main steps:
1) Converting the sample XML outputs into JSON using a
publicly-available tool [30].

2) Parsing the tool-generated reports to compile outputs into
the new schema using a custom python script, depicted
in Figure 3]

D. Step 4: Test

The resultant JSON file integrates the test outputs from
Nmap, Nikto, and OWASP Zap, which reflects a functional
proof of concept for the novel schema.

E. Step 5: Integrate

Once the schema file is created, it can be fed into any
software or application programming interface that will accept
data formatted in JSON.

Our proof of concept integration of standardized JSON
format visualizes the data using python visualization tool
libraries depicted in Figure] Though our proof of concept
visualization is relatively simplistic, the JSON format allows
for multi-dimensional modeling associated with each of the
schema variables. In particular, many BIS such as Microsoft’s
Power BI'| and Oracle Analytics Databasd’| allow for JSON
ingestion and follow-on correlation with other elements of BI.

This is useful because recent work by Chen and Siau has
proven that integrating Information Technology infrastructure

! https://learn.microsoft.com/en-us/| 2 https://docs.oracle.com/en/

1509

https://learn.microsoft.com/en-us/
https://docs.oracle.com/en/

"address": "",
"host": "n,
"port": "n,

"open ports":[{"port number":
"closed ports": [],

"filtered ports"™: [{"port number":
"os information": "",

"quick scan":
"Detailed scan": [{"id":"<id>",

"description":"<>",
"reference":"<>",

"<port>",

"<port>",

"risk level":"<>",
"affected scope":"<>",

"service running":"<service>"}],

"service running":"<service>"}],

[{"id":"<id>", "method":"<>", "description":"<>"}]

"alert name":"<>",
"instance count":"<>",

"solution":"<>",

"other information": "<>"}]

Fig. 2: Standardized JSON schema

import json

myjsonfile = open(‘nmap_basic.json’, ‘r’)
jsondata = myjsonfile.read()

obj = json.loads (jsondata)

abc={}

abc[‘address’] = obj[‘host’][‘address’][‘@addr’]
abc[‘host’] = obj[‘host’][‘hostnames’] [‘hostname’] [‘@name’]

abc[‘ports’

{}

] =
abc[‘ports’] [‘open_ports_count’] = int(len(obj[‘host’][‘ports’][‘port’]))
10

abc[‘ports’ ‘close_ports_count’]
abc[‘ports’] [‘Total ports_count’]
abc[‘open_ports’] = []

int (obj [‘host’] [‘ports’] [‘extraports’][‘@count’])
int (obj[‘scaninfo’] [‘@numservices’])

for i in range(len(obj[‘host’][‘ports’][‘port’])):

open_ports {}

open_ports[‘protocol’] = obj[‘host’][‘ports’][‘port’][i][‘@protocol’]
open_ports([‘portid’] = obj[‘host’][‘ports’][‘port’][i][‘@portid’]
open_ports|[‘service’] = obj[‘host’][‘ports’][‘port’][i][‘'service’][‘@name’]
abc[‘open_ports’].append (open_ports)

myjsonfile2 = open(‘nmap_os_version.json’, ‘r’)
jsondata2 = myjsonfile2.read()

obj2 = json.loads(jsondata2)

par={}

pgrl[‘os’] = obj2[‘host’][‘os’][‘osmatch’][‘@name’]

new = {**abc, **pqr}

print (new)
object2 = json.dumps(pgr, indent=4)

Fig. 3: After XML = JSON conversion, this parser extracts each information dimension to populate the schema

with BIS positively correlates with organizational agility [31].
An important use case includes the security properties of
the information technology systems used to collect, store,
analyze, and report business intelligence itself. By integrating
pentest output for each device, decision makers will gain a
useful data source that would apply a form of meta-cognition
to the BIS inputs themselves. For example, if key business
decisions rely on systems or data lakes that are vulnerable
to data integrity attacks, decision makers should know this
and might seek additional confirmatory signals before taking
a decision. Some additional integration potentials include
compliance tracking, business impact analyses refinement, and
private equity portfolio health.

V. CONCLUSIONS AND DISCUSSION

Business Intelligence Systems (BIS) enable data-driven in-
sights. However, these insights often lack the cybersecurity
risks that penetration tests (pentests) provide. The pentest
method provides useful business risk data and this study
demonstrates a novel implementation of those outputs to
inform BIS. To do this, we analyzed six pentest reports to de-

1510

Risk Instance Count

Severity Level

Medium

X-Content-Type-Options Header Missing
Cookie without SameSite Attribute 57.1%

Cookie No HttpOnly Flag

Missing Anti-clickjacking Header

0.0% High

alert_name

Directory Browsing
Content Security Policy (CSP) Header Not Set 42.9%

Absence of Anti-CSRF Tokens

o 1 2 3 4 s
instances_count

Fig. 4: Proof-of-concept visualization

termine common dimensions and opportunities for automation,
developed a prototype schema to display those dimensional
data, generated test output from three common pentest tools,
converted those outputs into the schema, and demonstrated a
proof-of-concept using basic visualization tools.

This standardized schema will help pentesters process and
present the results in a rapid and extensible manner. Most
importantly, this standardized schema represents the first proof
of concept for integrating automatic pentest tool outputs into

MIPRO 2023/miproBIS

a format that is useful for data-driven BIS. Finally, our novel
schema reduces pentest outputs into a basis spanning thirteen
data elements. This represents the first step toward a usable
pentest dimensional model.

VI. LIMITATIONS AND FUTURE WORK

This project deals with just three tools — Nmap, Nikto, and
OWASP ZAP — and there are many tools present in the market
for performing a penetration test. Hence, there might be a case
where the proposed JSON standardized format is missing some
of the attributes which should be addressed. Therefore, future
work can should consider how other vulnerability scanners
and pentesting tools could enrich the format and content of
this schema.

Also, this project did not include input from actual BIS
users. Gathering feedback about the usability of our schema
from the people who will use it will increase the practicality of
this project. Furthermore, this feedback might inform dimen-
sionality reduction of our schema to make it more efficient
and practical. Hence, follow-on qualitative research should
consider the ground-truth of integration of these data into BIS
as well as the actual usefulness of each pentest report output
field amid the myriad data-driven decisions that managers face.

VII. ACKNOWLEDGEMENTS

This research was funded in part by ongoing activities in
the Eaton Cybersecurity SAFE lab at Rochester Institute of
Technology’s ESL Global Cybersecurity Institute. S. Sharma
would like to express gratitude for the encouragement from
her friends and family during this work. J.M. Pelletier would
also like to acknowledge the ongoing support he receives from
the Ordo Praedicatorum.

REFERENCES

[1] P. Vats, M. Mandot, and A. Gosain, “A comprehensive literature review
of penetration testing & its applications,” in 2020 8th International Con-
ference on Reliability, Infocom Technologies and Optimization (Trends
and Future Directions)(ICRITO). 1EEE, 2020, pp. 674-680.

[2] C. Scully and P. Wang, “Router security penetration testing in a
virtual environment,” in Information Technology-New Generations: 14th
International Conference on Information Technology. Springer, 2018,
pp. 119-124.

[3] R.Croft, D. Newlands, Z. Chen, and M. A. Babar, “An empirical study of
rule-based and learning-based approaches for static application security
testing,” in Proceedings of the 15th ACM/IEEE international symposium
on empirical software engineering and measurement (ESEM), 2021, pp.
1-12.

[4] N. Munaiah and A. Meneely, “Data-driven insights from vulnerability
discovery metrics,” in 2019 IEEE/ACM Joint 4th International Work-
shop on Rapid Continuous Software Engineering and Ist International
Workshop on Data-Driven Decisions, Experimentation and Evolution
(RCoSE/DDrEE). 1IEEE, 2019, pp. 1-7.

[5S] H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and
N. B. Anuar, “The rise of software vulnerability: Taxonomy of software
vulnerabilities detection and machine learning approaches,” Journal of
Network and Computer Applications, vol. 179, p. 103009, 2021.

[6] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with
applying vulnerability prediction models,” in Proceedings of the 2015
Symposium and Bootcamp on the Science of Security, 2015, pp. 1-9.

[7]1 T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, “Continuous
security testing: A case study on integrating dynamic security testing
tools in ci/cd pipelines,” in 2020 IEEE 24th International Enterprise
Distributed Object Computing Conference (EDOC). IEEE, 2020, pp.
145-154.

MIPRO 2023/miproBIS

[8]

[9]
[10]

(11]

[12]

[13

[t

[14]

[15]

(16]

[17]

[18

[19]
[20]

[21
[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]
[31]

R. Pandey, V. Jyothindar, and U. K. Chopra, “Vulnerability assessment
and penetration testing: a portable solution implementation,” in 2020
12th International Conference on Computational Intelligence and Com-
munication Networks (CICN). IEEE, 2020, pp. 398—402.

M. Alharbi, “Writing a penetration testing report,” United States: SANS
Institute., 2010.

M. N. Zakaria, P. A. Phin, N. Mohmad, S. A. Ismail, M. N. Kama, and
O. Yusop, “A review of standardization for penetration testing reports
and documents,” in 2019 6th International Conference on Research and
Innovation in Information Systems (ICRIIS). 1EEE, 2019, pp. 1-5.

A. A. Alghamdi, “Effective penetration testing report writing,” in 2021
International Conference on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME). 1EEE, 2021, pp. 1-5.

K. Barik, A. Abirami, S. Das, K. Konar, and A. Banerjee, “Penetration
testing analysis with standardized report generation,” in 3rd International
Conference on Integrated Intelligent Computing Communication &
Security (ICIIC 2021). Atlantis Press, 2021, pp. 365-372.

P. S. Reddy and J. Pelletier, “The pentest method for business intelli-
gence,” in 2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology (MIPRO). 1EEE, 2022, pp.
1117-1125.

A. Sinha and P. Das, “Agile methodology vs. traditional waterfall sdlc:
A case study on quality assurance process in software industry,” in 2021
5th International Conference on Electronics, Materials Engineering &
Nano-Technology (IEMENTech). 1EEE, 2021, pp. 1-4.

B. Stackpole and D. Johnson, “Cptc-a security competition unlike any
other,” 2019.

N. Munaiah, A. Rahman, J. Pelletier, L. Williams, and A. Meneely,
“Characterizing attacker behavior in a cybersecurity penetration testing
competition,” in 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 1EEE, 2019, pp. 1-6.
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-
A-reportredacted.pdf.
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-
C-report-redacted.pdf.
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-
O-report-redacted.pdf.

https://github.com/juliocesarfort/public- pentesting-reports/tree/master/
RedSiege.

https://go.itpro.tv/pentest-report.

multiple, “Penetration testing execution standard,” 2012. [Online].
Available: http://www.pentest-standard.org/index.php/Main_Page

I. Constantiou, A. Shollo, and M. T. Vendelg, “Mobilizing intuitive
judgement during organizational decision making: When business in-
telligence is not the only thing that matters,” Decision Support Systems,
vol. 121, pp. 51-61, 2019.

C. Zhou, A. Stephen, X. Cao, and S. Wang, “A data-driven business
intelligence system for large-scale semi-automated logistics facilities,”
International Journal of Production Research, vol. 59, no. 8, pp. 2250—
2268, 2021.

M. Shah, S. Ahmed, K. Saeed, M. Junaid, H. Khan et al., “Penetration
testing active reconnaissance phase—optimized port scanning with nmap
tool,” in 2019 2nd International Conference on Computing, Mathematics
and Engineering Technologies (iCoMET). 1EEE, 2019, pp. 1-6.

S. K. Oh, N. Stickney, D. Hawthorne, and S. J. Matthews, “Teaching
web-attacks on a raspberry pi cyber range,” in Proceedings of the 21st
Annual Conference on Information Technology Education, 2020, pp.
324-329.

M. K. YUSOF, M. MAN, W. A. £ W. HAMZAH, S. SAFEI, and
1. ISMAIL, “Native json model for data integration in business intelligent
applications,” Journal of Theoretical and Applied Information Technol-
ogy, vol. 100, no. 18, 2022.

http://www.json.org/xml.html.

https://www.toptal.com/web/json- vs-xml-part1#:~:text=JSON%
201s%20faster %20because %20it, more % 20than %20just%20data%
20interchange.

https://jsonformatter.org/xml-to-json.

X. Chen and K. Siau, “Business analytics/business intelligence and it
infrastructure: impact on organizational agility,” Journal of Organiza-
tional and End User Computing (JOEUC), vol. 32, no. 4, pp. 138-161,
2020.

1511

https://github.com/globalcptc/report_examples/blob/master/2020/Finals-A-reportredacted.pdf
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-A-reportredacted.pdf
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-C-report-redacted.pdf
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-C-report-redacted.pdf
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-O-report-redacted.pdf
https://github.com/globalcptc/report_examples/blob/master/2020/Finals-O-report-redacted.pdf
https://github.com/juliocesarfort/public-pentesting-reports/tree/master/RedSiege
https://github.com/juliocesarfort/public-pentesting-reports/tree/master/RedSiege
https://go.itpro.tv/pentest-report
http://www.pentest-standard.org/index.php/Main_Page
http://www.json.org/xml.html
https://www.toptal.com/web/json-vs-xml-part1#:~:text=JSON%20is%20faster%20because%20it,more%20than%20just%20data%20interchange.
https://www.toptal.com/web/json-vs-xml-part1#:~:text=JSON%20is%20faster%20because%20it,more%20than%20just%20data%20interchange.
https://www.toptal.com/web/json-vs-xml-part1#:~:text=JSON%20is%20faster%20because%20it,more%20than%20just%20data%20interchange.
https://jsonformatter.org/xml-to-json

