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Abstract - The challenge of teaching staff being 

overworked and not having enough time to provide 

individualized feedback and guidance to students is a 

significant problem. Open-ended assignments foster creative 

thinking but add to the workload. The abundance of solutions 

makes individualized assessment necessary. Peer assessment, 

where students evaluate their peers' assignments based on 

their motivation, knowledge, and resourcefulness, has proven 

effective in higher education courses.  

This paper provides an overview of existing metrics used 

in peer assessment, defines what constitutes correct and 

consistent evaluation, and suggests ways to choose 

appropriate metrics for learning objectives. The paper also 

highlights limitations of measures presented in the published 

papers, shows the advantages and disadvantages of different 

ways of calculating the selected measures through examples. 

Keywords - peer assessment; metrics; accuracy; reliability; 

bias; grade calculation; criteria of assessment; open-ended 

works 

I. INTRODUCTION 

Nowadays, with platforms like Coursera, edX and 
Udacity online learning is considered mainstream. Online 
teaching has created new opportunities for improving 
knowledge and online courses often have large groups. 
Whether it's online or traditional courses, students like any 
other type of consumer are increasingly raising their 
expectation of the learning service. Therefore, it is 
important to define an assessment method that is suitable 
for large groups of students which is also useful when the 
number of students is considerably greater than the teaching 
staff.  

Solving open-ended assignments encourages students to 
tackle the problem analytically and apply their own 
understanding of the given task. For example, writing an 
essay or an engineering design doesn’t have an 
unambiguous solution like closed-ended assignments. 
Tasks where the answer is a simple yes or no or an exact 
number can be graded automatically. In open-ended 
assignments, the solutions can be in audio or video format, 
thus rendering automatic grading difficult or impossible. 

A possible solution to this problem is the concept of peer 
assessment (PA) where students review their peers’ work 
while providing feedback on the quality of the work they 
submitted. The given feedback affects the learning process 
and the improvement of solving assigned tasks. Teaching 
staff of the department of Computer Science at North 
Carolina State University have compared 18 machine 
learning models to analyze student comments [1] to their 

peer’s work and concluded that comments that identify 
problems and offer suggestions that encourage students to 
improve their solutions. 

Students might exhibit “rogue” and “non-rogue” [2] 
behavior when grading. “Rogue” students grade their peers’ 
work with the highest, lowest, average grade or simply rate 
randomly. Fair assessment of students' work means 
reviewing their assignments according to the expected 
quality standard. It is important to assign a fair grade to 
maintain the motivation of students already interested in the 
course material and to increase the motivation of others. 
Grades assigned by graders influence the final grades of 
their peers, therefore it is necessary to ensure that they are 
graded fairly. Students are awarded for the quality of their 
assignment solutions as well as the quality of their grading 
peers’ solutions. Calculating both the grade for the student’s 
solution and the grade for student’s evaluation in peer 
assessment should take bias, reliability, and credibility into 
account. Peer assessment can be implemented with 
calibration, where students are provided with assessment 
criteria called rubrics [3][4]. Using rubrics, students 
evaluate calibration tests of different qualities. Calibration 
tests are assignments created and graded by the teaching 
staff and their grades are considered correct. Students 
should evaluate as similar as possible to teachers. 

II. FINAL GRADE CALCULATION 

We will analyze separately different methods for 
calculating the final grade on a student assignment using 
peer assessment. For some methods (e.g. Mean and 
Median) a calibration test is not required as it cannot 
improve the result. Examples of assigned grades and the 
final grades are presented and compared to understand 
which method is better in a particular case. 

A. Mean 

The grades assigned by the student graders are 
aggregated and the sum is divided by the number of grades. 
We assume that the student graders did not exhibit “rogue” 
behavior and do not require additional calculations to 
improve the accuracy of the obtained grades. For student i 
and grader j, the final calculated grade is marked as gi. The 

grades are calculated as g𝑖
(x) = 

∑ A𝑖,𝑗
(𝑥)

𝑗

|A
𝑖
(𝑥)

|
. Set of all grades 

assigned to student i is marked as Ai, while Ai,j is the grade 
assigned to student i by grader j. Let us grade each 
assignment task individually, rather than the whole 
assignment. The index x in the formula above marks the 
task in question. E.g., g𝑖

(1) is the grade for student i for the 
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1st task, whereas A𝑖,𝑗
(1)

 is the grade assigned by grader j to 

student i for the 1st task. 

B. Median 

Median is an easy way to calculate the final grade 
instead of calculating the average. Median determines the 
central value of the distribution. This method is used in peer 
assessment applications like Coursera and Coursebank. For 
set of numbers 𝑋 with 𝑛 elements ordered by size from 
smallest to largest, the median is calculated depending on if 
𝑛 is an even or odd number. When n is even is defined as 

median(X) = 
𝑥(𝑛/2) + 𝑥(𝑛/2)+1 

2
. Whereas n is odd, the formula 

is as follows: median(X) = 𝑥(𝑛+1)/2. We are interested in 

calculating the median for an assignment with multiple 
tasks. For student i and task x, grade gi is calculated using 
the formula below, where Ai is the set of all grades that have 

been assigned to student i for task x: 𝑔𝑖
(𝑥)

= 𝑚𝑒𝑑𝑖𝑎𝑛(𝐴𝑖
(𝑥)

). 

C. Calibrated peer assessment 

The “Calibrated Peer Review” (CPR) system was 
developed at the University of California [5] and was also 
used at the Texas University [6]. The CPR method for 
calculating the final grade is to evaluate the mean grade 
with the previously calculated weight. The students who 
evaluated closest to the teachers’ grading are awarded the 
greater weight. Since their grading is considered most 
accurate among their peers, their grading has the most 
impact on the final grade. The weights are determined with 
assignments called calibration tests. These tests are created 
and graded by teachers and their grades are considered as a 
reference to compare how a student has graded in relation 
to the teacher. During peer assessment, students also grade 
one or more calibration tests along with their classmates’ 
assignments. The expected grades for the calibration tests 
are teachers’ grades who previously graded them in 
preparation for the peer assessment process. 

The formula for calculating the mean is modified so that 
the weight wj for the grader j is used and the final calculated 

grade is defined as g𝑖
(x) = 

∑ 𝑤𝑗
(𝑥)

A𝑖,𝑗
(𝑥)

𝑗

∑ 𝑤
𝑗
(𝑥)

𝑗

. The weight for each 

student is determined from the difference between the grade 
they have assigned and the teacher's grade. For N calibration 
tests (assignments) each assignment consists of multiple 

tasks. The correct grade that should be assigned 𝑡𝑛
(𝑥)

 is 
defined for the assignment task x on calibration test n. The 
difference between the grade assigned by student grader j 
and the correct grade assigned by the teacher for task x is 

determined as ∆𝑔𝑗
(𝑥)

= 
∑ (𝐴𝑛,𝑗

(𝑥)
−𝑡𝑛

(𝑥)
)
2

𝑛

𝑁
. If the student hasn’t 

graded a task on the calibration test, that test is ignored in 
the formula above. Only the differences for the other 
calibration tests are calculated, where N represents the 
number of calibration tests that are not disregarded. The 

greater the difference ∆𝑔𝑗
(𝑥)

, the smaller the credibility of 

the student grader. Therefore, the weight is defined as 

𝑤𝑗
(𝑥)

= {
𝑤𝑚𝑎𝑥, 𝑖𝑓 ∆𝑔𝑗

(𝑥)
= 0

1

∆𝑔
𝑗
(𝑥) , 𝑒𝑙𝑠𝑒

. If the student has graded the 

calibrated test exactly like the teacher, the difference 

∆𝑔𝑗
(𝑥)

 is 0. Therefore, the weight of that student will have 

the maximum weight value calculated for other students. 

D. Comparing mean, median, and calibrated PA 

calculations 

Let us examine the methods for calculating the final 
grade mentioned in the previous paragraphs. Example of 
assigned grades are presented in TABLE I. The correct 
grades for students 1, 2 and 3 will be determined by using 
the grades given in the peer assessment process. The teacher 
has evaluated the calibration test and the assigned grades 
are considered as correct. A Lickert scale of 1-5 is often 
used for grading [7]. 

TABLE I. ASSIGNED GRADES 

Grader j Student 1 Student 2 Student 3 Calibration 

Grader 1 1 1 1 1 1 1 1 1 1 2 4 1 

Grader 2 5 1 2 3 4 2 5 3 1 5 3 4 

Grader 3 5 2 1 4 3 4 3 5 1 4 1 3 

Correct 
grade 

𝒕𝒏
(𝒙)

 

/ /  / /  / /  5 2 3 

 

Before calculating the final student grades with mean, 
median and calibration, the CPR method has an additional 
step where the weights for each student are calculated. 
Using the formulas mentioned in the Calibrated peer 
assessment paragraph, we determine that there is N = 1 
calibration test with x = [1, 2, 3] tasks. It is also necessary 
to set an upper limit for weights, because if the grader’s 
grades correspond perfectly with the teacher’s grades, the 
weight will be very high and would prevail over all other 
weights. We set the upper limit for the maximum weight 
value to 0.9. The differences between student and teacher 
grades as well as the calculated weights are as follows: 

TABLE II. GRADE DIFFERENCES AND WEIGHTS 

Grader 
j 

∆𝒈𝒋
(𝟏)

 ∆𝒈𝒋
(𝟐)

 ∆𝒈𝒋
(𝟑)

 𝒘𝒋
(𝟏)

 𝒘𝒋
(𝟐)

 𝒘𝒋
(𝟑)

 

Grader 
1 

(2-
5)2 = 

9 

(4-
2)2=4 

(1-3)2 

=4 

1

9
= 0.11 

1

4
= 0.25 

1

4
= 0.25 

Grader 
2 

0 1 1 0.9 0.9 0.9 

Grader 
3 

1 1 0 0.9 0.9 0.9 

 

Mean grade is calculated as a grade for the assignment, 
while grade for each task can also be calculated separately. 
The same is valid for calculating the median grade. As 
shown in TABLE III., the mean grades differ from the 
median grades. Using one method instead of the other 
makes more sense depending on the expected grading 
result. E.g., student graders can assign grades in range [1, 5] 
and the calculated grade should be whole or half of the 
grade. In this case, calculating the median results in integer 
or partial values. 
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TABLE III. COMPARISON OF MEAN, MEDIAN, AND 
CALIBRATED PA CALCULATIONS 

  Student 1 Student 
2 

Student 
3 

Mean g𝑖
(1) 3.67 2.67 3.00 

g𝑖
(2) 1.33 2.67 3.00 

g𝑖
(3) 1.33 2.33 1.00 

𝒈𝒊 ̅̅ ̅̅  2.11 2.56 2.33 

Median g𝑖
(1) 5.00 3.00 3.00 

g𝑖
(2) 1.00 3.00 3.00 

g𝑖
(3) 1.00 2.00 1.00 

𝒈𝒊 ̅̅ ̅̅   2.33 2.67 2.33 

CPR g𝑖
(1) 0.11∗1+0.9∗5+0.9∗5

0.11+0.9+0.9
 = 

4.77 

3.35 3.82 

g𝑖
(2) 0.25∗1+0.9∗1+0.9∗2

0.25+0.9+0.9
=1.43 3.19 3.63 

g𝑖
(3) 0.25∗1+0.9∗2+0.9∗1

0.25+0.9+0.9
=1.44 2.75 1.00 

 

Calculating both mean and median grades is equally 
represented in the literature for determining assignment and 
task grades. The results also show that the student 1 
deserved a higher grade for the 1st task than the grader 1 
evaluated. Grader 1 assigned the lowest grade and has 
graded the calibration test poorly, so his assessment has the 
least weight in calculating the final grade. 

III. METRICS 

Metrics include measures used to monitor student 
activity and evaluate the success of teaching programs. 
Students learn through homework, quizzes, exams, or 
essays where the final grade is a metric comprised of the 
mentioned measures. 

TABLE IV. contains different kind of measures found 
in research for bias, reliability, credibility, and accuracy. 
The terms are somewhat exchangeable i.e., reliability and 
credibility are both defined by consistency, Pearson’s 
correlation coefficient is used for calculating reliability or 
accuracy depending on the literature. When calculating the 
final grade, it is possible to give less or more importance to 
the graders’ evaluation, in which case the mentioned 
credibility index is used. Intra-rater reliability will not be 
analyzed in this paper because we are interested only in 
students reviewing the same assignment once. 

TABLE IV. MEASURES FOR CALCULATING BIAS, RELIABILITY 

AND ACCURACY 

Statement of meaning  Terminology 
detected in 
literature 

Corresponding 
measures 

Student evaluation is 
subjective because it is 
influenced by their 
perspective [8]. 

Bias assessment median 
[8],  
average distance to 
diagonal [8], 
probabilistic models 
for estimating 
biases [9][10] 

Inter-rater reliability is 
defined as consistent 
grading of different 
students on the same 
assignment. Intra-rater 
reliability is defined as 
consistent grading of the 
same student on the same 
assignment [11]. 

Reliability agreement (exact, 
adjacent) and 
consistency 
(Pearson’s and 
Spearman 
correlation 
coefficient) [11], 
probabilistic models 
for estimating 
reliabilities[9], 
Intraclass 
Correlation 
Coefficient [12], 
Krippendorff’s alpha 
[13] 

Grader credibility is 
defined by the dimensions 
[14]: Accuracy determines 
how close the assigned 
grade is to the grade we 
know to be correct 
(teacher's grade), 
consistency represents 
stability of assigned grades 
within the same test, and 
transferability provides 
information on how grader 
accuracy changes across 
multiple works. 
 

Credibility Credibility Index 
(CI)[14] [15],  
Reviewer 
Competency Index 
(RCI) [16],  
Competency index 
[2] 

The teacher determines 
what the correct solution 
is and the associated 
grades for different 
qualities of the student 
solution depending on the 
deviation from the correct 
one. 

Accuracy Distance between 
gradings [17], 
Pearson’s 
correlation 
coefficient [11], 
probabilistic models 
for improving 
accuracy [18] [19] 

A. Accuracy 

1) Distance between gradings 
Distance between gradings published in the Learning 

Analytics for Peer assessment: (Dis)advantages, Reliability 
and Implementation article [17] considers each set of 
assigned grades for each student separately. From the set, 
the grades are compared pairwise. For example, for the 
student 𝑖, the grades of the student graders 𝑥 and 𝑦 are 
observed. The grades are organized into a vector and the 
distance between the vectors is compared. Grade vector for 
each task for student 𝑖  that graded grader 𝑥 is defined as 𝐴𝑖,𝑥 

= (𝐴𝑖,𝑥
(1), 𝐴𝑖,𝑥

(2), … , 𝐴𝑖,𝑥
(𝑛)), and for grader 𝑦 the vector is 

defined as 𝐴𝑖,𝑦 = (𝐴𝑖,y
(1), 𝐴𝑖,y

(2), … , 𝐴𝑖,y
(𝑛)) where 𝑛 is the 

total number of tasks in the assignment. 

The authors of the mentioned article have opted for the 
modified Manhattan distance to determine the distance 
between these two vectors. Manhattan distance is calculated 
as the sum of the absolute differences of the Cartesian 
coordinates of the two vectors. The Manhattan distance 
between two points can be visually represented on a 
rectangular grid that is parallel to the coordinate axes where 
space between the gridlines is equal to 1. Distance between 
vectors 𝐴𝑖,𝑥 and 𝐴𝑖,𝑦 is calculated using the following 
expression, where 𝐴𝑚𝑎𝑥 is the maximum possible grade on 
the assignment and X is the number of tasks:  

𝑑(𝐴𝑖,𝑥, 𝐴𝑖,𝑦) = 
1

𝐴𝑚𝑎𝑥
 (

|𝐴𝑖,𝑥
(1)

 − 𝐴𝑖,𝑦
(1)

 | + ⋯ + |𝐴𝑖,𝑥
(𝑛)

− 𝐴𝑖,𝑦
(𝑛)

|

|𝑋|
) ∈ [0, 1] 
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Vectors 𝐴𝑖,𝑥 and 𝐴𝑖,𝑦 are considered as set A. The diameter 

of A is defined as the maximum distance between two 

vectors in the set as 𝑑𝑖𝑎𝑚(𝐴) = max
Ai,x,Ai,y ∈A

𝑑(Ai,x, Ai,y). If 

the student graded the other students’ work exactly or 

similar as the teacher, the difference between assigned 

grades is small. Therefore, the diameter is smaller, and the 

accuracy is bigger. To demonstrate, let us consider that 

we have conducted peer assessment for an assignment 

thar consists of one task. Six students have participated in 

assignment and graded three of their peers. For student i, 

the grades are as follows: 

 
TABLE V. ASSIGNED GRADES EXAMPLE 

Assign-
ments 

Stud 
1 

Stud 
2 

Stud 
3 

Stud 
4 

Stud 
5 

Stud 6 

𝐴𝑖,1
(1) 4 5 4 4 2 3 

𝐴𝑖,2
(1) 5 4 4 5 2 3 

𝐴𝑖,3
(1) 5 4 4 5 2 4 

 

The calculated distances are presented in TABLE VI.: 

 
TABLE VI. DISTANCES 

Assign-
ment 

distances 

Stud 
1 

Stud 
2 

Stud 3 Stud 
4 

Stud 
5 

Stud 
6 

𝑑(𝐴𝑖,1, 𝐴𝑖,2) 0,2 0,2 0,0 0,2 0,0 0,0 

𝑑(𝐴𝑖,2, 𝐴𝑖,3) 0,0 0,0 0,0 0,0 0,0 0,2 

𝑑(𝐴𝑖,3, 𝐴𝑖,1) 0,2 0,2 0,0 0,2 0,0 0,2 

 
The maximum distance 𝑑𝑖𝑎𝑚(𝐴) is 0,2. Therefore, peer 

assessment accuracy is calculated and presented as a 
percentage: 𝑎𝑐𝑐(𝐴) = 1 - 𝑑𝑖𝑎𝑚(𝐴) = 1 – 0,2 = 0, 8 * 100 = 
80%. As shown, the accuracy is high concluding that the 
students greatly agreed on the quality of the solutions they 
graded. The main disadvantage of the distance between 
gradings method is that the grades used in the described 
calculations are individual grades assigned by the student 
graders. Final grades are calculated independently and are 
not verified with this method. The overall agreement in 
grading between students with the advantage of not 
requiring teachers grades for calculation. 

2) Pearson correlation coefficient 
Pearson correlation coefficient [11] is used to measure 

of the linear correlation between each student grader’s 
grade and the teacher’s grade on the same assignment. The 
use of the Pearson’s correlation coefficient is widely 
represented in the literature for various purposes is defined 
as 

𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝐺𝑖, 𝑇𝑖) = 
∑ (𝑔𝑖

(𝑥)
− 𝐺𝑖̅̅ ̅)(𝑇𝑖

(𝑥)
− 𝑇𝑖̅) 𝑥∈𝑋

√∑ (𝑔𝑖
(𝑥)

− 𝐺𝑖̅̅ ̅)
2

𝑥∈𝑋 ∗ ∑ (𝑇
𝑖
(𝑥)

− 𝑇𝑖̅)
2

𝑥∈𝑋

 

Where Gi is a set of grades calculated for student i, gi is 
the calculated grade for the student i for task x, while Ti is 
the set of correct grades (defined by the teacher) for student 

i. The similarity obtaines values from the interval [−1,1] 
where 1 represents complete similarity while -1 represents 
minimal similarity. The calculation is done for every 
student. The average value of all students is taken as the 
final result and cannot be expressed as a percentage. 
Positive Pearson's coefficient indicates that if the value of 
the first set of data increases, the values in the second set 
will also increase. Negative pearson coefficient indicates 
that if the value of the first set decreases, the value of the 
second set increases.  

Let us examine an example for the Pearson's correlation 
coefficient so that we can inspect its properties. Vector 
𝑔1⃗⃗⃗⃗ = (5, 4, 5, 3, 4, 2, 4, 5, 1, 5)  is the vector of calculated 

grades. Vector 𝑡1⃗⃗⃗  = (3, 1, 2, 2, 3, 1, 4, 2, 4) is the vector of 
teachers grades that are considered correct. The average 
grades are 𝑔̅ = 3.8 and 𝑡̅ = 2.5. To simplify the subsequent 
calculation, the respective averages are deducted from the 
vector values so now the vectors contain values as 
following: 

𝑔1⃗⃗⃗⃗ = (1.2, 0.2, 1.2, −0.8, 0.2, −1.8, 0.2, 1.2, −2.8, 1.2), 

𝑡1⃗⃗⃗  = (0.5, −1.5, −0.5, −0.5, 0.5, −1.5, 0.5, 1.5, −0.5, 1.5). 
The Pearson’s coefficient is calculated according to the 

formula mentioned above: pearson(𝑔1⃗⃗⃗⃗ , 𝑡1⃗⃗⃗  ) = 0.5887. The 
value indicates that the correlation is relatively low which 
makes sense since the vectors contain distinctly different 
values.  

For the 2nd example the 𝑔1⃗⃗⃗⃗  vector remains the same and the 

teacher vector is 𝑡2⃗⃗  ⃗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ), with 
calculated average 𝑡̅ = 1. When average teacher grade 𝑡̅ is 
deducted from the 𝑡2⃗⃗  ⃗ vector, the values are now all 0, i.e. 

𝑡2⃗⃗  ⃗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). The Pearson’s coefficient is 

pearson(𝑔1⃗⃗⃗⃗ , 𝑡2⃗⃗  ⃗ ) = 0. As seen in the example, Pearson's 
correlation coefficient gives a result of 0 in case when one 
of the vectors contains all 0 values. More precisely, the 
result is 0 if any of the vector components are set to the same 
number (e.g. the whole vector is 3). Of course, the student 
can solve the assignment 100% correct and will be assigned 
the same grade for all of the tasks but we cannot know if 
that is the case for certain. 

The 3rd example demonstrates a Pearson’s coefficient where 
the value cannot be interpreted as we expect. Again, the 𝑔1⃗⃗⃗⃗  
vector remains the same and the teacher vector is 𝑡3⃗⃗  ⃗ =
(1, 1, 1, 1, 1, 1, 1, 1, 2, 1), with calculated average 𝑡̅ = 1.1. 

When average teacher grade 𝑡̅  is deducted from the 𝑡3⃗⃗  ⃗ 
vector, the new values are 𝑡3⃗⃗  ⃗ =
(−0.1, −0.1, −0.1, −0.1, −0.1, −0.1, −0.1, −0.1,
0.9, −0.1). The Pearson’s coefficient is pearson(𝑔1⃗⃗⃗⃗ , 𝑡3⃗⃗  ⃗) = -
0.7075. In this case, the correlation coefficient is drastically 

different from the example with 𝑡2⃗⃗  ⃗ vector, although the 𝑡3⃗⃗  ⃗ 
vector changed only in one value. The ideal conditions 
would be to always expect minimal changes in the 
calculated results when the input g or t vectors contain 
slightest change. Accuracy is required to be 0 in the case 
with maximum error when grading, i.e. when the calculated 
grades of the student graders are farthest from the expected 
teacher's grade. For example,  the teacher gave the highest 
grade (5) for all tasks in the assignment, but calculated 
grades which gave the students are the lowest grade (1). We 
also expect accuracy of 1 when the g and t vectors are equal. 
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From the previous examples it is clear that Pearson's 
correlation coefficient does not satisfy these properties. 

B. Reliability 

Spearman’s rank correlation coefficient is a measure for 
determining peer-grading reliability [11] between each 
student grader’s grade and the median grade on the same 
assignment. Pearson’s correlation coefficient is used to 
measure the linear correlation between student and teacher 
grades (paragraph Accuracy), while Spearman’s correlation 
measures monotonic relationships. If one value increases 
(or decreases), the other value also increases (or decreases). 

It is defined as 𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2−1)
, where n is the number of 

grades (Xi, Yi) and 𝑑𝑖 = 𝑅(𝑋𝑖) − 𝑅(𝑌𝑖)  is the difference 
between the two ranks for each grade comparison. If there 
are no ranks that are tied i.e., there are no equal grades, then 
the grades are ordered from greatest to smallest with rank 1 
assigned to the highest grade, rank 2 to the next highest and 
so on. When ranks are not tied, the above formula for 𝜌 can 
be applied. When ranks are tied to two grades of the same 
category (e.g., two 𝑋𝑖 grades), both grades are assigned a 
mean rank calculated from the two ranks in question. 

Spearman’s coefficient returns a value from -1 to 1, 
where +1 indicates a perfect positive correlation between 
ranks, -1 value indicates a perfect negative correlation 
between ranks and 0 presents no correlation between ranks. 
Spearman’s coefficient presents the inter-rater reliability 
i.e., how consistently did different students grade the same 
assignment. Assigned grades are in TABLE VII., where the 
usual mark for grade gi is now replaced as Xi and the median 
is marked as Yi. The example in TABLE VII. presents an 
assignment consisting of two tasks, where two student 
graders evaluated three of their classmates. 

TABLE VII. ASSIGNED GRADES, RANKS AND THEIR 

DIFFERENCES 

 Student 1 Student 2 Student 3 

X𝑖
(1) 1 3 5 

R(X𝑖
(1)) 3 2 1 

X𝑖
(2) 5 1 2 

R(X𝑖
(2)) 1 3 2 

𝒀𝒊 ̅̅̅̅   3 2 3.5 

R(𝒀𝒊 ̅̅̅̅ ) 2 3 1 

(di
(1)2) 1 1 0 

(di
(2))2 1 0 1 

𝜌(1) = 𝜌(2) = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
= 1 −

6 ∗ 2

3 ∗ (9 − 1)
= 0.5 

In this case, we calculated how consistently did two 
student graders evaluate a task. For both tasks the reliability 
𝜌  is 0.5 i.e., grading is dispersed around the median. 
Therefore, the graders are strongly consistent in their 
evaluation. If the students’ grading is compared to the 
correct grades defined by teacher instead of the median, the 
Spearman’s correlation shows how consistently students 
grade in relation to the teacher. The positive 𝝆 (closer to 
+1) indicates that students give higher grades for better 
solved assignments i.e., assignments that the teachers also 
grade higher. The negative 𝝆 (closer to -1) indicates that 
students grade consistently but the exact opposite of how 
the teacher will grade the same assignment. The closer 𝝆 is 
to 0, the relationship between the student grade and median 

is weaker, and the less consistent the grading is among the 
students. In this case, students assign high grades for an 
assignment, but is equally possible they will give lower 
grades for the same assignment. Therefore, their grading is 
not reliable. 

C. Bias 

To guarantee reliability in peer assessment, it is 
necessary to detect bias and provide objective grading of 
student assignments. In the previous paragraph, we 
examined the students’ lack of consistency in grading their 
peers. Student bias is displayed as the tendency to evaluate 
every assignment with the same grade or to consistently 
give the assignments higher or consistently lower grade 
then deserved. As mentioned in the Introduction, these 
students exhibit “rogue” behavior and their impact on the 
calculation of the final grade should be minimized. 

There are different types of biases presented in the paper 
on metrics written by the teaching staff at University of 
Alicante [8]: restriction of range bias is the tendency to 
evaluate every assignment with the same grade; central 
tendency bias is the tendency to evaluate every assignment 
with the median or mean grade; leniency bias is the 
tendency to overrate, and harshness bias is the tendency to 
underrate assignments. We will examine the average 
distance to diagonal and its standard deviation measures to 
determine leniency and harshness biases. 

For student i, the grader j assigns the grade 𝑎𝑖𝑗 . The grade 

assigned by the teacher (correct grade) is marked as 𝑐𝑖 and 
𝑛𝑗 presents the number of grades assigned by the grader j. 

The average distance to diagonal is defined as 𝐷𝐷𝑗
̅̅ ̅̅ ̅ =

∑ 𝑎𝑖𝑗−𝑐𝑖∀𝑖

𝑛𝑗
 and presents the mean of differences between the 

grade assigned by the student grader and the correct grade 
assigned by the teacher. Every distance is positive if the 
student graded higher than the teacher, otherwise it is 
negative when the student graded lower. The standard 
deviation for the student grader j is defined as 𝑆𝐷𝐷𝑗 =

√
∑ (𝑎𝑖𝑗−∀𝑖 𝐷𝐷𝑗)

2

𝑛𝑗−1
. Considering both the 𝐷𝐷𝑗  and 𝑆𝐷𝐷𝑗 values, 

it is possible to confirm the presence of leniency and 
harshness bias. If 𝐷𝐷𝑗  obtains a high positive value, the 

grader overrates his peers’ assignments which indicates 
leniency bias. Whereas low negative values of 𝐷𝐷𝑗  indicate 

that the grader underrates the assignments which represents 
harshness bias. The low values of standard deviation 𝑆𝐷𝐷𝑗 

shows that the graders bias is more pronounced. 

For the assigned grades in TABLE VIII., the grader 1 has 
a high positive value for 𝐷𝐷𝑗 , therefore leniency is present 

i.e., grader 1 overrated the three tasks of the student 1 
assignment. This makes sense for the given data since we 
know that grader 1 rated all tasks with the highest grade. 
Grader 2 has a negative 𝐷𝐷𝑗  value i.e., underrates the 

student 1 which concludes harshness bias. For grader 3 the 
𝐷𝐷𝑗  is 0, thus indicating perfect evaluation equal to the 

teacher’s grades. All three graders have a high standard 
deviation value, so their grading habits are highly 
noticeable. 
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TABLE VIII. ASSIGNED GRADES, AVERAGE DISTANCE TO 
DIAGONAL AND STANDARD DEVIATION 

Grader j Student 1 𝑫𝑫𝒋 𝑺𝑫𝑫𝒋 

Grader 1 5 5 5 2 3.67 

Grader 2 2 3 1 -1 3.8 

Grader 3 3 4 2 0 3.8 

Correct grade 𝒕𝒏
(𝒙)

 3 4 2 / / 

IV. CONCLUSION 

Using peer assessment for calculating grades of 

assignments decreases time and effort pressure on the 

teaching staff. It is important to consider student 

behavior and ensure that the students are graded 

according to their grading habits. Students should be 

awarded for their assignment solutions as well as their 

grading of other students’ work. The research shown in 

this paper has pointed out the interconnection of 

accuracy, reliability and bias when calculating the final 

grade in peer assessment process. “Non-rogue” students 

are reliable graders, and their grade should carry more 

weight when calculating the final grade. “Rogue” 

students tend to underrate or overrate. Therefore, they 

are considered unreliable and biased which can 

negatively affect the final grade. Their grade should 

carry less weight for the final grade calculation 

depending on the difference degree from the correct 

expected grading.  

Analysis of different measures for accuracy 

indicates that Pearson’s correlation coefficient isn’t 

suitable in all grading cases. Choosing the right measure 

is critical for estimating accuracy, reliability, and bias 

because it affects the final grade calculation. Looking 

into calibrated PA, it is worth considering that if only 

one calibration test is used, which is for most cases, we 

are not able to evaluate its weight and the calculated 

evaluations will not be used. In other words, the weight 

is 0, which is one of the disadvantages of calibrated 

evaluation. 

Peer assessment process is conducted using the 

Edgar system [20] for the Databases course at Faculty 

of Electrical Engineering and Computing. The PA 

process generates student data that can provide insight 

into student evaluation. Since every option that student 

selects in the Edgar system is saved, there is several 

years of log event data available for analysis. We plan 

to expand current analysis of metrics for estimating the 

best peer assessment grade and use the mentioned 

metrics on real student data collected from the Edgar 

system to improve the final grade calculation.  
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