
JavaScript Library Version Detection
Vilim Pagon∗, Bruno Skendrović†, Ivan Kovačević‡, Stjepan Groš§

University of Zagreb Faculty of Electrical Engineering and Computing
Zagreb, Croatia

Abstract—There are more than 1.6 billion websites today,
and almost every one of them uses JavaScript libraries.
Knowing that, it’s very important to show problems that
occur as a result of not paying enough attention to security,
such as using outdated versions of JavaScript libraries,
insecure libraries, and so on. This paper proposes an algo-
rithm for JavaScript library version detection. The algorithm
detects version of JavaScript libraries based on differences
between neighboring library versions. It’s designed in such
a way that it can be run periodically and automatically on a
server. The paper also presents results and efficiency of the
algorithm on a smaller set of data collected from the Croatian
Web space. The success of the algorithm in detecting the
correct version is about 50%, and the range of probable
versions is an additional 25%. From these results, i.e. the
detected versions, we found that the JavaScript libraries
used on the websites of the Croatian web space are not
regularly updated. Limitations and also possible potential
improvements to the algorithm are listed at the end of the
paper.

Keywords—JavaScript, version detection, cybersecurity,
Croatian web space

I. INTRODUCTION

Due to the simplicity of using the Internet, the concept
of security has become an essential part of the develop-
ment of software products that use the Internet as an access
and management medium. Vulnerabilities can occur at all
stages of the creation process of a software product. In
most cases, they are introduced unintentionally because
they are not given sufficient attention during development.
It is necessary to know what errors can occur in order to
prevent this problem. Likewise, it is useful in this area to
know how much damage bugs can do if they are abused,
what potential threats could exploit them, and how to
protect against said threats. An introduced vulnerability
must be eliminated as soon as it is discovered so that it
cannot be abused.

Security patches are one method of eliminating such
vulnerabilities. They are used to update systems, appli-
cations or software by inserting code to close or "patch"
security vulnerabilities. It is necessary to regularly update
the JavaScript libraries used by the website to reduce their
vulnerability and thus ensure the website’s security. The
mentioned practice should be standard for every developer,
but it turns out that this is not the case [1]. The article
shows how the number of requests for older versions of
the library decreases very little, if at all, after the new
version is released. Another part of the problem occurs
when a patch is released, but the developers do not update
the existing one, so the vulnerability in the code persists.

The aim of this paper is to present the developed
technique for detecting the vulnerability of the website,
i.e. the version of JavaScript libraries used by the website.

The paper starts with an introduction to the topic of
the paper, and then the next chapter titled Related Work
contains other papers and projects similar to this one. In
the third chapter, the main terms and techniques used in
the paper are introduced to facilitate the understanding of
the text. After that, the idea of the developed detection
method and its implementation are described in detail in
the chapters IV. and V. The Experiments chapter presents
the results of this detection method. The problems and lim-
itations of the implementation are presented in the chapter
VII. The last chapter is dedicated to final conclusions and
possible improvements in future papers.

II. RELATED WORK

Numerous scientific papers address the issue of static
vulnerability detection. Most papers use variations of
machine learning, deep networks, or a combination of
static and dynamic analysis for detection. Some examples
of scientific papers on this topic are Wang et al. [2] and
Russel et al. [3]. Unlike the aforementioned scientific
papers that focus on source code analysis of various
programming languages, the analysis in this paper is based
on JavaScript code. Papers that use vulnerability detection
methods in JavaScript are Tripp et al. [4], Guarnieri et al.
[5] and Kluban et al. [6]. This paper describes vulnerability
detection in the JavaScript library used based on libraries
with known vulnerabilities. Specifically, the developed
tool detects the version of the library and determines the
presence of one or more vulnerabilities based on some
known vulnerabilities in JavaScript libraries. This method
is performed based on the differences between neighboring
versions of the original libraries downloaded from known
CDN servers. Since this is a new method for detecting vul-
nerabilities in JavaScript libraries, it is difficult to compare
it to previous methods, as after an extensive search of pub-
lished papers, not a single paper was found that performs
detection using differences between neighboring versions.
Vulnerability detection usually uses some form of artificial
intelligence, machine learning, or dynamic analysis, which
is not the case in this paper. However, the obtained results,
which will be shown later, can be seen as successful and
show the whole method as potentially successful. There
are also Chrome extensions that analyze the JavaScript
libraries used on the current website, such as Wappalyzer
[7]. The JavaScript library vulnerability repository used

1430 MIPRO 2023/ISS



in this paper is the publicly available Retire.js [8]. This
is a project that has developed a command line scanner
that can be used to determine dependencies with known
vulnerabilities in a web application.

III. BACKGROUND

The detection method described in this paper is based on
static analysis. Static source code analysis is a method for
testing the source code of an application without executing
the code [9]. Static analysis involves observing how the
system, i.e., the solution, works.

The first two steps of JavaScript library version detec-
tion use hash values. The library hash value is a value
calculated based on the source code of that library and
passed to the function that calculates the cryptographic
hash value. The value returned by this function is unique
for each string. One of the functions used is the cryp-
tographic hash function SHA-256 [10] which returns a
unique value for each string.

The algorithm receives JavaScript code as input. It is
the source code of a JavaScript library. At the beginning,
the library and the version of the library were unknown,
so this library is called an unknown library.

In contrast, known libraries are original JavaScript
libraries downloaded from known CDN servers and used
as a reference for a specific library, i.e. its source code.

Modified libraries are libraries from which redundant
or non-functional parts of the code have been removed.
These may be blank lines, spaces, new lines, comments,
etc.

The third step uses identifiers to identify the library.
Library identifiers are any keywords, variable names,
function names, etc. that are characteristic of a particular
library and do not appear in any other library. They are
used to identify which library it is. They are selected
from known versions of JavaScript libraries by analyzing
their source codes and comparing them with each other to
determine the identifiers that are unique to each library.

When detecting the JavaScript library version, the pres-
ence of a large number of minified libraries should be
noted [11]. They pose a problem for detection because
the code appears only in several and often only in one
line. To solve this problem, reduction to a common form
(caconic form), i.e., deminification, is used.

The reduction to canonical form - deminification -
was performed using the Python library JSBeautifier [12].
Since minification detection was not performed, each
library was reduced to a common form, which solved the
problem of minimal differences between libraries, such as
blank lines or spaces. For the rest of the program, it was
assumed that all libraries were formatted the same and
ready for comparison.

IV. METHOD OF VERSION DETECTION

This paper is focused on static detection based on
the source code of an unknown JavaScript library. The

detection algorithm tries to find out which library and
version that source code belongs to. The tool receives
a JavaScript code as input for which the library version
needs to be determined. The output, i.e. the detection
result, is 10 versions of the library with the highest
percentage of detection. Once the library version has been
successfully determined, vulnerabilities can be searched in
a publicly available repository with a list of vulnerabilities.
It is a Retire.js [8] repository which contains a list of vul-
nerabilities for 26 of the most popular JavaScript libraries.
Vulnerabilities are described as parameters atOrAbove and
below that show the version in which the vulnerability
was discovered, that is, which is the last version where
this vulnerability is present. Detection was developed in
steps where each step is performed separately and in a
predetermined order. This paper discusses the fourth step
of detection, which requires the first three steps to be
completed for successful operation. These steps are shown
in Figure 1.

1) The first step of detection uses a comparison of the
hash value of each unknown library with the hash
values of known versions of the libraries in the local
database. The Library version is found if the hash
values match, otherwise continue with the second
step.

2) The comparison is done over modified libraries. The
libraries have been modified in such a way that the
removed lines of code do not affect the functionality
of the rest of the code. Some of them are comments,
empty lines, etc. The hash values of those modified
libraries are recalculated and the first step procedure
is repeated.

3) The third step is very important for detection. In
this step, library name detection is done based on
the identifiers. Identifiers are all keywords, variable
names, function names, etc., which are characteristic
of a certain library and do not appear in any other
library. Each library has its own list of identifiers that
are unique to it. The unknown library is compared
to that list of identifiers and the results show which
library it is with a certain percentage that indicates
certainty. The obtained results are stored in the local
database and used in the next step.

4) Previously obtained results are used in this step. For
detection in the fourth step, a database of known
versions of JavaScript library source codes was used.
This data was collected from a well-known CDN
server called cdnpkg [13] and saved in the database.
Before detection itself, it is necessary for database of
known JavaScript libraries to be supplemented with
the differences between their neighboring versions.
The differences are recorded locally in the old and
new lists in the database. The list named old contains
lines that were completely removed in the newer
version, while the list new indicates the lines that
were changed or completely added compared to the
version before. These differences are obtained using
the Python library difflib [14], which returns the

MIPRO 2023/ISS 1431



lines that are different between the two versions. In
order to detect the version faster, a combination of
the detected library name and the difference between
neighboring versions of that library was used.

Fig. 1: Steps of detection

Each subsequent detection step is more detailed and
determines the version of the unknown library more ac-
curately. Detection with hashes gives the most accurate
results but gives the least number of detections, while the
fourth step is less accurate but gives much more results
with the most accurate library version information.

A more detailed description of the fourth step is de-
scribed in the next chapter. Previously detected library’s
name was compared with the new lists of each version
of the library. The hit percentage is determined by the
ratio of the number of found lines to the total number
of lines in the new list. The detection results are also
recorded in the local database with other results. Based
on these results, it is possible to further continue with a
more detailed detection.

V. DEVELOPING A SYSTEM FOR DETECTION

A Python-based tool that automates the process was
developed in order to detect the version of an unknown
JavaScript library. The tool uses two MongoDB databases
described in the next paragraph.

Two MongoDB databases were used in the detection
process as can be seen in Figure 2. The first database
contains the data on which the detection is carried out.
This data was collected using a crawler in the laboratory
and contains data from the websites of the Croatian Web
space including HTML pages, JavaScript code used on
those pages and some additional data [15]. In the following
text, it will be called Database with crawled data. Second,
the database was used to store results and auxiliary data in
the process itself called Results database. Both databases

are located on the private server where the detection is
performed.

Fig. 2: Simplified structure of used databases

The first listed database, the database with crawled
data, primarily serves as a database of collected data
on which detection is performed, while the second one,
results database, contains the data necessary for all steps
of detection of an unknown library version. It also serves
to store the results of individual detection steps for the
purpose of further detection. The database with crawled
data contains two essential collections. The first is a
collection providing the source code that needs to be
analyzed and the second is linked to the first in order to
show which page it is about when the code is analyzed.
That is shown in Figure 3.

In the results database there is a collection containing
the results of all detections:

• standard detection with hash values
• modified detection with hash values
• detection by identifiers

A separate collection was created for the results of
detections. It was made due to the different structure of
the results.

There are also some auxiliary collections:

• URLs of known library versions
• codes of known versions of JavaScript libraries
• codes of known versions of JavaScript libraries -

modified
• a copy of the Retire.js repository - vulnerabilities
• identificators

Fig. 3: Collections in the database with crawled data

1432 MIPRO 2023/ISS



Auxiliary collections show importance in various detec-
tion situations. Such as URLs of known library versions,
so that subsequently the relevance of downloaded library
versions is determined. Also, for detection by identifiers
to be possible, it is necessary for those identifiers that
are characteristic of a particular library to be stored
somewhere. That collection contains lists of identifiers for
each library and a hash value that represents the reference
of the library to which the identifier detection result refers.

Each detection starts with a collection of known library
versions and their source code. This collection is required
at every step of discovery. It contains basic information
needed for any detection, such as name, file name, version,
release stage, type, hash, vulnerabilities, source code. The
linked collection used in modified hash detection with
hashes of known libraries is a collection containing the
hashes of modified libraries.

To be able to continue with other more detailed de-
tections, it’s necessary to store the intermediate detection
results in the database. All the results are in the aggregated
collection of the results of all detections, which is linked
to other collections as shown in Figure 2. It contains the
results of standard and modified detection and detection
using identifiers. The results are ordered according to
hashes that represent references to the detected objects.

The created Python tool accesses the server’s resources
and uses the databases located on it at each detection step,
which structure is shown in Figure 4.

Fig. 4: System architecture

The version detection process starts by retrieving all
JavaScript code from the collection with the results of
previous detections. Filtering continues on the obtained
records so that those libraries that were not detected by
standard and modified detection using hash values remain
in the process. Among the fetched records, those records
detected using identifiers are added to the list of libraries
to be analyzed. Furthermore, for each element from the
previously created list, the source code is taken from the
database with crawled data to which the record from the
result collection refers. Each fetched source code of the
fetched library is reduced to the canonical form using the
tool Beautifier as well as the known libraries against which
it is compared. Also, the library detected by the identifiers

is retrieved to determine the name of the library with
whose versions the algorithm must compare the unknown
library. Once a library’s name is determined, retrieve
all versions of that library. And finally, the comparison
process starts. Since the library’s name is now known, it
is necessary to determine the specific version. Lines of an
unknown library reduced to canonical form are compared
with a list of lines that did not exist in previous versions
of each version of that library. The percentage of rows
found determines the probability of a successful version
hit. Based on match percentage, the top ten hits and the
best hit are returned. After the comparison is complete,
the results are saved in a separate collection created just
for those results. Duplication is avoided by updating the
existing document if it already exists in the library.

Detection results based on differences between neigh-
boring library versions are saved in a separate collection.
The reason for this is that the documents have a different
structure than the previously described collection. This
collection contains a hash field that points to the unknown
library that was analyzed, a field that shows the most
likely version of the unknown library, and a list of the top
10 possible versions. If the algorithm does not provide
detection with 100% certainty, a more detailed analysis
continues over the mentioned list of the next 10 most likely
versions. If the library version is found, i.e. the algorithm
is library version safe, using a collection that is a copy of
the Retire.js repository, it is possible to determine if an
already known library is vulnerable. A sample document
from that collection can be seen in Figure 5.

Fig. 5: Sample document from the vulnerability
collection

VI. EXPERIMENTS

The first approach to version detection was to use hash
values. The idea was to download as many source codes of
libraries of different versions as possible and to calculate
their hashes to store in the database. Retrieved hashes were
used in comparison with hashes of unknown libraries. This
approach did not succeed due to the small percentage of
presence of original libraries. One of the reasons for weak

MIPRO 2023/ISS 1433



hash detection is the ratio of the number of plugins to
the number of original libraries. The number of plugins
used on websites is significantly higher than the number
of original libraries. It is very important to emphasize
that at that stage plugins were not part of the database
of known libraries. Another reason is source code that has
been modified by a third party in order to personalize or
change the functionality of the libraries themselves. The
percentage of detected versions of unknown libraries using
this method was approximately 1%, so it was necessary
to find a new method of detection.

Greater success was achieved by combined detection
using library-specific identifiers and differences between
neighboring versions of known JavaScript libraries. The
procedure consists of filling the MongoDB database with
new and old lists and then comparing the unknown library
with the list new. The goal is to determine the percentage
of matches with previously known libraries.

After describing the detection procedure, the results
and statistics of the obtained results is presented. The
algorithm was run on 16804 unknown libraries and each
one was detected with a percentage of confidence. Results
are divided into four important groups through a more
detailed manual analysis:

1) Version match (100% match)
2) Probable version hit (>=50% match)
3) Probable range hit (>=10%, <50% match)
4) Version miss (<10% match)

The results are viewed as satisfactory, as can be seen
from the percentages of each group. From the results, it
can be seen that in the "Version match" group, i.e. one
hundred percent detection was achieved for a quarter of
unknown libraries. The second group “Probable version
hit” is also important. It mainly contains correctly detected
versions of the libraries, but due to changes, they have a
lower hit percentage. If the first two groups are considered
as correctly detected versions, a hit percentage of about
50% is achieved. This means that for half of the unknown
libraries, more precisely the JavaScript codes that were
analyzed, the correct version is found. The next group is
"Probable Range Hit". In this group there are libraries that
were detected with a certainty greater than or equal to
10% and less than 50%. Due to the very structure of the
vulnerability repository, it is not necessary to know the
exact version of the library to detect vulnerabilities, but it
is enough to determine a smaller range in which the exact
version could be located. In our case, that range is the
10 most likely versions of the libraries that the algorithm
returns as the best 10. About 20% of the libraries are in the
mentioned group which, together with the previous two
groups makes up more than 70% of all given libraries.
Libraries from this group require further analysis if the
correct version is to be discovered, as they are too modified
to be discovered this way. In the last group, i.e. "Version
miss", there are libraries that the algorithm could not
detect, i.e. no information is known about their version.
Manual analysis found that the JavaScript codes in this

group are often not even JavaScript libraries, but ordinary
JavaScript codes found on a web page. Detection statistics
and their graphic representation are shown in Figure 6 and
Figure 7.

Fig. 6: Detection statistics

Fig. 7: Detection groups

VII. DISCUSSION

Despite the relatively successful detection, the algorithm
encountered some problems and limitations.

The algorithm itself is very complex. More precisely,
its complexity is exponential O(n2). Even with additional
optimization, the algorithm cannot be significantly speeded
up on a large amount of data such as the database used
in this paper. The greatest speedup is achieved by binding
detection to identifiers, which reduces the range of libraries
to compare. The range of libraries in the entire database,
with slightly less than 300 different libraries and plugins,
came down to exactly one library. Even after introducing
this discovery step, execution time is still high. The
algorithm took about 34 hours to discover 16804 unknown
libraries, which gives us about 7 seconds per library.

1434 MIPRO 2023/ISS



One of the problems is the large number of unknown
libraries that remain unknown due to the modification of
the original libraries. They are made by developers in order
to improve or adapt certain functionalities to their needs.
To understand how much this affects the results, the fact
that if the line differs by only one character, the line will
not be detected is sufficient. Which results in a reduced hit
percentage. Additionally, due to modification of the orig-
inal library, it may happen that the vulnerability is fixed
or a new one is introduced. If the vulnerability is fixed,
detection will still report that the library is vulnerable.
On the other hand, if the modification introduces a new
vulnerability, due to developer carelessness or insufficient
attention to security, detection will not occur. Some possi-
ble reasons for making changes are to delete parts of the
code that will not be used and to add or rearrange code that
complements and changes the functionality of the library
to suit your needs. Also, one possible case is merging
several libraries into one file in order to personalize it
under its own name. An example of the modifications is
the jQuery library [16], which contains more than 20,000
"forks" on its GitHub repository.

Another reason is that minified and obfuscated libraries
are often used. As for minified, it’s not that much of a
problem because there are simple deminifiers. But if the
library is obfuscated, such libraries will never be detected
this way. There are very few of them, but they are present.

The next important problem that came after detecting
a library version is determining vulnerabilities. There
is no centralized database of known JavaScript library
vulnerabilities. Even when the version is determined, if
the library is not contained in the vulnerability repository
it’s not known whether it is vulnerable. This means that
vulnerability detection is entirely dependent on the size
and frequency of updating the vulnerability database. To
identify vulnerabilities, the Retire.js repository was used
but it contains only 26 of the most popular libraries.
Therefore, a problem occurs when the detected library or
plugin is not in the repository.

VIII. CONCLUSION & FUTURE WORK

When developing a software solution, it is very impor-
tant to know potential vulnerabilities and to take care of
the security of the program code at every step of devel-
opment. Standard practice when developing any software
solution is to use third-party libraries. The reason for this
is to facilitate development if there is already a solution
to some part of the problem and greater code security.
That is why it is very important to monitor and update the
versions of the libraries that the Web application uses in
order to use the most secure version at all times.

The algorithm described in this paper automatically
detects the version of an unknown library based on the
library’s source code. Furthermore, it can be used as
a tool that analyzes large amounts of pages, looking

for vulnerabilities that each page contains. Based on the
detected vulnerabilities, warnings could be sent to Web site
owners if they use a vulnerable version of the JavaScript
library. Based on the detection results, it can be said that
the algorithm detects the version of the unknown library
very well. Nevertheless, this is only one technique of
searching for vulnerabilities and should not be relied on
alone but combined with already developed solutions.

Undoubtedly, there is a lot of room for improvement
of the developed tool due to the limitations mentioned
in the previous chapter. In order to improve detection, it
is necessary to continue with new detection steps. Those
steps should be even more detailed and continue detection
of libraries that are not detected with 100% certainty. It
is also possible to expand the database of known libraries
with additional JavaScript libraries that are not currently
in the database.

REFERENCES

[1] Z. Bloom, “Javascript libraries are almost never updated once
installed,” Jan 2020. [Online]. Available: https://blog.cloudflare.
com/javascript-libraries-are-almost-never-updated/

[2] Y. Wang, W.-d. Cai, and P.-c. Wei, “A deep learning approach for
detecting malicious javascript code,” Security and Communication
Networks, vol. 9, no. 11, pp. 1520–1534, 2016.

[3] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability de-
tection in source code using deep representation learning,” in
2018 17th IEEE international conference on machine learning and
applications (ICMLA). IEEE, 2018, pp. 757–762.

[4] O. Tripp, P. Ferrara, and M. Pistoia, “Hybrid security analysis of
web javascript code via dynamic partial evaluation,” in Proceedings
of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 49–59.

[5] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and
R. Berg, “Saving the world wide web from vulnerable javascript,”
in Proceedings of the 2011 International Symposium on Software
Testing and Analysis, 2011, pp. 177–187.

[6] M. Kluban, M. Mannan, and A. Youssef, “On measuring vulnerable
javascript functions in the wild,” in Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security,
2022, pp. 917–930.

[7] “Wappalyzer - identify technologies on websites,” https://www.
wappalyzer.com/, [Accessed 13-Jan-2023].

[8] “Retire.js - repository of known vulnerabilities.” [Online].
Available: https://retirejs.github.io/retire.js/

[9] R. Bellairs, “What is static code analysis? static analysis
overview.” [Online]. Available: https://www.perforce.com/blog/sca/
what-static-analysis

[10] J. Frankenfield, “Cryptographic hash functions: Definition
and examples,” Nov 2022. [Online]. Available: https:
//www.investopedia.com/news/cryptographic-hash-functions/

[11] “What is minification: Why minify js, html, css files: Cdn guide:
Imperva,” Dec 2019. [Online]. Available: https://www.imperva.
com/learn/performance/minification/

[12] Beautify-Web, “Beautify-web/js-beautify: Beautifier for javascript.”
[Online]. Available: https://github.com/beautify-web/js-beautify

[13] [Online]. Available: https://www.cdnpkg.com/
[14] “Difflib - helpers for computing deltas.” [Online]. Available:

https://docs.python.org/3/library/difflib.html
[15] I. Kovacevic, M. Marovic, S. Gros, and M. Vukovic, “Predict-

ing vulnerabilities in web applications based on website security
model,” in 2022 International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM). IEEE, 2022,
pp. 1–6.

[16] “jquery,” [Accessed 10-Feb-2023]. [Online]. Available: https:
//jquery.com/

MIPRO 2023/ISS 1435




