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Abstract - Over the last few years, several breakthroughs 

in deep learning have contributed to the development of new 

models. One of many areas they are applied to is the web 

application security scope. Web applications are still one of 

the biggest information and business security threats. 

Requests sent to the Web application are divided into 

normal and malicious. Malicious requests contain a payload 

that exploits a discovered vulnerability. Detection of Web 

attacks can be reduced to natural language processing 

classification problem. Lately, pre-trained models on 

Transformer neural networks showed promising results in 

the detection of Web attacks. In development of models, the 

preprocessing step of data preparation is crucial. After 

preparation of good datasets and application of powerful 

models it is very important to evaluate and compare 

performance of algorithms. The goal of this paper is to 

conduct an overview of the deep learning methods used for 

Web attack detection. The research is conducted by 

querying scientific databases, analyzing relevant articles 

within the security scope, and summarizing the proposed 

state-of-the-art approaches. Findings of reviewed papers 

were summarized based on implementation details and used 

performance metrics. Also, open problems will be 

emphasized, as well as challenges and possibly new 

opportunities for the future research. 

Keywords - deep learning; transformer architecture; 

natural language processing; web application security; web 

attack detection 

I. INTRODUCTION 

Web applications are software systems that generate 
web pages and documents written in one of the 
programming languages and are executed on the server. 
Web browsers are programs through which we access the 
Web application. Requests sent to the Web application are 
divided into normal and malicious payloads. Malicious 
requests contain a payload that exploits a discovered 
vulnerability. With the emergence of new Web 
technologies, modules, frameworks and platforms, Web 
applications open new attack surfaces and vectors. Attack 
surface is what is being attacked, whereas an attack vector 
is a path or means by which an attacker can gain access to 
a computer system or network to deliver a malicious 
payload. Such a payload is sent to the Web application, 
and the response is analyzed for possible vulnerabilities. 
Vulnerability is a known or unknown weakness (zero-day) 
that can be exploited. Further, exploits take advantage of 
that vulnerability to gain unauthorized access or execute 
malicious tasks. In the last decade neural networks have 
regained popularity [1] due to the rapid development of 
hardware. 

Also, large amounts of data provide new opportunities 
in their use, including natural language processing (NLP). 
Deep learning (DL) is a part of machine learning (ML) 
where neural networks are essential components of the 
algorithm [2]. Determining an attack on a Web application 
with DL methods is a classification task of whether the 
payload sent to the Web application is malicious or not. 
Therefore, the detection of Web attacks can be reduced to 
an NLP classification problem. In development of models 
preprocessing step of data preparation is crucial. After 
preparation of good datasets and application of powerful 
models it is very important to evaluate and compare 
performance of algorithms. The motivation for the 
research originates from practical applications of training 
neural networks to improve Web attack detection. 
Existing literature reviews [1, 2] cover DL models for a 
specific Web attack like denial of service (DoS) or 
analyze multiple ML and DL techniques for the detection 
of unknown (known as zero-day) Web attacks. This study 
considers DL models for Web attack detection that are not 
limited to specific types of Web attacks or devices (IoT). 
In addition, payloads divided as normal or malicious 
(binary classification) will be observed. This paper is 
structured in the following way. Section I is the 
introduction. Section II focuses on defining research 
questions, strategy, and criteria. Section III brings up the 
analysis of selected papers. Section IV contains research 
findings and a discussion. Section V concludes the paper. 

II. METHODOLOGY 

This paper analyzes and summarizes DL methods for 
Web attack detection within the Web application security 
scope. It is crucial to identify primary studies and conduct 
an overview of different approaches for classifying 
malicious payloads to achieve this objective. 

A. Defined research questions 

Insufficiently described or omitted factors in the DL 
literature lead to difficulty reproducing or replicating a 
given approach. Major contributing factors to these issues 
are the lack of published open-source implementations 
and datasets, missing data filtering details and descriptions 
of hyperparameters used [1,2]. The research questions are: 
(i) What types of Web attacks have been addressed by 
DL-based approaches? (ii) How are artifacts being 
extracted, prepared, and used in DL-based approaches for 
Web attack detection? (iii) What DL models are used to 
support Web attack detection? (iv) How well does DL-
based approach perform in supporting various Web attack 
detection? 

MIPRO 2023/ISS 1385



 

Figure 1. Number of papers per iteration and scientific database 

0

20

40

60

1st 2nd 3rd 4th

Scopus IEEE Xplore Web of Science

 

Figure 3.  Precentage of papers per type of publication 

 

 

37%
63%

Conference Journal

 

Figure 2.  Number of selected papers per publication year 

B. Search strategy 

The search was conducted on three scientific 
databases: Web of Science, Scopus, and IEEE Xplore. 
Title, abstract and keywords in the Computer Science 
research topic were searched. The search query was 
adjusted several times to find only those papers that are 
within the scope of the research. Defined search keywords 
were deep learning, neural network, web attacks, web 
security, web application security and web vulnerabilities. 

Each database had different search queries according 
to their search engine. The following search queries 
yielded the most relevant results:  

• Web of Science: TOPIC: (“deep learning” OR 
“neural networks”) AND (“web attacks” OR 
“web security” OR “web application security” 
OR “web vulnerabilities”) 

• Scopus: TITLE-ABS-KEY ((“deep learning” OR 
“neural networks”) AND (“web attacks” OR 
“web security” OR “web application security” 
OR “web vulnerabilities”)) AND (EXCLUDE 
(PUBYEAR, 2023)) AND (LIMIT-TO 
(SUBJAREA, “COMP”)) AND (LIMIT-TO 
(LANGUAGE, “English”)) 

• IEEE Xplore: ALL: (“deep learning” OR 
“neural networks”) AND (“web attacks” OR 
“web security” OR “web application security” 
OR “web vulnerabilities”) 

All queries aim to extract relevant articles about Web 
attack detection with DL-based approaches. 

C. Search criteria 

Selection criteria are presented in Table I. These 
inclusion criteria are used to determine which paper is 
relevant and which is not. The table also clearly states all 
exclusion criteria for further reducing the papers. 

 
III. OVERVIEW OF INCLUDED PAPERS 

Applying the queries leads to filtering all papers 

considering the constraints. The section will show the 

number of articles per database, per year, and by paper 

type. Afterward, the analysis is presented. In this section 

is presented the number of papers selected in each 

iteration. There were four iterations whose results are 

displayed in Figure 1. 

In the first iteration queries are executed to get 

relevant articles without duplicates. In the second 

iteration it is done filtering based on reading titles and 

abstracts of the papers. The third iteration it is done 

filtering after reading full articles. The last iteration is 

based on narrowing the scope and focusing on answering 

all the research questions. After the process of selection, a 

total of 24 papers were analyzed and considered. Figure 2 

shows the number of papers that used deep learning for 

detecting Web attacks in the observed period by years.  

As one can see, most articles were published in 2019, 

and then the interest decreased. The reason for this 

decrease is probably the appearance of transformer 

models with self-attention mechanisms that yielded state-

of-the-art performance in Web attack detection. The 

distribution of published research papers per year 

suggests that topics regarding Web attack detection with 

deep learning are an active area for research. We predict 

that it will still be a desirable area in the future since new 

and unknown Web attack variants are emerging which 

could be detected by new approaches using neural 

language models. Paper classification based on its type is 

shown in Figure 3.  

Not surprisingly, the percentage of selected journal 

articles is higher than that of conference papers. Mainly 

because to answer all research questions, additional 

details of the proposed approach must be provided, which 

was not the case in most conference papers. 

TABLE I.  INCLUSION AND EXCLUSION CRITERIA 

Inclusion criteria Exclusion criteria 

Papers written Non-English papers 

Papers published between 2016 

and 2022 

Papers published before 2016 

and after 2022 

Papers published in scientific 
conferences or scientific journals 

or relevant Web articles 

Duplicate papers 

Papers on DL for Web attack 

detection 
Out of scope papers 

Papers which proposed new 

models or approaches 

Papers who do not provide 
sufficient details about their 

models or approaches 
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IV. RESULTS AND DISCUSSION 

The existence of vulnerabilities doesn’t mean it will be 
exploited. Only after a few years of initial discovery a 
particular attack technique is becoming widely misused. 
That’s why we are exploring them right now. Table II 
summarizes the reviewed papers in six categories. 
Approaches were mainly supervised learning models 
(SLM) and unsupervised learning models (USLM). 

A. Type of Web attacks 

Injection Web attacks are considered to impact the 
most vulnerabilities in Web applications. Injection of 
HTTP payload [3-8] show different patterns hidden in the 
URL. Next, there are SQL injection (SQLi) and Cross-site 
scripting (XSS) [9-19]. SQLi attacks are server-side 
vulnerabilities targeting Web application databases, 
whereas XSS are client-side vulnerabilities targeting Web 
application users. Then there is XPath [20], a query 
language for XML with injection issues similar to SQL. 
Another Web attack is phishing [21-22]. Phishing is the 
malicious practice of luring users into disclosing their 
personal information. Fake websites may be created and 
employed by criminals to steal that information. Further, 
there are denial of service (DoS) attacks whose purpose is 
to make a system unavailable for access. In contrast to 
DoS attacks, distributed denial of service (DDoS) attacks 
[23-24] use several computers to execute a simultaneous 
DoS attack against one or more systems. Webshells 
(backdoors) [25] of the website are often implemented on 
the website servers to maintain the management authority. 
Web trojan [26] attacks are designed to damage, disrupt, 
and inflict harmful actions, like personal information 
leakage. Zero-day Web attacks are unknown attacks that 
have not been reported. They are very rare and hard to 
find in the HTTP requests. Web application firewalls 
(WAF) are a common defense against Web attacks, but 
they can be exploited to evade the filter detection pattern 
by leveraging the found vulnerability. 

B. Datasets 

The lack of public datasets in the Web application 
security scope represents an obstacle to training and 
testing DL algorithms. Most often publicly available 
datasets in the reviewed papers are: 

• CISC2010 dataset [3-7, 10, 11, 15, 24] has 
automatically generated traffic with multiple Web 
attacks like buffer overflow, information 
gathering, SQLi, XSS, files disclosure, CRLF 
injection, parameter tempering and more. 

• ECMLPKD dataset [5] contains more than 35000 
normal requests and about 15000 malicious Web 
requests collected from real network traffic. 

• httpParams dataset [7, 15] is created with several 
tools like sqlmap, xssya, Vega Scanner, FuzzDB. 

• FWAF dataset [7, 15] is created by FSECURITY 
for detecting malicious Web queries with ML-
driven WAF. 

• XSSed dataset [16] contains more than 40000 
different malicious XSS attacks. 

• UCI phishing dataset [21, 22] consists of about 
11000 samples which have 30 features pre-
classified as phishing or normal. 

• CICIDS2017 dataset [24] contains DDoS attacks 
and 83 features in the dataset, including both the 
network traffic and package information results. 

• KDDCU99 dataset [24] contains samples with 
four types of anomalies DDoS, Remote-to-login, 
User-to-root, and probing. 

Private data sets are also used. A dataset is considered 
private if it is not publicly available or if no procedure is 
described to replicate and reproduce it. Private datasets [3-
5, 8-14, 17-20, 23, 25, 26] contain new examples, normal 
or malicious requests, on which the model was trained. 

C. Preprocessing techniques 

Original datasets must be transformed into numerical 
data by procedure called feature extraction. Not all 
features are equally important for the classification 
decision. Feature selection is an essential pre-processing 
task that aims to find a subset of relevant features from the 
original features. In examined papers, different data 
preprocessing techniques have been used, where 
tokenization and neural embedding are by far the most 
common. Also, encoding techniques such as HEX, URL, 
Unicode, HTML entity and generalization are used to 
reduce interference of redundant and irrelevant 
information. Tokenization [4, 11, 13, 15-17] is a broad 
technique that was applied to separate sequential data into 
tokens depending on the type of Web attack. Neural 
embeddings [8, 9, 22, 24, 26] use different DL 
architectures to represent the data. Two popular 
implementations of Wor2Vec [12, 14, 16] used for feature 
extraction are CBOW model [7, 10, 18, 25] and the Skip-
Gram model [6]. Some papers did not explicitly mention 
the type of embedding they use: word-level [4, 5] or 
character-level embedding [3, 20]. Besides that, feature 
selection and weighting using Generic Algorithm (GA) 
[21] and statistical feature extraction [23] were present in 
the pre-processing task. 

D. Classification model 

Each model has its strengths and weakness in 
detecting certain types of Web attacks. CNN model [3, 8, 
10, 16, 25] and its variants [6, 8, 11, 14, 24] have the most 
significant advantage in that its feature set is learned by 
itself. RNN [16, 20] is a DL model suitable for solving the 
sequential problem, identifying patterns in URLs. LSTM 
[3-5, 10, 20] is a special RNN to realize the long-term 
memory of characters. Compared with RNN, CNN 
training is shorter, whereas CNN compared with a deep 
neural network (DNN), its parameters are fewer, and the 
model is more concise. MLP [3, 10, 13, 15, 17] is a feed-
forward neural network (FFNN) with multiple processing 
layers and at least one hidden layer, among which both the 
hidden layer and the output layer have the ability for Web 
attack detection. Autoencoder is an FFNN with one or 
more layers designed to minimize input and output 
differences. A stacked Autoencoder (SAE) [9, 26] is 
constructed by stacking the input and hidden layers of the 
Autoencoder layer by layer. 
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TABLE II.  SUMMARY OF REVIEWED PAPERS 

Ref 

Implementation details of the proposed approach 
Performance by most frequent 

performance metrics 

Web 

attack 
Type Framework Dataset Prep. technique 

Over/under

-fitting 

protection 

Model 
Acc. 

(%) 

TPF 

(%) 

F1-

score 

(%) 

FPR 

(%) 

[3] 

Multiple 

Web 

attacks 
injected 

in HTTP 

request 

or 

payload 

SLM PyTorch 
CSIC2010*, 

Private 
Character 

embedding 
Data 

cleaning 

MLP, 

CNN, 

LSTM 

97.79 96.04 98.72 N/A 

[4] SLM N/A 
CSIC2010*, 

Private 

Tokenization, 
Word embedding 

Data 
balancing 

LSTM-
MLP 

98.42 97.56 N/A N/A 

[5] SLM 
TensorFlow 

/ Keras 

CSIC2010*, 

ECMLPKD, 

Private 

Word embedding 

Data 

augmentati

on 

Bi-LSTM 98.6 98.4 98.1 N/A 

[6] SLM N/A CSIC2010 Skip-gram Boosting 
Text 
CNN 

SVM 

99.33 99.09 N/A N/A 

[7] SLM 
TensorFlow 

/ Keras 

CSIC2010, 

httpParams, 

FWAF 

CBOW, FastText Dropout ResNet 99.41 99.55 N/A N/A 

[8] SLM 
TensorFlow 

/ Keras 
Private Neural embedding 

Early 

Stopping 

CNN, 

GRU 
99.61 99.58 99.61 N/A 

[9] 

SQLi, 

XSS, 

object 
deserial. 

USL

M 

TensorFlow 

/ Keras, 

WEKA 

Private Neural embedding Denoising SAE N/A 92.8 91.8 N/A 

[10] 

SQLI, 

XSS 

SLM N/A 
CSIC2010*, 

Private 
CBOW 

Dropout, 
Data 

cleaning 

Ensemble 

MLP, 

CNN, 

LSTM 

99.47 99.70 99.0 0.33 

[11] SLM N/A 
CSIC2010*, 

Private 
Tokenization 

Boosting, 

Data 

balancing 

CNN 

with 

attention 

99.845 98.29 99.1 0.0 

[12] 

SQLi 

USL
M 

N/A Private Word2Vec 

Data 

cleaning, 
Data 

balancing 

Encoder-

Decoder 

RNN 

N/A 99.0 98.0 N/A 

[13] SLM PyTorch Private Tokenization Boosting MLP 99.75 99.88 N/A 0.02 

[14] SLM 
TensorFlow 

/ Keras 
Private Word2Vec 

Data 

cleaning 

Elastic 

Pooling 

CNN 

99.93 99.94 99.95 N/A 

[15] SLM PyTorch 

CSIC2010, 

httpParams, 

FWAF 

BERT tokenizer 
Data 

balancing 
MLP 99.98 N/A 98.7 N/A 

[16] 

XSS 

SLM 
TensorFlow 

/ Keras 
XSSed 

Tokenization 

Word2Vec 

Cross-

valid., 
Dropout 

CNN-

LSTIM 
99.3 99.1 99.5 N/A 

[17] SLM 
TensorFlow 

/ Keras 
Private Tokenization 

Dropout, 

Cross-

valid. 

MLP 99.32 98.0 98.7 0.31 

[18] 
XSS-
DOM 

SLM 
TensorFlow 

/ Keras 
Private CBOW 

Cross-
valid. 

DFFN N/A 95.0 N/A N/A 

[19] 

XSS in 
PHP* 

and JS  

SLM N/A 
Private (D1, 

D2*) 

Wod2Vec, 

Code2Vec* 

Data 

cleaning, 

Data 

balancing 

DFFN 
with 

attention  

95.38 99.90 91.80 N/A 

[20] XPath SLM PyBRAIN Private 
Character 

embedding 

Data 

cleaning, 

Boosting 

RNN, 

LSTM 
N/A 84.2 N/A 16.2 

[21] 

Phishing 

SLM N/A UCI 

Feature selection 

and weighting 

using GA. 

Dropout, 

Boosting, 
Cross-

valid. 

DNN 88.77 85.81 N/A N/A 

[22] SLM N/A UCI Neural embedding 
Data 

balancing, 
DNN 97.71 90.51 92.16 1.7 

[23] 

DDoS 

USL
M 

WEKA Private 
Statistical feature 

extraction 
Cross-
valid. 

SAE, LR N/A 98.99 N/A 1.27 

[24] SLM N/A 
CICIDS2017, 

KDDCU99* 
Neural embedding 

Data 

balancing  

MC-

CNN 
99.18 N/A N/A N/A 

[25] 

Webshell 

in PHP*, 
JSP and 

ASP 

SLM TensorFlow Private CBOW Dropout CNN 99.50 99.70 99.40 N/A 

[26] Trojan 
USL

M 
N/A Private Neural embedding Denoising SAE 94.92 N/A N/A 16.32 

* best results 
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Logistic regression (LG) [23] was used with SAE for 
classification, as it can output a value corresponding to the 
probability of belonging to a given class. Transformer 
architecture like BERT [15] showed promising results to 
be used in Web attack detection. BERT can be considered 
as a stack of encoders and decoders. To combine all the 
strengths of all models, a typical approach is to use an 
ensemble. Voting ensembles are primarily selected based 
on the output of models. Hard voting predicts the majority 
class, whereas soft voting summed predicted probabilities 
from individual classifiers for each class. So, soft voting 
gives better insight better if all models provide 
probabilities [10]. 

E. Over/under-fitting protection 

Classifying imbalanced datasets is a major challenge. 
DL algorithms solve these challenges and thus do not need 
a feature selection process performed during 
preprocessing [5]. However, if irrelevant or unnecessary 
features are selected, high variance (overfitting) or high 
bias (underfitting) may occur. Summary of reviewed 
papers showed that data cleaning and/or balancing was the 
most used method to combat over/under-fitting. Other 
techniques were dropout, cross-validation, boosting, 
denoising, early stopping and data augmentation. Data 
cleaning [3, 10, 12, 14, 19, 20] includes operation such as 
removing duplicates, modifying labels without values, etc. 
Data balancing [4, 11, 12, 15 19, 22, 24] involves random 
sampling and random parameter initialization in order to 
obtain balanced data set. Dropout [7, 10, 16, 17, 21, 25] is 
usually applied only to the neurons in the top one to three 
layers (excluding the output layer). Grid or random search 
[16, 17, 21, 23] has been used as a model hyperparameter 
optimization technique with a k-fold cross-validation 
approach. This approach randomly splits the training 
dataset into a set of k-folds of approximately equal sub-
dataset sizes. Different boosting techniques for updating 
the weights of the DL models were used, inducing Adam 
[10, 11, 13], RMSprop [20], and AdaDelta [19]. 
Denoising [7,24] works by corrupting the original input 
with some noise. The Autoencoder then needs to 
reconstruct the input from that noise, which forces the 
hidden layer to capture the statistical dependencies 
between the inputs. Another way to regularize iterative 
learning algorithms, such as gradient descent, is early 
stopping [8]. The training is stopped as soon as the 
validation error reaches a desired minimum. Finally, data 
augmentation [5] artificially increases the size of the 
training set by generating many modified variants of the 
training instance. In this way, it compensates for a 
shortage in data. 

F. Evaluation 

In imbalanced classification, the number of examples 
in the training dataset for each class label is not balanced. 
Since the distribution of classes is skewed, e.g., they 
extend much farther to the left or right of the median. In 
this case, it is not sufficient to use accuracy alone as a 
metric of model performance. So, it is recommended to 
examine the confusion matrix. The idea of a confusion 
matrix is to count the times instances of class A are 
classified as class B for all A/B pairs. Elements of the 
confusion matrix in the context of Web security are the 

following: true positives (TP) or Web attack requests in 
the dataset that are correctly detected as Web attacks, true 
negative (TN) or normal requests correctly detected as 
normal request, false positives (FP) are those normal 
requests detected as Web attack requests and false 
negatives (FN) that are Web attack requests detected as 
normal requests. To compute the confusion matrix, we 
first need to have a set of predictions to compare them to 
the actual targets. Each row in a confusion matrix 
represents an actual class, while each column represents a 
predicted class. A perfect classifier would only have true 
positives and true negatives, so its confusion matrix would 
only have nonzero values on its main diagonal. Analyzing 
the confusion matrix often gives us insight into ways to 
improve your classifier. Below are just a few of the most 
common performance metrics [17]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
  (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙/𝑇𝑃𝑅 =
TP

TP+FN
  (3) 

𝐹𝑃𝑅 =
FP

TN+FP
  (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 (
Recall ∗ Precision

Recall + Precision
)  (5) 

𝐴𝑈𝐶 =  
1

2
 (

𝑇𝑃

𝑇𝑃+𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁+𝐹𝑃
) (6) 

The recall/precision trade-off should be noted. In this 
trade-off, the higher the recall is, the lower the precision 
becomes and vice versa. Because of this, the F1-score 
measure or the harmonic mean of precision and recall is 
usually applied [22]. AUC is an abbreviation for area 
under the ROC Curve, AUC is the probability that the 
model ranks a random positive example more highly than 
a random negative example. ROC stands for receive 
operating characteristic curve, and in a nutshell, it pots 
TPR vs FPR at different classification thresholds. A 
perfect classifier will have a ROC AUC equal to 1, 
whereas a purely random classifier will have a ROC AUC 
equal to 0.5. When a feature distribution has a heavy tail 
(i.e., when values from the mean are not exponentially 
rare), both min-max scaling and standardization will 
squash most values into a small range. So, before we scale 
the features, it is recommended first to transform it to 
shrink the heavy tail and, if possible, to make the 
distribution roughly symmetrical and bell-shaped 
distributions (e.g., by computing their logarithm or square 
root). To improve performance of the classifier, first we 
can gather more training data so that the classifier learns 
to distinguish them. Second, we could engineer new 
features that would help the classifier. Third, we can try to 
preprocess the data. 

V. CONCLUSION 

Client-side vulnerabilities exploit Web browser 
weaknesses. Most Web applications do not accurately 
filter the user's input data, so both the client and the server 
are invaded. The main difference between DL and 
traditional ML is that performance of DL algorithms 
benefits more when the dataset augments. DL models do 
not require complicated artificial feature engineering. 
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Retraining using online data opens the possibility of 
incorporating attack data into the normal dataset and 
avoiding detection. Class imbalance can cause DL models 
to be biased towards the negative class and negatively 
impact classification performance. Random sampling can 
help to balance it. The goal of detecting unseen attacks 
(zero-day) should be elaborated as detecting new attacks 
that share specific characteristics with the known attack 
used in training. Some models are better at limited dataset 
size and for specific Web attacks. Unsupervised DL 
models, like Autoencoders, can achieve high F1-scores in 
Web attack detection without domain knowledge and 
labeled training data. Publicly available datasets are 
outdated and not representative in most use cases. 
Therefore, we can conclude that data quality and feature 
extraction are critical components for the robustness and 
precision of these classifiers. Moreover, the proposed DL 
methods effectively detect Web attacks with FPR close to 
zero and the corresponding TPR (AUC-ROC curve) of 
almost 100%. Furthermore, codes and preprocessing 
details or datasets need to be publicly available for 
reproducibility and as a contribution to similar works in 
the future. New models should aim to achieve better 
detection accuracy, low computational cost, high 
flexibility, and high robustness. Some possible future 
works or improvements in this area are as follows: (i) 
finding and correcting misclassified labels in the original 
dataset, (ii) extracting more characteristic information of 
the Web attack besides the HTTP request or URL. (iii) 
creating a new standardized dataset of Web attacks (iv) 
improve existing approaches even further by exploring 
alternative combinations of DL models, (v) determine the 
frequency when DL models should be retrained and (vi) 
develop a methodology for creating new DL models and a 
framework for evaluating existing ones. 
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