
Detecting JavaScript libraries using identifiers
and hashes

Saša Lončarević, Bruno Skendrović, Ivan Kovačević, Stjepan Groš
University of Zagreb Faculty of Electrical Engineering and Computing

Zagreb, Croatia
{sasa.loncarevic, bruno.skendrovic, ivan.kovacevic, stjepan.gros}@fer.hr

Abstract—The web is a widespread platform for data
exchange and service delivery on which many depend. Due to
the high demand for website creation, methods are offered
that provide more time-efficient design and programming.
One of them is using JavaScript libraries, which can intro-
duce vulnerabilities into web applications. Because of the
sheer number of websites, as well as libraries and their
vulnerabilities, it is difficult to maintain website security.
There is a need to create tools that will automatically and
proactively search for vulnerable libraries and enable timely
remediation. This paper deals with the aforementioned prob-
lem and provides an insight into the implemented solution.
The paper describes how JavaScript libraries are obtained
and used, and proposes multiple methods for detecting them.
It also presents the technical side of the implementation,
as well as the results obtained by detecting libraries on a
set of web pages from the Croatian web space. Finally, we
discuss the observed distribution of popular libraries and
their vulnerabilities, as well as the limitations of the proposed
implementation, and offer potential solutions with the aim
of improving the project.

Keywords—JavaScript libraries detection, vulnerabilities,
Croatian web space, cybersecurity

I. INTRODUCTION

The World Wide Web represents a large collection of
websites that facilitate the exchange of information and
provide important services to both companies and individ-
uals. To make a website more dynamic and highly func-
tional, developers use client-side JavaScript. Advanced
features are commonly implemented through the use of
JavaScript libraries. It is a modern solution that speeds
up development of websites, but carelessness can give
attackers an opportunity to abuse them.

For example, due to maintenance failures, websites
can end up with out of date, and potentially vulnerable
libraries. Vulnerabilities can be used to target both the
websites and end users. Some of those vulnerabilities in-
clude cross-site scripting, input validation, stealing session
data. Naturally, the need arises for a solution that will raise
the level of security and prevent attackers from performing
unwanted actions.

Therefore, the aim of this paper is to help and provide
such tool, implemented in a way to detect JavaScript
libraries using automated detection methods. Knowing
the name and version of a library is valuable because
it consequently gives the information about known vul-
nerabilities for the given library. Such tool would enable

proactive action, so unsecure websites could be patched
before potential attackers take advantage of them.

This paper is organized as follows. The introductory
Section of this paper is followed by related research in
Section II, where other papers and projects are discussed.
Section III deals with the general understanding of using
JavaScript libraries. In Section IV the theory of JavaScript
library detection methods is presented. Section V describes
the technical side of developing a system for detecting
JavaScript libraries. In Section VI the conducted experi-
ments and testing is described. Section VII contains the
discussion about theoretical and practical limitations of
implemented system. The paper ends with the conclusion
of the topic and possible future work insights.

II. RELATED WORK

While there are many prior studies about vulnerability
detection, which focus on pure JavaScript code, such as
Kluban et al. [1], Guarnieri et al. [2] and Shar et al. [3],
there are not many that deal with detecting JavaScript
libraries which are known to be vulnerable. Such approach
could be of greater help in website security.

T. Lauinger et al. [4] conducted a comprehensive study
of JavaScript library usage across popular web sites. While
giving impressive insights about vulnerable libraries, some
problems still arise during detection. Minimal modifi-
cations in library code, especially in minified versions,
hinders detection. The source of the problem is attributed
to many different, decentralized sources for obtaining
JavaScript libraries. In comparison this paper demonstrates
a way to handle minimal modifications in libraries and
speed up detection.

Retire.js [5] is a project that deals with a similar
matter. It is a tool that uses multiple static and dynamic
methods to detect JavaScript libraries used in a website. It
uses network traffic monitoring and regular expressions to
detect libraries while this paper focuses on methods which
are purely static. Another tool, in a form of a browser
extension, is Library Detector For Chrome [6]. Strictly
dynamic methods are used, detection is carried out by
looking for known attributes of JavaScript libraries. This
tool does not provide information about vulnerabilities.
Content management system detector, Wappalyzer [7],
can also detect JavaScript libraries by analyzing data
from HTTP response or headers. Data gathered by afore-

1436 MIPRO 2023/ISS



mentioned tools, as well as our proposed solution, can
be of great essence in developing website vulnerability
prediction models such as [8].

III. BACKGROUND

JavaScript is one of the most popular programming
languages for creating web applications. Research from
2022, conducted on more than 80 thousand respondents,
tells how over 65% of software engineers actively use it
[9]. Frequent use of client-side JavaScript led to creation
of libraries. Libraries represent a set of ready-made code
that provides certain functionality, it is also sufficiently
generalised so it can be used on larger set of problems.
Some of them are built to access the HTML DOM
(Document Object Model) [10] and introduce changes to it
dynamically in specific situations. For example one of the
most popular JavaScript libraries is jQuery [11], it allows
developers to manipulate DOM and handle user-triggered
events in a simple and fast way. Alongside jQuery, popular
libraries are Bootstrap, Modernizr, React, Vue [12]. Apart
from libraries, their plugins are also important because
they can introduce vulnerabilities to websites as well. Plu-
gins provide an additional functionality without requiring
to modify the library. Due to flexibility they offer, they are
widely used.

JavaScript libraries are not organized nor available in
a centralized repository. The reason for this is that the
libraries are mostly open source and made by different
vendors, so owners publish them on different platforms.
But many libraries are available on CDNs (Content deliv-
ery networks) [13]. CDNs are groups of servers, spread
out over many locations, which store duplicate copies of
libraries so requests could be answered as fast as possible.
Common way to implement JavaScript libraries in web-
sites is by using HTML tags like <script src="">
and referencing a link to CDN resource.

Despite their popularity and widespread use, JavaScript
libraries are susceptible to vulnerabilities. JavaScript is
not necessarily an unsecure programming language, but
with careless organization of code and disregard for good
security practices the code may contain flaws that attackers
can exploit. Research conducted on a set of popular web-
sites has shown that more than 50% of websites contain at
least one known vulnerability due to the use of unpatched
JavaScript libraries [14]. Open Web Application Security
Project (OWASP) publishes 10 most common web vulner-
abilities each year, and some of them are also represented
by JavaScript libraries [15]. A real example can be found
in the jQuery library up to version 1.9.0 which provides
load() function without properly validating input, which
means executing JavaScript code is possible by passing it
in a script tag [16].

IV. DETECTING JAVASCRIPT LIBRARIES

JavaScript libraries can be used in multiple ways, in
different forms and thus different approaches can be used
to detect them. Alongside fetching libraries from CDNs,

they can also be stored on the same server as a website.
The library itself can be in a certain form, depending on
the need. Apart from the differences in versions there are
differences in the way the library is packaged, specifically
there are uncompressed, slim and minified types. The
types are based on the idea of compressing code to make
transfers over the network faster and reduce loading times.
In production, minified code is preferred, i.e. code from
which comments, empty characters and unused code are
deleted in an automated way, and names of variables and
functions are shortened [17].

A rough division in detection refers to static and dy-
namic methods. In general, static analysis refers to the
study of source code without its execution, so in this case
detection takes place without code execution. The method
is often used in malicious code analysis because it is
considered to be a safer approach than executing the code.
On the other hand dynamic detection refers to recognition
of code by its execution. Certain objects that the program
creates and functions that it runs can be used to identify
the library. What makes this type of detection possible is
the absence of namespaces in JavaScript. Consequently,
objects and functions are available globally in the code
and can be called at runtime. Combination of recognized
elements can be used to determine which library it is.

The paper implements two approaches of static
JavaScript library detection. Those are detection by cryp-
tographic hashes and detection by identifiers. A hash
function is any function that takes an input string of
arbitrary length and maps it to fixed length value. The
idea of using hash functions comes from the need of
truncating the strings being compared, specifically, instead
of comparing the entire code of the JavaScript libraries,
hash digests can be compared to see if they match. A
prerequisite for performing detection by cryptographic
hashes is a collection that contains all required JavaScript
libraries and their calculated hashes. Then, for an unknown
library we can compute a hash and look for a match in the
collection. An assumption for using this type of detection
is that the libraries are used in their original form, without
any modifications. Reason for this is that hash functions
don’t tolerate even slight changes. This might be seen as
a limitation, but procedures are implemented for reducing
libraries to their canonical form, so slight modifications
are not taken into account.

An alternative approach, in static detection, is detec-
tion by identifiers. It refers to extracting keywords from
JavaScript code, where the keywords are identifier tokens
obtained by lexical analysis. While collecting identifiers
of a library it is important to take into account only
those identifiers that do not appear in other libraries,
because then they would not be unique, neither would
they identify a given library. The assumption is that the
libraries are relatively long scripts and that there are many
identifiers, therefore the detection will be proportionally
reliable. More identifiers means more diversity, which in
turn suggest less chance of falsely detecting libraries.

MIPRO 2023/ISS 1437



The same can not be said for library plugins, because
their code is often relatively short. For this reason, only
libraries and plugins with significant amount of identifiers
are capable of being reliably detected. To prevent false
positive detections, libraries and plugins with short source
codes are discarded.

This method, by its nature, is not resistant to situations
where arbitrary JavaScript code that contains a large
number of identifiers of some known library, is falsely
detected as a known library. The disadvantage of detection
by identifiers is the computational complexity. For larger
library collections with many identifiers that must be
compared to a multitude of unknown library identifiers
a combinatorial explosion occurs. A large number of
seemingly simple operations can drastically slow down
detection, so it was necessary to consider more advanced
measures during implementation.

V. DEVELOPING SYSTEM FOR DETECTION

Developed software solution collects JavaScript libraries
from CDN servers and builds a collection which serves
as a basis for detecting unknown libraries. The same
collection is supplemented with computed hashes and
additional information about the libraries. The program
implements three static detection mechanisms which are
optimized and run on multiple processor threads.

The program is divided into units according to the
functions performed. The system architecture and com-
munication stakeholders overview is shown in Fig. 1.

Fig. 1: System architecture components

While creating or updating the database, program com-
municates with CDN server and obtains library source
codes, which are then stored and processed. The second
part of communication is with FER server which provides
access to a database of crawled web pages and used
JavaScript libraries.

The database itself is based on 26 most used JavaScript
libraries that have, or have had in past versions, publicly
known vulnerabilities [5]. What enables automated library

code fetching is a web scraper. It is programmed to retrieve
all search results from CDNs for a given query, query
being a library name. It collects all libraries and plugins re-
lated to the selected libraries and also all their versions and
subtypes. All retrieved data is processed sequentially, for
each request library name, type and version are extracted.
Version semantics used is major.minor.patch, while
types are organized by level of compression, so there
are uncompressed, slim and minified types. Also, cryp-
tographic hash digest is calcualted in advance to speed
up the algorithm and remove redundant computation. If
available, CVE references about library vulnerabilites are
associated. This process generates a document as shown
in Fig. 2.

Fig. 2: Collection document example

The created collection is sufficient to perform a basic
type of detection where only cryptographic hashes of
libraries are compared, but for performing more advanced
methods, it is necessary to further process the library data.
To solve the problem of minimal changes in JavaScript
libraries, they need to be reduced to a canonical form,
i.e. parts of library code that are not crucial to the code
itself are ignored. Precisely, all spaces, tabs, new lines
and all comments are deleted. A new hash is computed
from processed code and stored in the database. The
same procedure is repeated on the unknown library during
detection, for both sides to be equally reduced.

Furthermore, it is necessary to prepare data for detection
by identifiers. The procedure includes tokenization of the
library’s source code, where identifiers are extracted by
lexical analysis. These include all the names of variables,
functions, classes and everything that identifies a certain
object and is not specified by the syntax of the language
itself. The resulting list of identifiers for each library must
be compared to the lists of identifiers of other libraries
in the database to remove all that appear in multiple
different libraries. The goal is to keep only those iden-
tifiers that are truly unique to a given library. The entire
described process of data collection and processing results
in a database which contains 34 thousand documents. All
available libraries, plugins, all their types, subtypes and
version of multiple development stages are included.

1438 MIPRO 2023/ISS



The three static detection mechanisms extend each other
and thus increase the number of detected libraries. The
first method takes a cryptographic hash from an unknown
library and searches for the same one in a collection
of JavaScript libraries. Finding a match means that the
unkown library was successfully identified, and has been
used in its original form without any changes. This method
guarantees absolutely accurate detection, that is, it guar-
antees that no false positive detections will occur. The
amount of detected libraries depends on how complete
the database is, meaning the more instances of libraries
from different sources are contained the more libraries
are going to be detected. The reason for this is that
the various services which offer JavaScript libraries make
slight changes, so the cryptographic hashes for virtually
the same library will differ.

The second method refers to detecting libraries by using
cryptographic hashes, but with implemented reduction to
canonical form. It is an approach that alleviates the prob-
lem of minimal changes in the source code of the libraries.
Unknown libraries go through the same procedure of
reduction as libraries in the database. This method covers
all the results generated by the first method, meaning, it
will identify all the libraries as would the first method and
more. The implementation and execution of this method
comes with the price of complexity and longer runtime.

The third method is based on textual search with the aim
of finding identifiers that determine individual libraries.
By conducting lexical analysis on the unknown library
identifiers are extracted and then the database is searched
for matches. Whether the library is detected or not is
dependent on the ratio of the number of detected identifiers
to the total number of identifiers for a given library.
Because of this, the method can not guarantee that false
positive detection will not happen. In theory, it is possible
that an unrelated JavaScript code contains all the identifiers
of a library, and because of it, gets positively detected
while it should not have been. During testing no such
cases were observed. Results will show that this method
works because developers follow good practices and assign
identifiers that are meaningful and specific enough so
false positives rarely occur. Again, due to the increase in
complexity, this algorithm comes with longer runtime than
the first two.

VI. EXPERIMENTS

The experiment was conducted on 5 million documents
collected by the web crawler from Croatian web space,
which was part of previously conducted research [18].
The dataset consists of 93.03% of HTML documents,
3.41% JavaScript files, 1.98% CSS files, 1.58% other types
of files. This file type distribution does not necessarily
represent the actual distribution of file types on the web.
It is crawler’s fetching mechanism that causes it. Further
testing is conducted only on JavaScript files, which there
are over 170000 that make up the listed 3.41%.

While the developed tool is intended to analyze
JavaScript libraries exclusively, besides the libraries, the
dataset also contains a significant share of bespoke
JavaScript code, i.e. code that is written for a specific
website. There is currently no solution to differentiate
libraries from other scripts, therefore the experiment is
carried out over the entire dataset.

By performing the three detection methods, there were
966 libraries detected using the first method by compar-
ing cryptographic hashes. Secondly, 2870 libraries were
detected by reducing them to canonical form and then
comparing cryptographic hashes. Thirdly, 16097 libraries
were detected using detection by identifiers. As expected,
the first method returns the least amount of results. Some
of the reasons are minimal changes in the library code and
the incompleteness of the database due to the large number
of sources for obtaining libraries, where different providers
make changes to the original libraries. On the other hand,
second method with reduction to canonical form returns
almost three times more detections, which proves that the
assumed minimal changes are indeed present and frequent.
A further assumption is that there are even more libraries
with changes that could not be detected, however, there
is no heruistic method which would provide information
on their quantity. Lastly, the third method, relying on
identifiers gives almost six times more positive detections
than previous method. The advantage of this method is
that minimal changes are irrelevant as long as identifiers
are unchanged. The method has even higher potential for
solving the problem of minimal changes. On the other
hand, this method has the disadvantage that the exact
versions of libraries can not be reliably determined, since
not many identifiers are changed between versions.

The detection results show that certain libraries are more
present than others. Fig. 3 shows the distribution of the 25
most represented libraries that were detected by using the
second method with reduction to a common form.

Fig. 3: Most represented libraries detected by reduction
to common form and hash comparison

MIPRO 2023/ISS 1439



An important note is that minified libraries are used
more often. This confirms the assumption from a paper on
a similar topic [4] where it was the minified libraries that
inhibited detection. Minification poses another problem in
detection. Minification can be done by using different tools
which will produce different minified versions of the same
code, but even the same tool can, while shortening variable
names, permute the names and thus brake detection.

Furthermore, detection by identifiers gives a slightly dif-
ferent distribution of detected libraries, the main reason for
which is the limited set of data that serve as the basis for
this type of detection. The method of extracting identifiers
is suitable only for certain libraries, it is necessary that
they have a considerable amount of the identifiers and that
those are not generic names so that they can truly identify
a given library. Fig. 4 shows a summary distribution of
the most frequent libraries.

Fig. 4: Most frequent libraries detected by identifiers

The most recognized libraries throughout all methods
of detection are jQuery and jQuery plugins. The accuracy
of this distribution is also backed by research done on a
selected set of websites [12]. It is confirmed that jQuery
is certainly the most represented, followed by Bootstrap,
Modernizr, React, Backbone. Unfortunately, past versions
of these libraries have known vulnerabilities. Among
the detected libraries, a non-negligible part of those has
vulnerability records in the NVD database. Out of 966
libraries, detected using the first method, 165 (17.08%)
of them are vulnerable. Out of 2870 libraries, detected
using the second method, 636 (22.16%) is vulnerable.
Third method does not provide reliable information about
vulnerabilities because it can not determine the library
version. Because of this the results rely on cryptographic
hash detections. It turns out that jQuery is the most
common vulnerable JavaScript library, specifically 80.82%
of detected vulnerable libraries are versions of jQuery. A
probable cause that lead to this result is that jQuery has
over 80 publicly known vulnerabilities according to the
NVD database [19], and only the last two versions of the
library are considered secure, while all previous versions
were proven to be vulnerable.

VII. DISCUSSION

The implemented solution proves the validity of the the-
ory in JavaScript library detection, but in practice certain
limitations are imposed. To begin with, detection depends
on how complete the database is, only those libraries that
are contained in the database can be detected. The root
of this limitation comes from the nature of hash functions
that require identical inputs for detection to work. This
would not be as big of a problem if JavaScript libraries
were systematically organized on an official, centralized
server. At the same time, all library instances would
need to be identical, without minimal modifications. This
is not the case, therefore the database should contain
libraries collected from all platforms that are commonly
used. Furthermore, the problem of minimal modifications
introduced on the user side is algorithmically unsolv-
able. While some user based modifications follow certain
patterns, there are plenty of unpredictable changes that
are not easily extracted from library code. This problem
passes on to detection by identifiers, even though this
type of detection is more resilient to modifications, it still
produced some false positive results. The solution was to
declare libraries as detected only when they had a high
percentage of matching identifiers. The percentage value
was tuned until no false positive detections occurred, while
giving the most results. Another limitation is the lack
of organized information about vulnerabilities. Although
many organizations invest a lot of effort to make vul-
nerabilities publicly known and available, the information
is not as complete as such program would require. The
implemented solution solves the mentioned limitations to
a certain extent, but still leaves room for improvement.

VIII. CONCLUSION

The World Wide Web is of great importance in today’s
world and there is a need to raise its level of security.
Vulnerabilities are proven to exist and are introduced
in several ways, one of which is the use of vulnerable
JavaScript libraries. A software solution that could detect
libraries and determine whether they are vulnerable would
be of great help. This paper deals with a static detection
approach that detects JavaScript libraries based on com-
paring cryptographic hashes and identifiers. Experiments
carried over the data from Croatian web space shows that
many of the popular libraries are being used, with minified
ones being preferred.

Detection results greatly improve when methods for
resolving the problem of minimal modifications in
JavaScript library code are implemented. First detection
method is capable of detecting all the libraries that are used
as-is. Second detection method implements reduction to a
canonical form, and detects libraries despite minimal mod-
ifications. Third method is based on comparing identifiers
and detects a larger share of libraries with greater amount
of modifications. The implementation itself encounters
certain limitations such as modifications in the library code
and problems of obtaining all the necessary data, but to a

1440 MIPRO 2023/ISS



certain extent it successfully solves them. To improve the
solution, combining different detection methods and using
hybrid approaches is necessary.

REFERENCES

[1] M. Kluban, M. Mannan, and A. Youssef, “On measuring vulnerable
javascript functions in the wild,” in Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security,
2022, pp. 917–930.

[2] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and
R. Berg, “Saving the world wide web from vulnerable javascript,”
in Proceedings of the 2011 International Symposium on Software
Testing and Analysis, 2011, pp. 177–187.

[3] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web application
vulnerability prediction using hybrid program analysis and machine
learning,” IEEE Transactions on dependable and secure computing,
vol. 12, no. 6, pp. 688–707, 2014.

[4] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson,
and E. Kirda, “Thou shalt not depend on me: Analysing the use of
outdated javascript libraries on the web,” Communications of the
ACM, vol. 61, no. 6, pp. 41–47, 2018.

[5] “GitHub - RetireJS/retire.js: scanner detecting the use of JavaScript
libraries with known vulnerabilities.” https://github.com/retirejs/
retire.js/, [Accessed 13-Jan-2023].

[6] J. Michel, “Library detector for chrome,” https://github.com/
johnmichel/Library-Detector-for-Chrome, [Accessed 13-Jan-2023].

[7] “Wappalyzer - identify technologies on websites,” https://www.
wappalyzer.com/, [Accessed 13-Jan-2023].

[8] I. Kovacevic, M. Marovic, S. Gros, and M. Vukovic, “Predict-
ing vulnerabilities in web applications based on website security
model,” in 2022 International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM). IEEE, 2022,
pp. 1–6.

[9] L. S. Vailshery, “Most used languages among
software developers globally 2022,” Aug 2022.
[Online]. Available: https://www.statista.com/statistics/793628/
worldwide-developer-survey-most-used-languages/

[10] “Dom (document object model) - mdn web docs glossary,”
[Accessed 13-Jan-2023]. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Glossary/DOM

[11] “jquery,” [Accessed 14-Jan-2023]. [Online]. Available: https:
//jquery.com/

[12] “Usage statistics of javascript libraries for websites,” [Accessed 14-
Jan-2023]. [Online]. Available: https://w3techs.com/technologies/
overview/javascript_library

[13] “Cdn (content delivery network) - mdn web docs glossary,”
[Accessed 13-Jan-2023]. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Glossary/CDN

[14] T. Kadlec, “Open source security report - 77%
of 433,000 sites use vulnerable javascript libraries,”
Nov 2017, [Accessed 13-Jan-2023]. [Online]. Available:
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/

[15] “Owasp top ten,” [Accessed 14-Jan-2023]. [Online]. Available:
https://owasp.org/www-project-top-ten/

[16] “Cve security vulnerability database - cve-2020-7656,” [Accessed
13-Jan-2023]. [Online]. Available: https://www.cvedetails.com/cve/
CVE-2020-7656/

[17] “Minification - mdn web docs glossary,” [Accessed 13-Jan-
2023]. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Glossary/minification

[18] E. Stambuk, S. Gros, and M. Vukovic, “Analyzing web security
features using crawlers: Study of croatian web,” in 2021 16th In-
ternational Conference on Telecommunications (ConTEL). IEEE,
2021, pp. 142–145.

[19] NVD, “National vulnerability database jquery,” [Accessed
17-Jan-2023]. [Online]. Available: https://nvd.nist.gov/vuln/search/
results?form_type=Basic&results_type=overview&query=jquery&
search_type=all&isCpeNameSearch=false

MIPRO 2023/ISS 1441




