
PiSecurityCheck: Server Security Check in a Hand
Pio Treglia

 Grad. at Università “La Sapienza” di Roma, Rome, Italy
piotreglia90@gmail.com

Abstract — Nowadays, due to the Ukrainian-Russian war,

Denial of Service attacks against major Institutions across

Europe are increasing. The majority of them are application

layer (L7) attacks in which slow HTTP attacks play a major

role. In this paper, it is presented PiSecurityCheck, an

Android application designed to check in an intuitive and fast

way with a minimum amount of bandwidth, if a web server

may be prone to slow HTTP attacks. It will be shown how a

mobile application can emulate a DoS attack, based on

different parameters set by the user. Apache and IIS will be

tested in their default configuration and the results compared

with slowhttptest output, to corroborate the validity of
PiSecurityCheck. (Abstract)

Keywords - android; mobile attack; cybersecurity; slow dos

attack; denial of service

I. INTRODUCTION

During 2022, due to the geopolitical unrest related to
the Russian-Ukrainian crisis, the number of Application
Layer DDoS (L7) increased by 82% with respect to 2021
[1]. Advanced Persistent Threat Groups from both factions
(for example the pro-Russian KillNet or the pro-Ukranian
IT Army of Ukraine) supported their nations resulting in
sparse attacks to the main institutional websites and portals
of different countries in the world (e.g. US [2], UK [3],
Germany [4], Czech Republic [5]).

One of the main kinds of application layer attacks that
have been used is slow HTTP. This kind of threat is
different from the typical DoS. In fact, the legacy well-
known Denial of Service attack was usually based on a
flooding strategy, with millions of requests and network-
consuming traffic, to exploit and waste all the available
bandwidth of the recipient. In the SDA (Slow DoS Attack)
instead, the attacker aims to open as many HTTP
connections as possible, simulating a sender with degraded
network performance, to waste the webserver resources
leading it to discard any other legitimate request.

A classification of this attack has been given [6] and a
general taxonomy has been detailed in the past [7]. For the
sake of this paper two implementations will be taken into
account, namely the Slowloris HTTP attack and the slow
body HTTP attack (also known as R.U.D.Y.).

The paper is structured as follows. Section II gives a
general review of both attacks, underling how they are still
valid today and how spread they currently are. Section III
presents PiSecurityCheck, a new Android application made
to help administrators and tech personnel spot, check and
configure correctly the infrastructure they manage. Section
IV shows the usage of the application with Apache and IIS
web servers. Section V reports the conclusion and future
works.

II. REVIEW OF SLOW ATTACK STRATEGY

A. HTTP Protocol

HTTP is an application layer protocol [8], which allows
the transfer of hypertext pages through the use of methods
and variables sent with an undergoing TCP connection. A
common HTTP request (“Fig. 1”) is made up of:

• request line: includes the method (e.g. GET, POST,
and others), request-target, which can be either a
URI or an URL, and the HTTP version;

• headers: used to send additional information like
cookies and authorization tokens. They are case
sensitive and are defined by a name, a semicolon
“:” and a value;

• message body: used to exchange information
between client and server. The request and the
headers must all end with a CRLF (carriage return
and line feed) and a final empty line (CRLF)
indicates that the request is complete and can be
processed.

Once the server receives the request, it validates all the
methods, headers, and fields and sends the response back to
the sender based on the resource requested. The body part
of the response is used to transfer the information like an
HTML page to be displayed in a web browser.

Figure 1. Standard HTTP request.

B. Slowloris Attack

The Slowloris HTTP attack [9] exploits the normal
behavior of a webserver that waits for the end of an HTTP
request indefinitely (or the expiration of a preset timeout)
before closing the connection. By default a web server
allows slow connections to send information with a low
transmission rate due to degraded communication channels.
As a result, an attacker can keep multiple connections open
by sending small pieces of information in a large amount of

1820 MIPRO 2024/ISS-CIS

time without sending the final empty line that states the end
of the request. Doing so the server would waste all the
resources waiting for the useless HTTP requests, leading to
the unavailability of the service for a legitimate user.

C. Slow Body HTTP

The attack methodology is very similar to the one seen
in the paragraph above. The final goal is to exhaust all the
resources of the server by setting up multiple dumb
connections that transmit data at a very low rate. But in this
case, there are two main differences:

• the POST method is used;

• the attacker sends the header field “Content-
Length” (normally used to announce to the
recipient the dimension of the body of the request)
set to a very large number.

Doing so the server would keep the underlying
connection open, waiting for the useless connection to
finally transmit all the body content announced in the first
place inside the header. From time to time, the attacker
sends a small piece of information (usually one or two
bytes), just to be sure that the recipient will not close the
connection, so the resources would be kept busy.

III. PISECURITYCHECK IMPLEMENTATION

A. Related Work

In the past, an android application called “SlowDroid”
has been already presented by Cambiaso, Papaleo and
Aiello [11]. In that case, the main purpose was to
demonstrate how a mobile phone could be turned into a
threat and launch a DoS attack. Moreover, it allowed to
setup unencrypted connections and start a Slowloris attack.
Other implementations of slowloris-attack checking tools
are currently available in a script form, like http-slowloris-
check [20] or slowhttptest [12]. Most of them are not user
friendly and do not present the results through an intuitive
graphical user interface. So far, no other android or
graphical based slowloris testing application have been
presented.

B. Application Overview

The main purpose of the the PiSecurityCheck [10]
application, is to give administrators a valid tool to:

• check, by using a minimal amount of bandwidth, if
a web server may be vulnerable to the attack
briefly explained in section II-B;

• emulate a real attack and take the proper
countermeasures to enhance the security.

I developed this tool as an Android application because
it is more simple and more practical. It needs a minimum
amount of configuration to be ready to use. Moreover,
sometimes similar tools or scripts that are currently widely
used can be misleading. Using an application that actually
emulates an attack, can help to double-check the accuracy
of other well-known software. This aspect in particular will
be shown in section III, where it is presented a comparison

between the PiSecurityCheck application and slowhttptest
[12].

Figure 2. Two features implemented in the application

C. Functions

PiSecurityCheck has two main functions that the user
can select:

• Slow HTTP Check, which allows the user to check
if the web server may be vulnerable to the
Slowloris attack seen in section II-B;

• Slow HTTP attack, with which the user can launch
an attack, by configuring some editable fields

Figure 3. Input and configuration to be set by the user in the Slow

HTTP Check functionality

Both functions have five main parameters that can be
edited by the user:

• hostname (String): the host check/attack;

• channel: specifies if the socket has to be opened
through a SSL/TLS connection, or with an
unencrypted one;

• HTTP Method: either GET or POST;

• path (String): the path of the hostname to whom
deliver the request;

MIPRO 2024/ISS-CIS 1821

• port (int): on which port the user wants to perform
the check/attack

This application has been specifically designed to have
all these fields because the aim is to have a flexible tool to
be used intuitively. Above all, it is very useful to conduct a
test on a non-standard port (like 80 for HTTP or 443 for
HTTPS) and analyze in practice if the web server is
actually vulnerable. The function Slow HTTP attack has
two more editable parameters:

• number of connections (int): specifies the number
of parallel connections that the application opens
during an attack. The maximum number of
connections is limited to 1024;

• test maximum duration (int): defines a timeout in
seconds, that will be used as the duration of the
attack. The maximum duration is set to 120
seconds if a bigger value is provided.

The above limitations have been introduced because the
aim of the application is not to build a cyber weapon. For
this reason, the application has been also obfuscated in
order to avoid decompilation of the application

D. Graphical User Interface

The Graphical User Interface has been designed having
in mind a material design pattern [14]. Efficiency has also
been taken into consideration, so the information to be
displayed is rendered on a need-to-use base. This results in
showing information only when the user actually needs to
see the particular item in a list (without pre-loading all the
information in the view). It also “recycles” already-seen
information without destroying the view but saving the
references in a so-called ”recycle bin” [13]. All these
features result in better performances and above all lower
battery consumption, while keeping in mind the goal of
having a user-friendly application. The start and stop
buttons of both functions are FloatingActionButton and
together with the Toolbar allow the application to
implement the third dimension defined by Google in the
material design guidelines.

E. Slow HTTP Check Implementation

Through Slow HTTP check function, based on user

input, it will be tested either:

• Slowloris vulnerability, if the selected method is
GET;

• Slow body vulnerability, if the POST method is
selected

1) Slowloris vulnerability: the approach followed in
the implementation, is based on a previous article [16]. In
the beginning, two sockets are created and fed with two
identical HTTP GET requests without the final CRLF.
Doing so the application would emulate a slow connection
and the web server would wait for the client to send any
additional bytes. After a period T (in the application T is
fixed, equal to 10 seconds) a “refresher” is sent to the web
server using the second socket (instead the first stays still,

Figure 4. Request and response exchange of the Slow HTTP check

function with the GET method selected.

not sending any other information). If the second socket is
closed exactly or more than T seconds after the first
connection, it means the server may be vulnerable to the
attack. In fact, it perceived the connection as slow so it is
configured to wait some time before closing the
communication. This is a flaw because an attacker could
send a ”refresher” every T-1 second so the server keeps
the connection open and the related resources are kept
busy. A proper configuration of the server, as previously
suggested [15], would limit this effect by setting:

• a minimum transfer rate for connections (so that
the server would automatically close malicious
requests);

• an appropriate fixed timeout for all the requests, so
the additional byte sent will not extend the value of
the timeout connection

2) Slow Body Vulnerability: the first check is done in
the same way as the preceding paragraph, but the method
used this time is POST. Additionally, it is also checked if
the server is vulnerable to the slow body - R.U.D.Y (Are U
Dead Yet) attack. In this case, a socket is opened and fed
with a properly formed POST request. Moreover the
header field “Content-Length” is set with a very large
value (65543), emulating a large message body to be sent
to the server. If the response is an HTTP code of 200, it
means the web server has accepted the request and may
wait for the last byte of the request to be correctly
received. Using the same introduced in the last paragraph,
could mitigate this behavior and easily defeat any similar
attacks.

F. Slow HTTP Attack Implementation

This function has been designed to demonstrate in an
empirical way if the administrator successfully
implemented the correct countermeasures for the slow
HTTP attack. So it is possible for the user, to insert and
select the desired parameters and the application would
start the attack if the right arrow is tapped. It has been
implemented also a stop button, so it is possible to stop the

1822 MIPRO 2024/ISS-CIS

attack even when it has been already launched. Based on
the selected method, the application would open a number
of sockets (the default value is set to 300 and it is not
possible to open more than 1024 parallel connections) with
a timeout value specified by the user (the maximum value
for the timeout is 120 so that after this time period all the
connections are closed). Every socket is attached to a
concurrent thread. If for any reason the thread crashes, the
socket fails, or is interrupted by the server, the application
automatically set up a new thread with a new socket and
tries again to establish the connection. All the requests rely
on a TCP socket and if the user selects the method:

• GET, the application sends a not properly
terminated HTTP request (without the final
CRLF). Every thread fills the socket every two
seconds with a follow-up HTTP header similar
parameter (code depicted in “Fig. 4”). Doing so the
server would keep open up to 1024 connections,
saturating eventually (if vulnerable to the attack)
all the available resources;

Figure 5. Piece of code where the junk ”refresher” parameter is sent

every 2 seconds.

• POST, the application transmits a well-formed
HTTP request with a parameter “Content-length”
set to a very large value (65543 - as shown in “Fig.
6”). In this case, every thread sends a randomly
generated byte to emulate a slow connection thus
inducing the server to wait for the remaining bytes.

Figure 6. Piece of code where the POST request is built with a large

Content-length parameter set.

IV. PISECIRITYCHECK IN USE

In order to check the features implemented in the
application, two webservers have been installed on a
Windows 10 system: Apache server and Internet
Information Services (IIS) [18]. The PiSecurityCheck
application has been used on both of them, in order to
check their behaviour with the default configuration.
Apache/2.4.54 with PHP 8.2.0 application server have been
deployed by using the XAMPP [17] software. The web
server has the default settings declared mainly in httpd-
default.conf and httpd.conf files. In particular, the
following values are defined:

• Timeout 300 - the number of seconds before
receives and sends time out;

• KeepAlive On - whether or not to allow
persistent connections;

• MaxKeepAliveRequests 100 - the
maximum number of requests to allow during a
persistent connection;

• KeepAliveTimeout 5 - Number of seconds to
wait for the next request from the same client on
the same connection

So by default, there is no protection at all for the Slow
HTTP attack family. Moreover, the line in the
configuration file that imports the request timeout module
(mod\reqtimeout.so) is commented. The Microsoft
IIS 10.0 default configuration values are present at
applicationHost.config. The
executionTimeout is set to 00:01:50 lower than the
Apache webserver. Anyway, no countermeasure are set by
default against the slow HTTP attack. Both web servers
have been tested with a cellphone (Samsung Galaxy S22
running the PiSecurityCheck application) and a Windows
10 client (running the server to test) connected to the same
WiFi connection. The IP address of the cellphone is
192.168.1.221, instead, the server has 192.168.1.242. The
default webpage of Apache has been modified in order to
support a form field, so the slow body attack feature could
be tested. The same field has been created also in the IIS
deploying a custom webpage.

A. PiSecurityCheck usage on Default Apache Web Server

Executing the Slow HTTP Check, on the Apache
webserver has demonstrated how it may be vulnerable to
the attack. The confirmation of this has been given by
launching an attack, using the default parameters through
the Slow HTTP attack feature. After only 1 second the
webserver was unable to handle any other requests.

Figure 7. Trying to visit the default page of the Apache server after

launching the attack

B. PiSecurityCheck usage on Apache Web Server

properly configured

On Apache, a possible countermeasure to slow HTTP
attack is enabling the mod\reqtimeout.so in the
http.conf. This module is specifically designed to set a
minimum rate and a specified timeout for all incoming
requests. By default, it defines the following limits:

• header=10-30

• MinRate=500

Using this setting and launching again the attack, the
service is always up and running, because the web server
automatically discards incoming malicious requests. Proof

MIPRO 2024/ISS-CIS 1823

of this can also be seen in the server log file. Multiple 408
HTTP responses are reported, showing how the web server
is terminating all the malicious connections, keeping the
server up.

Figure 8. Apache logs applying the proper configuration

C. PiSecurityCheck usage on Default IIS Web Server

In order to test IIS version 10.0 web server, a very
simple asp.NET page has been developed and deployed at
the path http://192.168.1.242/post. It will be
later used to check if the server is vulnerable to the slow
body R.U.D.Y attack, introduced in section III-E2. The
following are the default settings:

• Limit bandwidth usage: disabled -
there are no protections against connections that try
to seize the bandwidth;

• Timeout connections: 120s - compared
to the Apache server the timeout threshold is
lower;

• Limit number of connections:

disabled – a client can open an infinite amount
of parallel connections.

1) PiSecurityCheck - Slowloris Attack to IIS 10.0:

launching the check feature on the post page, it can be
noticed that the server automatically kills the not-closed
HTTP request, exactly after 120 seconds. Then the attack
feature is used to emulate a Slowloris attack. All default
values (so GET method, unencrypted connections) are left
unchanged, except for the parallel connections, which have
been increased to 1024. The web server is still available
and ready to serve connections.

Figure 9. The IIS server is still available, after a Slowloris HTTP attack

with 1024 connections

2) PiSecurityCheck – Slow Body attack to IIS: using
the Slow HTTP attack feature, the method has been
changed to POST, and the number of parallel connections

has been set to 1024. All the other values have been left
unchanged. This time the webserver was not available
anymore, in fact trying to access the post page, the output
was a Error 503 - Service Unavailabe. The
same not-working result has been obtained also by testing
IIS version 9.0.

Figure 10. The IIS server is not available, after a slow body attack with

1024 connections.

D. Slowhttptest usage on Default IIS Web Server

slowhttptest [12] is a well-known HTTP tool
specifically designed to test if a service is vulnerable to
slow HTTP attacks. It is automatically included in an
ethical hacking Linux-based distribution named “Kali
Linux” [19]. For this test, a pre-configured kali linux
virtual machine has been installed and used to conduct the
attacks against the IIS web server. It is useful to conduct
the very same slow body R.U.D.Y attack implemented by a
different tool, so it is possible to compare the behavior of
the server. The string launched to attack is shown in “Fig.
11”, where the most important parameters are: -B means
slow body HTTP attack; -r specifies that 1024 parallel
connections will be sent.

Figure 11. Slowhttptest string line with attack parameters set.

E. Outcome Analysis

Looking at the output of slowhttptest (“Fig. 12”), it can
be seen how IIS is vulnerable to slow body HTTP attacks.
This outcome confirms what was previously seen with
PiSecurityCheck.

Figure 12. slowhttptest attacking IIS and unavailable post page

It is also noticeable how slowhttptest is wrongly
assuming that the webserver is UP. In fact, accessing
directly the post page, the result is always an HTTP 503
error code. This behavior can be justified by the fact that

1824 MIPRO 2024/ISS-CIS

IIS responds with an error code, so the tool assumes that
the service is up due to the response. Probably slowhttptest
would not check the content of the response. In fact, in
slow HTTP attacks, the normal outcome for a request to a
busy server is a pending connection that eventually expires
with a timeout. This bug is also visible looking at the html
file that outputs the tool. “Fig. 13” depicts the graph with
all the connections that were sent during the test, colored
by the closed and the connected ones. The green instead
shows the availability of the service. As said before
slowhttptest consider mistakenly the web server as up and
correctly running.

Figure 13. slowhttptest graph result.

V. CONCLUSION AND FUTURE WORK

In this paper, a new Android application has been
presented. It has been shown how fast and simple is, to set
it up. Its main features have been used to demonstrate how
useful it can be to web server administrators. Some tests
have been conducted on Apache and IIS webserver and the
results compared with another very known tool. All the
results lead to the goodness of the application and its
flexibility in the configuration. During the research, a bug
of slowhttptest was also noticed (the tool presented the
server available, even though it was not responsive). After
analyzing the HTTP responses, a possible explanation for
the malfunctioning has been given.

In the future PiSecurityCheck can be further
implemented, adding new functionalities, thanks to the
modularity of the application. The attack module, in
particular, can be extended with more parameters. The wait
timeout could be introduced as a field to be set by the user.
Also the total duration of the attack could be a parameter of
interest. This way an administrator could check both the
behavior of the web server, minimize the downtime in case
of vulnerability and fine tune the configuration related to
the timeout settings of HTTP requests.

REFERENCES

[1] G. McKeever,"The Imperva Global DDoS Threat Landscape Report

2023". Accessed on 12.29.2023 [Online]. Available:
https://www.imperva.com/blog/imperva-releases-its-global-ddos-
threat-landscape-report-2023

[2] C. Pallardy, "Understanding DDoS Attacks on US Airport Websites
and Escalating Critical Infrastructure Cyberattacks". Accessed on

12.29.2023 [Online]. Available:
https://www.informationweek.com/security-and-risk-
strategy/understanding-ddos-attacks-on-us-airport-websites-and-
escalating-critical-infrastructure-cyberattacks

[3] Foreign, Commonwealth & Development Office and National
Cyber Security Centre, "UK assesses Russian involvement in cyber
attacks on Ukraine". Accessed on 12.29.2023 [Online]. Available:
https://www.gov.uk/government/news/uk-assess-russian-
involvement-in-cyber-attacks-on-ukraine

[4] BfV (2022), “Cyber-Brief Nr. 01/2022 – Hinweis auf aktuelle
Angriffskampagne”. Accessed on 12.29.2023 [Online]. Available:
https://www.verfassungsschutz.de/SharedDocs/publikationen/DE/c
yberabwehr/2022-01-bfv-cyber-
brief.pdf?__blob=publicationFile&v=10

[5] M. Bagwe, "Pro-Russian Killnet Group in DDoS Attacks on Czech
Entities". Accessed on 12.29.2023 [Online]. Available:
https://www.bankinfosecurity.com/pro-russian-killnet-group-in-
ddos-attacks-on-czech-entities-a-18949

[6] E. Cambiaso, G. Papaleo, and M. Aiello, “Taxonomy of Slow DoS

Attacks to Web Applications”, Communications in Computer and
Information Science 335; October 2012.

[7] E. Cambiaso, G. Papaleo, G. Chiola, M. Aiello, “Slow DoS attacks:
definition and categorisation, ”International Journal of Trust
Management in Computing and Communications, vol. 1, no. 3,
pp. 300–319, 2013.

[8] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T. Berners-Lee,
”Hypertext Transfer Protocol – HTTP/1.1”, RFC 2068, January
1997, Accessed on 12.29.23 [Online]. Available at
https://datatracker.ietf.org/doc/html/rfc2068

[9] Wikipedia, “Slowloris”. Accessed on 12.29.23 [Online]. Available
at http://en.wikipedia.org/wiki/Slowloris

[10] Pio Treglia, “PiSecurityCheck, an Android tool for your security”-
Accessed on 12.29.23 [Online]. Available at
https://pisecuritycheck.000webhostapp.com/.

[11] E. Cambiaso, G. Papaleo, G. Chiola and M. Aiello, ”Mobile
executions of Slow DoS Attacks”, Logic Journal of the IGPL, Vol.
24, Issue 1, pp. 54–67, Feb 2016.

[12] Google-Code, “slowhttptest - Application Layer DoS attack
simulator”. Accessed on 12.29.2023 [Online]. Available:
https://code.google.com/p/slowhttptest/

[13] Google LLC, ReciclerView. Accessed on 12.29.2023 [Online].
Available:
https://developer.android.com/develop/ui/views/layout/recyclerview

[14] Google LLC, Material design. Accessed on 12.29.2023 [Online].
Available: https://m2.material.io/develop/android

[15] Suroto, ”A Review of Defense Against Slow HTTP Attack”,
International Journal on Informatics Visualization, Vol.1 no.4,
2017.

[16] S. Shekyan, “Are you ready for slow reading?”. Accessed on
12.29.2023 [Online]. Available:
https://blog.qualys.com/vulnerabilities-
threatresearch/2011/07/07/identifying-slow-http-attack-
vulnerabilities-onweb-applications”

[17] Apache foundation, Apache HTTP Server project, Accessed on
12.29.2023 [Online]. Available:
https://www.apachefriends.org/it/index.html

[18] Microsoft, IIS. Accessed on 12.29.2023 [Online]. Available:
https://www.iis.net/

[19] OffSec Services, Kali linux. Accessed on 12.29.2023 [Online].
Available: https://www.kali.org/get-kali/#kali-virtual-machines

[20] Nmap, Script http-slowloris-check. Accessed on 04.01.2024
[Online]. Available: https://nmap.org/nsedoc/scripts/http-slowloris-
check.html

MIPRO 2024/ISS-CIS 1825

