
Detection and Analysis of Obfuscated and
Minified JavaScript in the Croatian Web Space

Toni Dujmović, Bruno Skendrović, Ivan Kovačević, Stjepan Groš
University of Zagreb Faculty of Electrical Engineering and Computing

Zagreb, Croatia
{toni.dujmovic, bruno.skendrovic, ivan.kovacevic, stjepan.gros}@fer.hr

Abstract—JavaScript libraries allow for faster and easier
programming of web content. In order to conceal know-how
secrets and malicious code, obfuscation is used. Obfuscation
is a deliberate act of reshaping something to make it harder
to understand. Commonly used obfuscators provide many
methods that produce different obfuscated versions of the
same source code. Minification has similar techniques to
obfuscation, but unlike obfuscation, minification reduces the
size of the code, which speeds it up and is its primary
functionality. This paper provides an overview of obfuscation
and minification and the methods therein. The developed
software tool uses regex, entropy and word size to detect and
distinguish minified and obfuscated JavaScript libraries. The
result of running the software tool on a database of pages
in the Croatian web space is presented. The results show a
high presence of minified and a small number of obfuscated
JavaScript libraries. This automated detection has proven
to be faster and in some cases more accurate than manual
detection of obfuscation and minification. Observed problems
with the tool implementation are commented on and potential
improvements are discussed at the end of the paper.

Keywords—Croatian web space, cybersecurity, obfuscation,
minification, automated detection, JavaScript

I. INTRODUCTION

Software security has become an increasingly important
issue in recent years as more and more sensitive infor-
mation is stored and transmitted online [1]. Obfuscation
and minification are two techniques that can be used to
increase the security of software by making the source
code harder for attackers to understand or modify.

Obfuscation is a process that makes the source code
more difficult to understand by transforming it into an
equivalent but more complex form. The goal of obfus-
cation is to make it more difficult for attackers to re-
verse engineer the code, steal intellectual property, or find
vulnerabilities. Minification, on the other hand, reduces
the size of the source code, making it more difficult for
attackers to find and exploit vulnerabilities.

Obfuscation and minification share similar techniques,
which is why the results may look similar to the human eye
or to detection software. Obfuscation can also be present
in malicious programs, as it can hide commonly used
functions or code patterns that an antivirus program would
detect as malicious code. This paper describes a developed
software tool that attempts to distinguish between source
code, minified JavaScript, and obfuscated JavaScript.

In this paper, we make the following contributions:

• We introduce a developed software tool for detecting
code minification and obfuscation in JavaScript li-
braries. The tool uses these parameters: entropy, word
sizes, and regex.

• We demonstrate the effectiveness of the tool by
applying it to a dataset of JavaScript libraries from
the Croatian web space and analyzing the results.

The remainder of this paper is organized as follows. In
Chapter 2, we provide a comprehensive overview of the
existing literature on obfuscation and minification. Chapter
3 presents a detailed background on obfuscation and
minification, describing some methods in the processes.
Chapter 4 comments on methods for detecting obfuscated
and minified JavaScript and discusses selected parameters
for the detection. Chapter 5 presents the results of applying
the implemented software tool to a set of JavaScript
libraries used in the Croatian domain. Chapter 6 of this
paper is a discussion chapter, where an analysis of the
results of the study is made. Finally, Chapter 7 discusses
the implications of our findings and discusses possible
improvements for the software tool.

II. RELATED WORK

Obfuscation and minification are techniques used to
improve the security of software code. They make it more
difficult for attackers to understand or modify the code,
but can also be used by malicious actors to hide their
malicious code. The detection and analysis of obfuscated
and minified JavaScript has been the subject of increasing
research in recent years [2], as JavaScript is one of the
most commonly used programming languages in web
applications [3].

Previous studies have focused on various aspects of
obfuscation, its use in malware production, and the impact
on detection of such techniques. W. Xu and coauthors
[4] have conducted a comprehensive study on the use of
JavaScript obfuscation in malware and have shown that
obfuscation is a common technique used by attackers to
evade detection by security tools. W. Xu’s work highlights
the importance of developing effective methods to detect
and analyze obfuscated JavaScript, as this is a critical
aspect of ensuring the security of web applications.

Other studies focused on the detection of such files,
such as the work of YH. Choi [5]. The study evaluated
the effectiveness of different detection methods using

1442 MIPRO 2023/ISS

parameters such as N-gram, entropy, and word size. The
study found that the parameters were effective for obfus-
cation detection, but also indicated the need for additional
parameters to improve classification accuracy.

One of the biggest challenges in obfuscated and minified
JavaScript detection is that these techniques are constantly
evolving. Obfuscation and minification tools and methods
are constantly being improved and updated, making it
difficult to develop a single, comprehensive detection
method that is effective against all forms of obfuscation
and minification.

Despite these challenges, previous studies have shown
that it is possible to effectively detect obfuscated and
minified JavaScript using a combination of lexical analy-
sis, semantic analysis, and code similarity analysis. These
methods have proven effective in identifying different
types of code transformations that occur during obfusca-
tion and minification.

There are also recent studies on the use of machine
learning based approaches to detect obfuscated JavaScript,
as in the comprehensive study by S. Aebersold [6]. The
results of this study demonstrate that machine learning-
based methods exhibit high accuracy in detecting code
transformations. However, it is important to note that
a reliable dataset is essential to achieve this goal. In
addition, future research could explore the possibility of
augmenting machine learning with other methods and
using the parameters discussed in this work to provide
more comprehensive code transformation detection.

In a recent study by A. Alazab [2], a machine learning
method was developed to detect malicious JavaScript. The
proposed solution used a total of 170 features, including
statistical and lexical categories, to detect both obfuscated
and unobfuscated malicious code with 98% accuracy. The
malicious code samples used in the study often had one
or more obfuscation layers. The main features used in
the detection system were entropy, string length, number
of occurrences of certain strings, and JavaScript keyword
frequency. While the results of the study show the effec-
tiveness of the selected parameters in accurately detect-
ing malicious JavaScript, it is worth noting that further
research with even better parameters or other machine
learning approaches could potentially achieve even higher
accuracy in detecting and mitigating security threats.

In summary, the literature on obfuscation and minifica-
tion detection in JavaScript has shown the effectiveness
of using various parameters such as N-gram, entropy,
and word size in combination with and without machine
learning-based approaches. These studies have provided
valuable insights into the current state of the art in obfusca-
tion and minification detection. However, further research
in this area is essential to advance the understanding and
development of robust detection techniques.

III. BACKGROUND

Obfuscation is the deliberate act of reshaping some-
thing to make it harder to understand. In programming,

obfuscation is the transformation of code into a version
that retains the same functions but makes it extremely
difficult or even impossible to understand, replicate, or
modify without additional tools. Program code is often
obfuscated to protect intellectual property or trade secrets.
A notable disadvantage of obfuscation is its potential
misuse to circumvent the detection of malicious programs
by antivirus software [7]. Obfuscation serves as a defense
mechanism against reverse engineering and is often used in
the development of malicious code to intentionally obscure
its understanding and increase its complexity. Antivirus
programs typically scan code as part of their detection
mechanisms for commonly used features and patterns
that are often associated with malicious programs. With
obfuscation, developers do not develop new malicious
code, but place a layer of obfuscation over important
functions to hide from detection.

Obfuscation uses various methods to achieve the desired
result, including "Control flow flattening"," "Dead code
injection" and "String Array." "Control flow flattening" is
a technique that aims to streamline the code flow. For this
purpose, all fundamental blocks of code,such as function
bodies, loops, and conditional branches are broken down
and reassembled in an infinite loop. A switch statement is
then used to determine which part of the code will continue
to execute. Such a structure makes it much more difficult
to follow the execution of the program, since the usual
structures that make the code easier to read are no longer
present. Figure 1, titled "Control Flow Flattening," shows
an abstract representation of the transformation of a simple
code structure into a flattened version by manipulating
the flow. The colored blocks represent the separated code
blocks, while the new black block represents the main
switch command that governs the flow.

Fig. 1: Control flow flattening

The term "dead code" can be defined in two different
ways. First, it refers to code that is never executed, such
as a function enclosed in an "if" condition that is never
satisfied. Second, it can refer to code whose output has
no effect on subsequent code execution. Dead code can
slow down execution time and consume system memory,
making it difficult to understand the program. In the
context of obfuscation, dead code is often inserted into
source code to increase its complexity, complicate reverse
engineering efforts, and increase the time required for
deciphering.

Another method used to try to make the code more
difficult to understand is to split strings into smaller
parts and arrange them in arrays or array-like objects.

MIPRO 2023/ISS 1443

An example of this method would be splitting the word
"classify" into "ssi", "fy" and "cla" and then storing the
values in different parts of an array.

Minification is a technique used to reduce the size
of code required to perform the same functionality. It
is commonly used in the implementation of web pages
and script files. Minification is an important method to
optimize page loading times for users, as it speeds up
page rendering. It also benefits users with limited internet
connection as they consume less data compared to non-
minified pages. The difference between the original and
the minified jQuery JavaScript library version 3.1.1 is
176 kb [8]. Minification removes unnecessary or redun-
dant elements from the source code, such as whitespace,
comments, and naming conventions. This process results
in more compact and efficient code that retains the same
functionality as the original code.

After minification, the code becomes a less readable
version that has the same functionality. For this reason,
it can be said that minification is a type of obfuscation.
Obfuscated and minified files are easy to distinguish from
the files on which such operations were not performed, but
in some cases it is difficult to distinguish minification from
obfuscation. The goals of minification are different from
those of obfuscation, but to minify the program code, some
of the same methods are used. Some of these methods
include shortening variable names, removing delimiters,
and refactoring code. Shortening variable names reduces
the size needed to store the code, refactoring code involves
methods similar to "Control flow flattening".

IV. DETECTING OBFUSCATED AND MINIFIED
JAVASCRIPT

There are several ways to detect obfuscated JavaScript
code. One way to detect obfuscated JavaScript code is
to identify unusual or hard-to-read code patterns, such as
long or overly complicated statements or unconventional
naming conventions for variables and functions. Another
approach to detecting obfuscated JavaScript code is to
check for the presence of unnecessary or redundant code
or statements, as this could be an indication of obfuscation
techniques being used. In addition, developers can use a
decompiler, a tool that can convert compiled code back
into a more readable form, to understand and detect
obfuscated code.

Minified code can also be difficult to read and under-
stand since it removes variable names, comments, and
block delimiters that serve to make the code readable but
are not necessary for its execution. However, there are
several tools that can help developers deal with minified
code. One option is to use a code beautifier, which refor-
mats and reorganizes the code to make it more readable.
Another option is to use a source map [9], a file that
maps the original, unminified code to the minified code,
making it easier to debug and understand. Also, a debugger
can be used to better understand the code and identify
potential problems. In addition to the challenges posed

by obfuscated and minified code, there are also security
risks to consider. Malicious actors can use obfuscation and
minification techniques to conceal malicious code, making
it harder to detect.

In this work, the software tool initially categorizes
JavaScript code into three categories: Minified Code,
Obfuscated Code, and Source Code. This categorization
is done through a separation process in which the tool
identifies and distinguishes code that has been minified or
obfuscated and code that remains in its original source
code form. The initial separation of minified and ob-
fuscated code from source code was performed using 5
parameters. The parameters increase the security index
variable by 1 or 2, depending on the value given to
the parameters from the given JavaScript. The specified
parameters are:

• Regexes
• Entropy
• Size of the biggest word
• Average word size
• The ratio of the largest word to the number of

characters of the entire file
• File size

After analyzing about 1000 obfuscated and minified
JavaScript libraries crawled from the Croatian web space,
regexes were written that could be used to detect the com-
monly used methods and patterns in their implementations.
Some of the notable ones are regexes that detect parts of
the code where variable names are used with one letter
in a row and have been given values with one letter. This
pattern could be used in minification to shorten variable
names because the code no longer needs to be readable, or
in obfuscation to shuffle values so that the code is harder
to understand. Another regex was written for unusual
return values that had been noticed in obfuscated code.
Programmers would not normally overcomplicate code if
it were possible to write it in a clearer way. For this
reason, they would never write a return statement with
only 3 Boolean values in it. In JavaScript, an empty array
evaluates to false when computed as a boolean value,
and the two exclamation points change the value to true
and back to false, as seen in the second regex example.
Since such code would never be written by a human, the
regex was implemented to detect such patterns. Another
regex was implemented to recognize a large number of "|"
characters. In normal coding, such characters would not
appear in the code, but in obfuscation, these characters
are used in the string array method mentioned earlier,
where strings in the code are broken into smaller pieces
and stored in array-like structures. In this example, the
large amount "|" simulates an array-like structure, where
splitting the string by the "|" returns an array.

"[a-zA-Z]=.,[a-zA-Z]=.,[a-zA-Z]=.,[a-zA-Z]=.,[a-zA-
Z]=.,[a-zA-Z]=.,[a-zA-Z]=.,[a-zA-Z]=.,[a-zA-Z]=.,"

"return !!\[\]”
"\| \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ |”

1444 MIPRO 2023/ISS

In computer science, entropy refers to a mathematical
value that measures the degree of randomness in a set
of characters. For JavaScript files, the standard entropy
is usually 4.75, but after the process of minification or
obfuscation, the entropy of a file tends to increase to
around 5.1. By analyzing the entropy of a file using
Shannon’s formula [10], we can increase the probability
of identifying obfuscated or minified code. The formula
for calculating entropy is as follows:

H(X) = −
∑

p(X) log p(X)

The next three parameters analyze the word sizes in
the code and compare them to word sizes normally found
in source code files. After minification and obfuscation,
many spaces, tabs, and other delimiters are removed from
the code, resulting in larger words than in the source file.
Following this logic also means that the average word sizes
become larger as the word separators are removed. One
problem that was encountered with this logic was that very
small files can have large average word sizes, resulting in
false positives. For this reason, the "largest word compared
to the whole file" parameter was added. The last parameter
contributes to the security index when the file size exceeds
a certain threshold, as it was observed that larger files
tend to be obfuscated, since JavaScript libraries do not
usually exceed this threshold. For each parameter, an
integer variable in the code would be incremented by 1
or 2, depending on the threshold value of that parameter.
At the end of the classification, if the value is 4 or higher,
the JavaScript is classified as minified or obfuscated. The
threshold values for increasing the integer variable can be
found at TABLE 1.

After separating the source code JavaScript from the
obfuscated and minified JavaScript, the second round of
classification begins, separating obfuscated and minified
JavaScript. In the second round, a similar approach is
taken as in the first round, but different regular expressions
(regexes) are used and the thresholds for other parameters
are adjusted to better distinguish between minified and
obfuscated JavaScript code. This allows for a more accu-
rate separation of the two types of code during analysis.
Some types of obfuscation produce an exceptionally low
entropy value, so a new threshold has been introduced
when the entropy is below 3 to classify JavaScript as
obfuscated. The regexes written for obfuscation detection
are very specialized to the examples acquired during the
research for the implementation of the software tool. In
JavaScript, the eval() function is used to execute code
written as a string. Some obfuscation tools may leave a
signature such as "eval(function(p,a,c,k,e,r))" as a hint or
indicator of deobfuscation. This signature can be used by
analysts to identify and understand obfuscated code, as it
often indicates the presence of code that is dynamically
executed with eval(). Hexadecimal values can also be
found in obfuscated code to change the values within the
code without changing the values. This is not done in
minification because it only increases the size of the code
and does not increase the execution speed of the code.

The regex for detecting hexadecimal values in the code
can also be found below.

"eval\(function \ (p, a, c, k, e, r\)”
"\b(0x[−fA− F]+) \ b”

V. EXPERIMENTS

The developed software tool was implemented in
Python on a sample set of JavaScript libraries included
in the Croatian web space. The source of the JavaScript
libraries should not influence the written regexes because
they were written according to commonly known methods
of minification and obfuscation described in the previous
two chapters. Only individual JavaScript libraries were
used, as they were collected by their hash value. The tool is
designed as a service that retrieves URL addresses from
a database and retrieves their content using the Python
request library. Once the content is retrieved, it is analyzed
using six parameters as described in the previous chapter.
The security index variable is then used to determine the
type of the library based on the final index value.

Applying the software tool to a large number of
JavaScript libraries revealed a significant flaw in the
implemented solution. Despite its accuracy in detecting
various forms of obfuscation, the solution suffered from a
critical performance issue: catastrophic backtracking [11].
This problem occurs when a regular expression takes an
exponential amount of time to match a string, resulting in
a dramatic increase in processing time.

The cause of catastrophic backtracking was attributed
to the use of complex regular expressions designed for
a wide range of obfuscation techniques. However, these
regular expressions also tended to match large amounts of
irrelevant data, resulting in a large number of false positive
matches. This in turn led to an exponential increase in the
processing time required to match the regular expressions,
resulting in catastrophic backtracking. One approach to
solving this problem is to implement a timer during code
processing or to skip very large files, since such files are
more likely to be obfuscated. In such cases, only semantic
and entropy analysis can be performed on these examples
to optimize processing time. On an Intel(R) Core(TM)
i5-1035G4 CPU @ 1.10GHz 1.50 GHz processor, the
average processing speed for each sample was about half a
second. However, for samples affected by the catastrophic
backtracking problem, the processing time increased to
five to ten minutes, resulting in slower classification.

The final test was performed on a set of 204842
JavaScript libraries crawled from the Croatian web space.
The choice of the breakpoint for the security index had
a large impact on the occurrence of false positives and
false negatives when classifying libraries as obfuscated or
minified. Selecting an appropriate breakpoint is critical to
achieving accurate results and minimizing the occurrence
of misclassification. In the first iterations of the tool, a
value of 3 was used as the breakpoint for the classification
security index, and there were no thresholds at which the
security index would increase by 2. Using this logic, the

MIPRO 2023/ISS 1445

TABLE I: Security index increase table

Increase by 1 Increase by 2
Regex For each hit regex

Entropy Bigger than 5.05 Bigger than 5.3
Biggest word size Bigger than 200 Bigger than 350
Average word size Bigger than 11 Bigger than 45

Largest word compared to the whole file Bigger than 10% of the whole file
File size Bigger than 1000000

program contained a large number of false positives for
source code JavaScripts that were classified as minified.
If the analyzed library code contained an extremely long
string, a function, or other built-in tools such as regex,
these parts of the code contained very long amounts of
text without spaces that would increase the security index
by two in the case of false positives.

Within the libraries tested, there were also those that
were so small that their largest word was 10 percent or
more of the total size of the library, which increased the
security index by one. Combining these two cases, the file
is classified as obfuscated or minified, even though it is a
source code library.

The tool proved to be better than manual classification
in some cases. In certain cases where the code is so
long that manual classification is difficult, the regexes
were able to detect small functions that are obfuscated
or minified and increase the security index, increasing the
likelihood that the library will be classified as minified
or obfuscated. These obfuscated functions in source code
libraries usually contain know-how secrets or malicious
functions that developers try to hide.

In this study, we present the results of a comprehensive
analysis of a large sample set consisting of 204,842 ran-
domly selected individual libraries. Our analysis revealed
that a significant proportion of the samples were in either
minified or source code format, while the proportion of
obfuscated code was only 2% of the total set of examples.
It should be noted, however, that the analyzed dataset
was subject to potential bias because many identical files
with the same hash value were treated as a single sample.
Therefore, it is plausible that the actual number of minified
files in the Croatian web space could be even higher
than found in our analysis. This is especially true for
commonly used libraries such as the popular JavaScript
library jQuery, which may have the same hash value on
different websites, leading to a possible discrepancy in the
data. In summary, our results provide valuable insights
into the prevalence of minification in the Croatian web as
well as the prevalence of obfuscation in software libraries.
This information could support the development of more
effective tools for code analysis and optimization. The
results are visually represented in the pie chart below.

After the experiment was completed, a study of the
parameters of the classification system was performed. The
entropy of the three file types was significantly different,
with obfuscated code having the highest entropy of 5.51,
followed by minified code at 5.23, and finally source

Fig. 2: Experiment results

code with an average entropy of 4.82. After manually
analyzing some files that had an entropy of 5.3 or higher
but were classified as source code files, it was clear that
although the software had classified the files correctly, the
files were written in such an ambiguous manner that the
entropy was unusually high. The author of the code used
few spaces, tabs, and new lines, and did not write the
code in a way that made it easy to read, which increased
its entropy. The code was also clearly not minified or
obfuscated, as it followed other coding practices, such as
clear and precise variable names, that are not followed in
obfuscation or minification. When looking at the length
of the longest word, it was found that the average length
was 156 characters for source code, 2810 characters for
minified code, and 18428 characters for obfuscated code.
However, when analyzing the average word lengths, it was
found that source code files had a length of 10 characters,
minified files 116, and obfuscated files 69 characters.
Although obfuscated files have a much longer largest
word, the average word is shorter than the average minified
word. One reason for this could be some functionality that
creates very long words that are used in obfuscation but
not in minification.

Some of the possible 3-pair parameters were examined
for all file types. For source code files with entropy greater
than 5.3, longest word size greater than 350, and average
word size greater than 45, 2229 files were found. The best
combination for minified files was entropy between 5.05
and 5.3, biggest word size greater than 350, and average
word size greater than 45 with 20762 file matches. The
combination with the most samples for obfuscated files
was the same as for source code files, but there were 1170
obfuscated files.

Overall, the study provides valuable insight into the

1446 MIPRO 2023/ISS

characteristics of source code, minified code, and obfus-
cated code, as well as parameters that can be used for
effective classification. These insights can be used to im-
prove the performance and accuracy of code classification
systems, leading to better detection of such methods.

VI. DISCUSSION

The results of our study show that the implemented
obfuscated JavaScript detection software tool effectively
identifies the different types of code transformations that
occur in software libraries. The results show that 45%
of the libraries analyzed in the study were source code
libraries, 53% were minified, and 2% were obfuscated.

The results are consistent with the expected trend that
a significant portion of software libraries are minified, as
minification is a widely used technique to improve the
performance and security of software code. Nevertheless,
the relatively low incidence of obfuscated libraries is un-
expected, considering that obfuscation is also an important
technique for bolstering software security and can be used
for both legitimate and malicious purposes. It is important
to conclude that even if obfuscation does not occupy a
large portion of the JavaScript library ecosystem, even
the 2% of these libraries can do great harm if they are
malicious and will not be detected if not protected against.

It is important to note that the results of our study are
specific to the dataset and software libraries analyzed, and
may not be representative of the overall distribution of
minified and obfuscated code in real-world applications.
Nevertheless, these results provide valuable insights into
the state of software security and the prevalence of various
code transformation techniques.

The results of our study highlight the importance of
using code transformation detection tools, as this can
help identify vulnerabilities and improve the security of
software applications. Our study also highlights the need
to continue research on minification and obfuscation de-
tection as these techniques continue to evolve and new
methods emerge.

In summary, the results of our study demonstrate the
effectiveness of the software tool for detecting minified
and obfuscated JavaScript and provide valuable insight
into the state of software security and the prevalence of
various code transformation techniques. These results can
inform future research on minification and obfuscation
detection and be used to improve the security of software
applications.

VII. CONCLUSION & FUTURE WORK

Obfuscation is the deliberate act of reshaping something
so that it is harder to understand. It is used to keep
secrets such as important code functions and to prevent
the detection of malicious code. Minification involves
reducing the amount of code, which is often used when
implementing web pages and script files. Obfuscation and
minification are two very similar processes that use a large
amount of the same methods in their implementations.

Classifying obfuscated, minified, and source code li-
braries by hand is a straightforward but time-consuming
process. This is because obfuscated libraries are on aver-
age more complex and therefore larger. It has been shown
that using methods that examine word size and similar
parameters in addition to regex and entropy provides a
favorable result. The developed tool also speeds up the
classification of libraries and confirms the success of
the detection with the chosen combination of parameters.
Further development of the tool would allow even more
accurate detection of obfuscated and minified libraries
by introducing new and better detection parameters. A
limitation of using regex-based approaches is that they are
inflexible and can only detect a fixed set of minification
and obfuscation patterns. One possible way to mitigate
this limitation is to use a machine learning approach,
which could be more flexible in detecting a wider range
of minification and obfuscation patterns.

The developed software tool has demonstrated its po-
tential in accelerating the classification of source code,
minified and obfuscated JavaScript. However, there is still
room for improvement, such as exploring the use of ma-
chine learning-based approaches with additional detection
parameters or better breakpoint adaptations for the existing
ones to further increase the accuracy and efficiency of the
tool.

REFERENCES

[1] S. Shea, “Cybersecurity,” https://www.techtarget.com/
searchsecurity/definition/cybersecurity, accessed on April 2.,
2023.

[2] A. Alazab, A. Khraisat, M. Alazab, and S. Singh, “Detection of
obfuscated malicious javascript code,” Future Internet, vol. 14,
no. 8, p. 217, 2022.

[3] “Stack overflow developer survey 2022,” https://survey.
stackoverflow.co/2022/#technology, accessed on April 2., 2023.

[4] W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation techniques
in malicious javascript code: A measurement study,” in 2012 7th
International Conference on Malicious and Unwanted Software.
IEEE, 2012, pp. 9–16.

[5] Y. Choi, T. Kim, S. Choi, and C. Lee, “Automatic detection
for javascript obfuscation attacks in web pages through string
pattern analysis,” in Future Generation Information Technology:
First International Conference, FGIT 2009, Jeju Island, Korea,
December 10-12, 2009. Proceedings 1. Springer, 2009, pp. 160–
172.

[6] S. Aebersold, K. Kryszczuk, S. Paganoni, B. Tellenbach, and
T. Trowbridge, “Detecting obfuscated javascripts using machine
learning,” in ICIMP 2016 the Eleventh International Conference
on Internet Monitoring and Protection, Valencia, Spain, 22-26 May
2016, vol. 1. Curran Associates, 2016, pp. 11–17.

[7] N. Malviya, “Simple malware obfuscation tech-
niques,” https://resources.infosecinstitute.com/topic/
simple-malware-obfuscation-techniques/, accessed March 14.
2023.

[8] Imperva, “Minification,” https://www.imperva.com/learn/
performance/minification/.

[9] “Use a source map,” https://firefox-source-docs.mozilla.org/
devtools-user/debugger/how_to/use_a_source_map/index.html,
[Accessed: March 3. 2023.].

[10] E. Chiu, J. Lin, B. McFerron, N. Petigara, and S. Seshasai, “Math-
ematical theory of claude shannon. a study of the style and context
of his work up to the genesis of information theory,” submitted for
The Structure of Engineering Revolutions (MIT course 6.933 J/STS.
420J), nd, 2018.

[11] J. Goyvaerts, “Catastrophic backtracking,” https://www.
regular-expressions.info/catastrophic.html, accessed March 12.
2023.

MIPRO 2023/ISS 1447

