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Abstract—By employing atomistic quantum transport 

simulations we investigate the impact of metal edge contacts 

on the transport gap (ETG) of silicene nanoribbons (SiNR). 

Transmission and ETG are investigated for sub-5 nm-wide 

and sub-15 nm-long SiNRs for various metal-device 

interaction strengths. We find that metallization occurs in 

certain cases, especially in wider and shorter devices, which 

sets fundamental limits to device scaling of potential SiNR-

based field effect transistors (FET). The findings are 

elaborated through analytical and numerical examples by 

discussing transmission and eigenvalue evolution with 

increasing metal-device interaction. 
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I. INTRODUCTION 

Silicene is a monolayer and monoelemental two-
dimensional (2D) material similar to graphene with its 
Dirac linear dispersion in K points and zero bandgap, but 
with a somewhat buckled crystal lattice in contrast to the 
flat lattice of graphene [1]–[4]. Cutting silicene into 
nanoscale quasi-one-dimensional (1D) silicene 
nanoribbons (SiNRs) potentially allows denser device 
integration on chip and possibilities for adjusting material 
and device characteristics by quantum confinement [5], 
[6]. Material and device properties of SiNRs and SiNR 
field-effect transistors (FETs) have been investigated 
previously, although mainly for the case of ideal contacts 
[7]–[10]. Ideal contacts result in perfect step-like 
transmission characteristics because contact regions and 
the device are assumed to be made of identical materials, 
which turns off any scattering of electron waves at 
electrode-device interfaces [11]. Moreover, ideal contacts 
preserve the bandgap (EG) while attaching realistic metal 
contacts changes the transmission function and induces a 
transport gap (ETG) [12], [13]. Generally, ETG ≠ EG and it 
is crucial to study the effects of metal contacts on ETG 
since the transport gap determines several fundamental 
figures-of-merit of FETs. 

In this paper, we employ atomistic Hamiltonians 
coupled with the non-equilibrium Green's function 
(NEGF) formalism to study the electronic and transport 

properties, including ETG behavior, of semiconducting 
SiNRs of various sizes. We investigate the impact of 
metal edge contacts since edge contacts are foreseen as a 
solution for better integration and lower contact resistance 
in ultra-scaled FETs based on 2D materials [14], [15]. An 
illustration of edge contacts for a SiNR FET is given in 
Fig. 1. Transmission and ETG are analyzed for SiNR 
widths ranging from ~5 nm to ~0.5 nm, for nanoribbon 
lengths from ~15 nm to ~4.5 nm, and for different 
electrode metals modeled via a metal-device interaction 
strength parameter. We find that in certain cases SiNRs 
undergo metallization, i.e. transition from semiconductor 
to conductor, which limits the practical applicability of 
SiNRs of certain dimensions in extremely-scaled FETs. 

II. METHODOLOGY 

In order to construct atomistic Hamiltonians for 
armchair-edge SiNRs we use the tight-binding (TB) 
model from the literature with nearest-neighbor 
interactions only where the Si-Si coupling or hopping 
parameter (t) for silicene is t = 1.03 eV [16]. Edge 
relaxation effect is accounted for by using a larger 
t = 1.15 eV for edge Si-Si bonds [7]. A 4-atom unit cell is 
constructed and repeated NW times along the nanoribbon 
width (W), which results in a column super-cell. This 
super-cell is then repeated NL times along the SiNR 
length (L), resulting in the total nanoribbon Hamiltonian 
matrix that contains (4∙NW∙NL)2 elements. 

 
Fig. 1. Illustration of a SiNR FET (top) and a zoomed-in region on the 
source side showing a metal edge contact (bottom). 
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The focus of this study is on the bandgap, which can be 
extracted from the bandstructure, and more importantly 
on the transport gap, which is obtained from the energy-
resolved quantum transmission function, T(E), as the 
energy range where T(E) < 0.001. The ETG is related to 
transport properties of a finite device and is therefore a 
more relevant figure-of-merit for potential device 
applications of ultra-scaled SiNRs. Transmission function 
of SiNRs is calculated within our existing NEGF code 
that deals with quasi-1D nanostructures such as 
nanoribbons of 2D materials [17]–[20]. The NEGF 
method starts by finding the retarded Green's function of 
the device, defined as 

 ( ) 1

1 2( ) i0 ( ) ( )R R R

C CG E E I H E E
−+ = + − − Σ − Σ   (1) 

for a two-terminal nanodevice described by the TB 
Hamiltonian matrix H, while ΣC

R matrices are the 
retarded contact self-energies [21], [22]. The ΣC

R matrices 
account for open boundary conditions between the 
nanodevice, i.e. SiNR of a given size, and two electrodes. 
After calculating the retarded Green's function of the 
device, the transmission is found from 

 1 2( ) ( ) ( ) ( ) ( )R A

C C
T E Tr E G E E G E = Γ Γ   (2) 

where GA(E) is the advanced Green’s function of the 
device, i.e. GA(E) = GR(E)†, and ΓC(E) = −2 ImΣC(E) is 
the contact-induced broadening for each electrode. 

In the case of ideal contacts, the resulting 
transmission is a step-like curve, and ΣC

R matrices need to 
be calculated with an iterative algorithm, e.g. Sancho-
Rubio method [22], [23]. On the other hand, in this work 
we are interested in how ETG changes in SiNRs with 
metal edge contacts (MECs). The MECs are included by 
using the wide-band limit (WBL) approximation for 
reservoirs, which amounts to assuming metals with a 
constant density of states (DOS) and a constant metal-
device coupling or hopping parameter (tMD) [22]. The 
resulting ΣC

R matrices contain a single negative purely 
complex parameter (marked hereafter as −ImΣC

R) since 
we neglect the real part and any energy shifts caused by 
attaching the metal electrodes. In order to assess a 
realistic magnitude of −ImΣC

R for an initial description of 
WBL contacts we use DOS(E = EF) ~ 0.25 eV−1 similar 
to DOS of Au at Fermi level [24], and assume tMD of 3 eV 
close to the coupling parameter for a graphene TB model. 
Hence, we obtain −ImΣC

R = tMD
2 ∙ DOS(EF)/2 ≈ 1.1 eV 

and use −ImΣC
R = 1 eV for initial simulations. 

Later in the paper we examine the impact of reducing 
−ImΣC

R down to 0.1 eV, thus modeling a less interacting 
metal, and increasing −ImΣC

R up to 10 eV, which mimics 
metal electrodes with strong interaction towards the SiNR 
structure. The wide range of −ImΣC

R values that are 
explored comes from a study of graphene-metal and 
carbon nanotube-metal contacts that reported WBL 
interaction parameters ranging from ~0.01 eV for Pd 

electrodes to ~20 eV for Ni contacts [25], [26]. The wide 
range is a consequence of various DOS values at Fermi 
level in different metals, and of various coupling 
parameters between metals and graphene. In this work 
concerning SiNRs, the effects of attaching MECs with 
different interaction strengths −ImΣC

R are studied for 
various nanoribbon widths and lengths to assess the 
potential design space, i.e. allowed geometries of SiNRs 
in terms of the transport gap. 

III. RESULTS AND DISCUSSION 

First, we investigate the impact of attaching WBL 
metal edge contacts, with −ImΣC

R = 1 eV as interaction 
parameter, on the transmission of 15.3 nm to 4.5 nm long 
SiNRs. Transmission characteristics for SiNR widths of 
4.0 nm, 2.9 nm and 1.7 nm are plotted in Fig. 2a, b and c, 
respectively. Downscaling of SiNR width increases the 
bandgap and, consequently, the transport gap, which is 
easily visible for 15.3 nm-long structures in the central 
energy range where the transmission is suppressed 
considerably. However, the transmission does not cross 
the defined ETG limit of T(E) < 0.001 in all cases. For 
W = 1.7 nm, ETG exists for SiNRs that are at least 9.9 nm 
long. When L equals 4.5 nm and 7.2 nm the transmission 
is ~0.01 and ~0.1 at mid-gap, i.e. transport gap effectively 
closes and these 1.7 nm-wide SiNRs become metallized. 

 
 

Fig. 2. Transmission vs. energy for (a) 4.0 nm-, (b) 2.9 nm-, and (c) 
1.7 nm-wide SiNRs of different lengths with the metal-device 
interaction parameter of 1 eV. 
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For W = 2.9 nm, metallization occurs even for longer 
nanoribbons so only for L = 15.3 nm and L = 12.6 nm a 
clear ETG can be extracted. Strikingly, a clear transport gap 
completely disappears in the widest SiNR, with 
W = 4.0 nm shown in Fig. 2a, irrespective of the length. 
The widest structures with the smallest bandgap are, 
hence, more susceptible to metallization effects than the 
narrower ones, as reported previously for graphene and 
other 2D material nanoribbons [11], [13], [27]. In the 
shortest (L = 4.5 nm) 2.9 nm- and 4.0 nm-wide SiNRs the 
transmission at mid-gap is on the order of ~1, which 
indicates unacceptable tunneling and very poor switching 
between the ON and OFF states in SiNR FETs for logic 
applications. Therefore, attaching metal edge contacts 
with a realistic interaction parameter of −ImΣC

R = 1 eV 
causes significant changes in the transmission, can close 
the transport gap, and sets limits to acceptable nanoribbon 
sizes for applications in nanodevices. 

The extracted ETG is reported in Fig. 3 for various 
SiNR widths and lengths, and for different metal-device 
interaction parameters to enable an easier comparison later 
in the text. The analyzed values of −ImΣC

R are 0.1, 1 and 
10 eV and the corresponding results are presented in 
Fig. 3a, b and c, respectively. First, we focus on the initial 
value of the interaction parameter, i.e. −ImΣC

R = 1 eV as 
shown in Fig. 3b. When SiNR width is scaled from 5.2 nm 
down to 0.6 nm, EG increases from 0.15 eV to 0.96 eV in 
SiNRs with ideal contacts where ETG = EG. However, 
when MECs are attached, ETG generally decreases with 
decreasing length, irrespective of the width. The 5.2 nm- 
and 4.0 nm-wide SiNRs with MECs are metallized 
regardless of the length. For W = 2.9 nm, the SiNR is 
semiconducting only for L ≥ 12.6 nm, end even for these 
lengths the ETG decreases from 0.27 eV (ideal contacts), 
over 0.2 eV (L = 15.3 nm), to 0.07 eV (L = 12.6 nm). The 
metallization effects become weaker for the two narrowest 
SiNRs with the widths of 1.7 nm and 0.6 nm. For 
W = 1.7 nm, only the shortest (L = 4.5 nm) nanoribbon has 
ETG = 0 eV, whereas for W = 0.6 nm all SiNRs exhibit a 
transport gap irrespective of nanoribbon length. For the 

narrowest device the only significant effect of attaching 
MECs is ETG decrease, or bandgap narrowing, from 
0.96 eV to 0.67 eV when L = 4.5 nm (i.e. change of 
−30%). We can summarize the observed effects as 
metallization and bandgap narrowing being the strongest 
in wider and shorter nanodevices. The wide SiNRs have a 
small bandgap that is more susceptible to metallization-
induced narrowing, whereas in short SiNRs metal 
electrodes are close and their interaction induces high 
local density of states and closes the gap [11]. The plot in 
Fig. 3 also contains a horizontal line showing EG = 0.4 eV, 
which is the minimum acceptable bandgap for future 
extremely-scaled FETs [28]. Clearly, for technology 
nodes where channel lengths under ~10 nm are needed, 
only the narrowest ~0.6 nm-wide SiNR offers an 
appropriate bandgap. Although SiNRs have been 
experimentally reported [5], [29], [30], fabricating sub-
1 nm-wide SiNRs on a wafer scale would present a 
serious challenge. 

Next, different metals are studied and their impact on 
ETG is shown in Fig. 3a for −ImΣC

R = 0.1 eV, and in 
Fig. 3c for −ImΣC

R = 10 eV. The former value describes a 
weakly-interacting metal or a moderately-interacting 
contacts with defects and other nonidealities on the metal-
device interface that decrease the effective −ImΣC

R. 
Surprisingly, Fig. 3a shows that an order of magnitude 
weaker interaction does not lead to significantly weaker 
metallization effects in comparison to Fig. 3b. In 
comparison to the case when −ImΣC

R = 1 eV, for 
−ImΣC

R = 0.1 eV the transport gap vanishes in one 
additional device, in the 2.9 nm-wide and 12.6 nm-long 
SiNR. For other devices with a preserved energy gap the 
impact of MECs is somewhat weaker for −ImΣC

R = 0.1 eV 
than for the initial case, but ETG is still lower than in ideal 
devices. Increasing the metal-device interaction parameter 
to 10 eV (Fig. 3c), which models a strongly-interacting 
metal, leads to similar effects as discussed previously. In 
comparison to the case of −ImΣC

R = 1 eV, ETG goes to 
zero for the SiNR with W = 2.9 nm and L = 12.6 nm. 
Other nanoribbons experience similar ETG changes as in 

 
Fig. 3. Impact of SiNR width and length downscaling on the transport gap in SiNRs with metal edge contacts for various metal-device interaction 
strengths, i.e. with −ImΣC

R values of (a) 0.1 eV, (b) 1 eV, and (c) 10 eV. The characteristic of a SiNR with ideal contacts is inserted for comparison. 
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the initial case of moderately-interacting metal electrodes 
defined by −ImΣC

R = 1 eV. 

The properties of ETG in SiNR with weaker and 
stronger interactions are unexpected since one would 
expect a lesser ETG change in Fig. 3a, and a larger impact 
of MECs in Fig. 3c, when compared to data presented in 
Fig. 3b for −ImΣC

R = 1 eV. In order to clarify this issue, 
we plot the transmission for the 4.0 nm-wide SiNR with 
different lengths in the case of −ImΣC

R = 0.1 eV in Fig. 4a 
and −ImΣC

R = 10 eV in Fig. 4b. Both plots show that the 
transmission is greatly suppressed in the conduction and 
valence bands, with sharp transmission peaks occurring at 
specific energies. This result stands in stark contrast to 
step-like transmission characteristics of nanoribbons with 
ideal contacts, which is a signature of 1D and quasi-1D 
nanostructures [12], [26], [27]. In addition, the 
transmission increases inside the bandgap with decreasing 
nanoribbon length, in both cases. A similar effect was 
reported for graphene nanoribbons, with a pronounced 
peak at mid-gap that belongs to a strongly localized zero-
energy state, i.e. metal-induced gap states (MIGS) are 
formed [12], [27]. This mid-gap increase due to MIGS is 
especially detrimental for SiNR FET operation as it would 
enhance direct tunneling through the channel and make 
the SiNR FET unable to turn off adequately. 

As shown in supporting information of [13], assuming 
constant imaginary contact self-energies leads to 
Lorentzian-shaped transmission peaks at nanosystem 
eigenenergies. For example, the transmission of a simple 
one-level nanostructure equals 

 
( )2

1
( )

1
T E

E
=

+ Γ
 (3) 

for zero local energy, and with WBL contacts with ΣC1 = 
ΣC2 = −i Γ/2. Hence, in realistic nanosystems with many 
eigenenergies, such as SiNRs, one can expect a 
transmission characteristic with a series of Lorentzians if 
WBL MECs are attached, which is exactly what is seen in 
Fig. 4. In devices such as SiNRs the individual 
Lorentzians are closely spaced due to a large number of 
states. Consequently, this crowding leads to overlaps and 
the local constructive interference causes transmission 
increase at certain energies. 

Since SiNR is a relatively complicated system, it is 
easier to understand the evolution of transmission and ETG 
with increasing −ImΣC

R using a 1D toy example. In the 
following analysis we assume a rectangular nanostructure 
that consists of two parallel 1D atomic chains, as 
illustrated in Fig. 5. The structure is a 2-by-3-atom 
nanoribbon with two WBL MECs that interact only with 
the two edge atoms on either side. For this system we 
increase the interaction parameter from 0.01 eV to 10 eV 
and plot the resulting transmissions in Fig. 6. For ideal 
contacts, the results assert that the nanostructure is a 
semiconductor with a 2 eV-wide bandgap and 4 eV-wide 
conduction and valence bands. However, with MECs the 
transmission changes significantly, with its shape evolving 
from delta-functions (Fig. 6a), over multiple Lorentzians 
in the bands (e.g. Fig. 6c), to a single Lorentzian in each 
band (e.g. Fig. 6h). The delta-functions, obtained for very 
weakly interacting MECs with −ImΣC

R = 0.01 eV, indicate 
the localization or resonant regime with negligible 
transport probability, which means that the nanostructure 
is nearly isolated. Increasing −ImΣC

R to at least 0.1 eV 
increases the transmission to non-negligible levels. The 
six peaks that are visible in Fig. 6a-d are due to six states 
in the nanostructure. From Fig. 6e onwards, i.e. for 
−ImΣC

R equal to and higher than 1.3 eV, the separate 
peaks merge into one peak per band. This merging occurs 
because the contribution of contacts to system eigenvalues 
becomes dominant, which is seen in Fig. 7 that reports the 
real and imaginary parts of eigenvalues of the effective 
device Hamiltonian, Heff = H0 + Σ. The real part indicates 
where the transmission peaks occur, whereas the 
imaginary part defines the lifetime of a state via 
τ ~ ħ / Im(ε), where ε is a complex eigenvalue. The single 
peaks from Fig. 6e onwards become narrower as the 
interaction strength increases, in accordance with Eq. (3). 
For −ImΣC

R = 10 eV (Fig. 6i) the Lorentzians are similar 
in shape to those obtained for −ImΣC

R = 0.1 eV (Fig. 6b), 
but with a decreased number of peaks in the former case 
also comes an increased ETG of ~4 eV, in comparison to 

 
 

Fig. 4. Transmission of a 4.0 nm-wide SiNR of different lengths with 
the metal-device interaction parameter being (a) 0.1 eV, and (b) 10 eV. 
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Fig. 5. Illustration of a quasi-1D nanostructure used for transmission 
analysis with respect to −ImΣC

R. t1 = −3 eV, t2 = −1 eV. 
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~3 eV when −ImΣC
R = 0.1 eV, and 2 eV in SiNRs with 

ideal contacts. Therefore, this simplified analysis agrees 
with the findings on differences between Fig. 3a and c, i.e. 
stronger ETG narrowing is observed in the case of 
strongly-interacting metal edge contacts. 

IV. CONLUSIONS 

Quantum transport simulations are employed to study 
metallization effects and bandgap narrowing in SiNRs 
with metal edge contacts. The analysis is done for various 
metal-device interaction strengths, and for technologically 

relevant SiNR dimensions, i.e. W under ~5 nm to reach 
relevant bandgap values, and L under ~15 nm for channels 
of future ultra-scaled FETs. We show that even 
moderately-interacting MECs (−ImΣC

R = 1 eV) 
significantly suppress the transmission in the conduction 
and valence bands, increase the transmission inside the 
bandgap, cause considerable bandgap narrowing, and even 
metallization (ETG = 0 eV). These MEC-induced effects 
set severe limits to scaling of SiNRs as channel material 
for FETs, e.g. SiNRs with W > 3 nm become metallized 
even when their length is ~15 nm. In addition, we 
demonstrate that weakly-interacting metals 

 
Fig. 6. Comparison of transmission functions of the device illustrated in Fig. 5 with ideal contacts (dashed line, obtained by the Sancho-Rubio (SR) 
method) and with metal edge contacts (full line). The nine plots show the impact of increasing −ImΣC

R from 0.01 eV to 10 eV. 
 
 

 
Fig. 7. (a) Eigenvalues in the complex plane for the effective Hamiltonian of the structure illustrated in Fig. 5 for various metal-device interaction 
strengths. Dependence of the (b) real and (c) imaginary part of the eigenvalues on −ImΣC

R. 
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(−ImΣC
R << 1 eV) could lead to localization regime with 

very poor transport properties and semiconductor-to-
insulator transition. On the other hand, strongly-
interacting metals (−ImΣC

R >> 1 eV) can either decrease 
or further widen the transport gap, depending on the 
nanostructure and interaction strength. Overall, and 
specifically for SiNRs, only the sub-1 nm-wide devices 
are capable for length scaling down to ~5 nm due to the 
strong bandgap narrowing. These findings can be 
extended to other nanostructures with similar electronic 
properties and, therefore, could prove to be important for 
practical applications of 2D materials in nanoscale 
electron devices. 
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