
Deep Learning within the Web Application

Security Scope – Literature Review

Matija Kaniški, Jasminka Dobša and Dragutin Kermek

Faculty of Ogranization and Informatics, University of Zagreb, Varaždin, Croatia

{matija,kaniski, jasminka.dobsa, dragutin.kermek}@foi.unizg.hr

Abstract - Over the last few years, several breakthroughs

in deep learning have contributed to the development of new

models. One of many areas they are applied to is the web

application security scope. Web applications are still one of

the biggest information and business security threats.

Requests sent to the Web application are divided into

normal and malicious. Malicious requests contain a payload

that exploits a discovered vulnerability. Detection of Web

attacks can be reduced to natural language processing

classification problem. Lately, pre-trained models on

Transformer neural networks showed promising results in

the detection of Web attacks. In development of models, the

preprocessing step of data preparation is crucial. After

preparation of good datasets and application of powerful

models it is very important to evaluate and compare

performance of algorithms. The goal of this paper is to

conduct an overview of the deep learning methods used for

Web attack detection. The research is conducted by

querying scientific databases, analyzing relevant articles

within the security scope, and summarizing the proposed

state-of-the-art approaches. Findings of reviewed papers

were summarized based on implementation details and used

performance metrics. Also, open problems will be

emphasized, as well as challenges and possibly new

opportunities for the future research.

Keywords - deep learning; transformer architecture;

natural language processing; web application security; web

attack detection

I. INTRODUCTION

Web applications are software systems that generate
web pages and documents written in one of the
programming languages and are executed on the server.
Web browsers are programs through which we access the
Web application. Requests sent to the Web application are
divided into normal and malicious payloads. Malicious
requests contain a payload that exploits a discovered
vulnerability. With the emergence of new Web
technologies, modules, frameworks and platforms, Web
applications open new attack surfaces and vectors. Attack
surface is what is being attacked, whereas an attack vector
is a path or means by which an attacker can gain access to
a computer system or network to deliver a malicious
payload. Such a payload is sent to the Web application,
and the response is analyzed for possible vulnerabilities.
Vulnerability is a known or unknown weakness (zero-day)
that can be exploited. Further, exploits take advantage of
that vulnerability to gain unauthorized access or execute
malicious tasks. In the last decade neural networks have
regained popularity [1] due to the rapid development of
hardware.

Also, large amounts of data provide new opportunities
in their use, including natural language processing (NLP).
Deep learning (DL) is a part of machine learning (ML)
where neural networks are essential components of the
algorithm [2]. Determining an attack on a Web application
with DL methods is a classification task of whether the
payload sent to the Web application is malicious or not.
Therefore, the detection of Web attacks can be reduced to
an NLP classification problem. In development of models
preprocessing step of data preparation is crucial. After
preparation of good datasets and application of powerful
models it is very important to evaluate and compare
performance of algorithms. The motivation for the
research originates from practical applications of training
neural networks to improve Web attack detection.
Existing literature reviews [1, 2] cover DL models for a
specific Web attack like denial of service (DoS) or
analyze multiple ML and DL techniques for the detection
of unknown (known as zero-day) Web attacks. This study
considers DL models for Web attack detection that are not
limited to specific types of Web attacks or devices (IoT).
In addition, payloads divided as normal or malicious
(binary classification) will be observed. This paper is
structured in the following way. Section I is the
introduction. Section II focuses on defining research
questions, strategy, and criteria. Section III brings up the
analysis of selected papers. Section IV contains research
findings and a discussion. Section V concludes the paper.

II. METHODOLOGY

This paper analyzes and summarizes DL methods for
Web attack detection within the Web application security
scope. It is crucial to identify primary studies and conduct
an overview of different approaches for classifying
malicious payloads to achieve this objective.

A. Defined research questions

Insufficiently described or omitted factors in the DL
literature lead to difficulty reproducing or replicating a
given approach. Major contributing factors to these issues
are the lack of published open-source implementations
and datasets, missing data filtering details and descriptions
of hyperparameters used [1,2]. The research questions are:
(i) What types of Web attacks have been addressed by
DL-based approaches? (ii) How are artifacts being
extracted, prepared, and used in DL-based approaches for
Web attack detection? (iii) What DL models are used to
support Web attack detection? (iv) How well does DL-
based approach perform in supporting various Web attack
detection?

MIPRO 2023/ISS 1385

Figure 1. Number of papers per iteration and scientific database

0

20

40

60

1st 2nd 3rd 4th

Scopus IEEE Xplore Web of Science

Figure 3. Precentage of papers per type of publication

37%
63%

Conference Journal

Figure 2. Number of selected papers per publication year

B. Search strategy

The search was conducted on three scientific
databases: Web of Science, Scopus, and IEEE Xplore.
Title, abstract and keywords in the Computer Science
research topic were searched. The search query was
adjusted several times to find only those papers that are
within the scope of the research. Defined search keywords
were deep learning, neural network, web attacks, web
security, web application security and web vulnerabilities.

Each database had different search queries according
to their search engine. The following search queries
yielded the most relevant results:

• Web of Science: TOPIC: (“deep learning” OR
“neural networks”) AND (“web attacks” OR
“web security” OR “web application security”
OR “web vulnerabilities”)

• Scopus: TITLE-ABS-KEY ((“deep learning” OR
“neural networks”) AND (“web attacks” OR
“web security” OR “web application security”
OR “web vulnerabilities”)) AND (EXCLUDE
(PUBYEAR, 2023)) AND (LIMIT-TO
(SUBJAREA, “COMP”)) AND (LIMIT-TO
(LANGUAGE, “English”))

• IEEE Xplore: ALL: (“deep learning” OR
“neural networks”) AND (“web attacks” OR
“web security” OR “web application security”
OR “web vulnerabilities”)

All queries aim to extract relevant articles about Web
attack detection with DL-based approaches.

C. Search criteria

Selection criteria are presented in Table I. These
inclusion criteria are used to determine which paper is
relevant and which is not. The table also clearly states all
exclusion criteria for further reducing the papers.

III. OVERVIEW OF INCLUDED PAPERS

Applying the queries leads to filtering all papers

considering the constraints. The section will show the

number of articles per database, per year, and by paper

type. Afterward, the analysis is presented. In this section

is presented the number of papers selected in each

iteration. There were four iterations whose results are

displayed in Figure 1.

In the first iteration queries are executed to get

relevant articles without duplicates. In the second

iteration it is done filtering based on reading titles and

abstracts of the papers. The third iteration it is done

filtering after reading full articles. The last iteration is

based on narrowing the scope and focusing on answering

all the research questions. After the process of selection, a

total of 24 papers were analyzed and considered. Figure 2

shows the number of papers that used deep learning for

detecting Web attacks in the observed period by years.

As one can see, most articles were published in 2019,

and then the interest decreased. The reason for this

decrease is probably the appearance of transformer

models with self-attention mechanisms that yielded state-

of-the-art performance in Web attack detection. The

distribution of published research papers per year

suggests that topics regarding Web attack detection with

deep learning are an active area for research. We predict

that it will still be a desirable area in the future since new

and unknown Web attack variants are emerging which

could be detected by new approaches using neural

language models. Paper classification based on its type is

shown in Figure 3.

Not surprisingly, the percentage of selected journal

articles is higher than that of conference papers. Mainly

because to answer all research questions, additional

details of the proposed approach must be provided, which

was not the case in most conference papers.

TABLE I. INCLUSION AND EXCLUSION CRITERIA

Inclusion criteria Exclusion criteria

Papers written Non-English papers

Papers published between 2016

and 2022

Papers published before 2016

and after 2022

Papers published in scientific
conferences or scientific journals

or relevant Web articles

Duplicate papers

Papers on DL for Web attack

detection
Out of scope papers

Papers which proposed new

models or approaches

Papers who do not provide
sufficient details about their

models or approaches

1386 MIPRO 2023/ISS

IV. RESULTS AND DISCUSSION

The existence of vulnerabilities doesn’t mean it will be
exploited. Only after a few years of initial discovery a
particular attack technique is becoming widely misused.
That’s why we are exploring them right now. Table II
summarizes the reviewed papers in six categories.
Approaches were mainly supervised learning models
(SLM) and unsupervised learning models (USLM).

A. Type of Web attacks

Injection Web attacks are considered to impact the
most vulnerabilities in Web applications. Injection of
HTTP payload [3-8] show different patterns hidden in the
URL. Next, there are SQL injection (SQLi) and Cross-site
scripting (XSS) [9-19]. SQLi attacks are server-side
vulnerabilities targeting Web application databases,
whereas XSS are client-side vulnerabilities targeting Web
application users. Then there is XPath [20], a query
language for XML with injection issues similar to SQL.
Another Web attack is phishing [21-22]. Phishing is the
malicious practice of luring users into disclosing their
personal information. Fake websites may be created and
employed by criminals to steal that information. Further,
there are denial of service (DoS) attacks whose purpose is
to make a system unavailable for access. In contrast to
DoS attacks, distributed denial of service (DDoS) attacks
[23-24] use several computers to execute a simultaneous
DoS attack against one or more systems. Webshells
(backdoors) [25] of the website are often implemented on
the website servers to maintain the management authority.
Web trojan [26] attacks are designed to damage, disrupt,
and inflict harmful actions, like personal information
leakage. Zero-day Web attacks are unknown attacks that
have not been reported. They are very rare and hard to
find in the HTTP requests. Web application firewalls
(WAF) are a common defense against Web attacks, but
they can be exploited to evade the filter detection pattern
by leveraging the found vulnerability.

B. Datasets

The lack of public datasets in the Web application
security scope represents an obstacle to training and
testing DL algorithms. Most often publicly available
datasets in the reviewed papers are:

• CISC2010 dataset [3-7, 10, 11, 15, 24] has
automatically generated traffic with multiple Web
attacks like buffer overflow, information
gathering, SQLi, XSS, files disclosure, CRLF
injection, parameter tempering and more.

• ECMLPKD dataset [5] contains more than 35000
normal requests and about 15000 malicious Web
requests collected from real network traffic.

• httpParams dataset [7, 15] is created with several
tools like sqlmap, xssya, Vega Scanner, FuzzDB.

• FWAF dataset [7, 15] is created by FSECURITY
for detecting malicious Web queries with ML-
driven WAF.

• XSSed dataset [16] contains more than 40000
different malicious XSS attacks.

• UCI phishing dataset [21, 22] consists of about
11000 samples which have 30 features pre-
classified as phishing or normal.

• CICIDS2017 dataset [24] contains DDoS attacks
and 83 features in the dataset, including both the
network traffic and package information results.

• KDDCU99 dataset [24] contains samples with
four types of anomalies DDoS, Remote-to-login,
User-to-root, and probing.

Private data sets are also used. A dataset is considered
private if it is not publicly available or if no procedure is
described to replicate and reproduce it. Private datasets [3-
5, 8-14, 17-20, 23, 25, 26] contain new examples, normal
or malicious requests, on which the model was trained.

C. Preprocessing techniques

Original datasets must be transformed into numerical
data by procedure called feature extraction. Not all
features are equally important for the classification
decision. Feature selection is an essential pre-processing
task that aims to find a subset of relevant features from the
original features. In examined papers, different data
preprocessing techniques have been used, where
tokenization and neural embedding are by far the most
common. Also, encoding techniques such as HEX, URL,
Unicode, HTML entity and generalization are used to
reduce interference of redundant and irrelevant
information. Tokenization [4, 11, 13, 15-17] is a broad
technique that was applied to separate sequential data into
tokens depending on the type of Web attack. Neural
embeddings [8, 9, 22, 24, 26] use different DL
architectures to represent the data. Two popular
implementations of Wor2Vec [12, 14, 16] used for feature
extraction are CBOW model [7, 10, 18, 25] and the Skip-
Gram model [6]. Some papers did not explicitly mention
the type of embedding they use: word-level [4, 5] or
character-level embedding [3, 20]. Besides that, feature
selection and weighting using Generic Algorithm (GA)
[21] and statistical feature extraction [23] were present in
the pre-processing task.

D. Classification model

Each model has its strengths and weakness in
detecting certain types of Web attacks. CNN model [3, 8,
10, 16, 25] and its variants [6, 8, 11, 14, 24] have the most
significant advantage in that its feature set is learned by
itself. RNN [16, 20] is a DL model suitable for solving the
sequential problem, identifying patterns in URLs. LSTM
[3-5, 10, 20] is a special RNN to realize the long-term
memory of characters. Compared with RNN, CNN
training is shorter, whereas CNN compared with a deep
neural network (DNN), its parameters are fewer, and the
model is more concise. MLP [3, 10, 13, 15, 17] is a feed-
forward neural network (FFNN) with multiple processing
layers and at least one hidden layer, among which both the
hidden layer and the output layer have the ability for Web
attack detection. Autoencoder is an FFNN with one or
more layers designed to minimize input and output
differences. A stacked Autoencoder (SAE) [9, 26] is
constructed by stacking the input and hidden layers of the
Autoencoder layer by layer.

MIPRO 2023/ISS 1387

TABLE II. SUMMARY OF REVIEWED PAPERS

Ref

Implementation details of the proposed approach
Performance by most frequent

performance metrics

Web

attack
Type Framework Dataset Prep. technique

Over/under

-fitting

protection

Model
Acc.

(%)

TPF

(%)

F1-

score

(%)

FPR

(%)

[3]

Multiple

Web

attacks
injected

in HTTP

request

or

payload

SLM PyTorch
CSIC2010*,

Private
Character

embedding
Data

cleaning

MLP,

CNN,

LSTM

97.79 96.04 98.72 N/A

[4] SLM N/A
CSIC2010*,

Private

Tokenization,
Word embedding

Data
balancing

LSTM-
MLP

98.42 97.56 N/A N/A

[5] SLM
TensorFlow

/ Keras

CSIC2010*,

ECMLPKD,

Private

Word embedding

Data

augmentati

on

Bi-LSTM 98.6 98.4 98.1 N/A

[6] SLM N/A CSIC2010 Skip-gram Boosting
Text
CNN

SVM

99.33 99.09 N/A N/A

[7] SLM
TensorFlow

/ Keras

CSIC2010,

httpParams,

FWAF

CBOW, FastText Dropout ResNet 99.41 99.55 N/A N/A

[8] SLM
TensorFlow

/ Keras
Private Neural embedding

Early

Stopping

CNN,

GRU
99.61 99.58 99.61 N/A

[9]

SQLi,

XSS,

object
deserial.

USL

M

TensorFlow

/ Keras,

WEKA

Private Neural embedding Denoising SAE N/A 92.8 91.8 N/A

[10]

SQLI,

XSS

SLM N/A
CSIC2010*,

Private
CBOW

Dropout,
Data

cleaning

Ensemble

MLP,

CNN,

LSTM

99.47 99.70 99.0 0.33

[11] SLM N/A
CSIC2010*,

Private
Tokenization

Boosting,

Data

balancing

CNN

with

attention

99.845 98.29 99.1 0.0

[12]

SQLi

USL
M

N/A Private Word2Vec

Data

cleaning,
Data

balancing

Encoder-

Decoder

RNN

N/A 99.0 98.0 N/A

[13] SLM PyTorch Private Tokenization Boosting MLP 99.75 99.88 N/A 0.02

[14] SLM
TensorFlow

/ Keras
Private Word2Vec

Data

cleaning

Elastic

Pooling

CNN

99.93 99.94 99.95 N/A

[15] SLM PyTorch

CSIC2010,

httpParams,

FWAF

BERT tokenizer
Data

balancing
MLP 99.98 N/A 98.7 N/A

[16]

XSS

SLM
TensorFlow

/ Keras
XSSed

Tokenization

Word2Vec

Cross-

valid.,
Dropout

CNN-

LSTIM
99.3 99.1 99.5 N/A

[17] SLM
TensorFlow

/ Keras
Private Tokenization

Dropout,

Cross-

valid.

MLP 99.32 98.0 98.7 0.31

[18]
XSS-
DOM

SLM
TensorFlow

/ Keras
Private CBOW

Cross-
valid.

DFFN N/A 95.0 N/A N/A

[19]

XSS in
PHP*

and JS

SLM N/A
Private (D1,

D2*)

Wod2Vec,

Code2Vec*

Data

cleaning,

Data

balancing

DFFN
with

attention

95.38 99.90 91.80 N/A

[20] XPath SLM PyBRAIN Private
Character

embedding

Data

cleaning,

Boosting

RNN,

LSTM
N/A 84.2 N/A 16.2

[21]

Phishing

SLM N/A UCI

Feature selection

and weighting

using GA.

Dropout,

Boosting,
Cross-

valid.

DNN 88.77 85.81 N/A N/A

[22] SLM N/A UCI Neural embedding
Data

balancing,
DNN 97.71 90.51 92.16 1.7

[23]

DDoS

USL
M

WEKA Private
Statistical feature

extraction
Cross-
valid.

SAE, LR N/A 98.99 N/A 1.27

[24] SLM N/A
CICIDS2017,

KDDCU99*
Neural embedding

Data

balancing

MC-

CNN
99.18 N/A N/A N/A

[25]

Webshell

in PHP*,
JSP and

ASP

SLM TensorFlow Private CBOW Dropout CNN 99.50 99.70 99.40 N/A

[26] Trojan
USL

M
N/A Private Neural embedding Denoising SAE 94.92 N/A N/A 16.32

* best results

1388 MIPRO 2023/ISS

Logistic regression (LG) [23] was used with SAE for
classification, as it can output a value corresponding to the
probability of belonging to a given class. Transformer
architecture like BERT [15] showed promising results to
be used in Web attack detection. BERT can be considered
as a stack of encoders and decoders. To combine all the
strengths of all models, a typical approach is to use an
ensemble. Voting ensembles are primarily selected based
on the output of models. Hard voting predicts the majority
class, whereas soft voting summed predicted probabilities
from individual classifiers for each class. So, soft voting
gives better insight better if all models provide
probabilities [10].

E. Over/under-fitting protection

Classifying imbalanced datasets is a major challenge.
DL algorithms solve these challenges and thus do not need
a feature selection process performed during
preprocessing [5]. However, if irrelevant or unnecessary
features are selected, high variance (overfitting) or high
bias (underfitting) may occur. Summary of reviewed
papers showed that data cleaning and/or balancing was the
most used method to combat over/under-fitting. Other
techniques were dropout, cross-validation, boosting,
denoising, early stopping and data augmentation. Data
cleaning [3, 10, 12, 14, 19, 20] includes operation such as
removing duplicates, modifying labels without values, etc.
Data balancing [4, 11, 12, 15 19, 22, 24] involves random
sampling and random parameter initialization in order to
obtain balanced data set. Dropout [7, 10, 16, 17, 21, 25] is
usually applied only to the neurons in the top one to three
layers (excluding the output layer). Grid or random search
[16, 17, 21, 23] has been used as a model hyperparameter
optimization technique with a k-fold cross-validation
approach. This approach randomly splits the training
dataset into a set of k-folds of approximately equal sub-
dataset sizes. Different boosting techniques for updating
the weights of the DL models were used, inducing Adam
[10, 11, 13], RMSprop [20], and AdaDelta [19].
Denoising [7,24] works by corrupting the original input
with some noise. The Autoencoder then needs to
reconstruct the input from that noise, which forces the
hidden layer to capture the statistical dependencies
between the inputs. Another way to regularize iterative
learning algorithms, such as gradient descent, is early
stopping [8]. The training is stopped as soon as the
validation error reaches a desired minimum. Finally, data
augmentation [5] artificially increases the size of the
training set by generating many modified variants of the
training instance. In this way, it compensates for a
shortage in data.

F. Evaluation

In imbalanced classification, the number of examples
in the training dataset for each class label is not balanced.
Since the distribution of classes is skewed, e.g., they
extend much farther to the left or right of the median. In
this case, it is not sufficient to use accuracy alone as a
metric of model performance. So, it is recommended to
examine the confusion matrix. The idea of a confusion
matrix is to count the times instances of class A are
classified as class B for all A/B pairs. Elements of the
confusion matrix in the context of Web security are the

following: true positives (TP) or Web attack requests in
the dataset that are correctly detected as Web attacks, true
negative (TN) or normal requests correctly detected as
normal request, false positives (FP) are those normal
requests detected as Web attack requests and false
negatives (FN) that are Web attack requests detected as
normal requests. To compute the confusion matrix, we
first need to have a set of predictions to compare them to
the actual targets. Each row in a confusion matrix
represents an actual class, while each column represents a
predicted class. A perfect classifier would only have true
positives and true negatives, so its confusion matrix would
only have nonzero values on its main diagonal. Analyzing
the confusion matrix often gives us insight into ways to
improve your classifier. Below are just a few of the most
common performance metrics [17]:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 (2)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙/𝑇𝑃𝑅 =
TP

TP+FN
 (3)

𝐹𝑃𝑅 =
FP

TN+FP
 (4)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 (
Recall ∗ Precision

Recall + Precision
) (5)

𝐴𝑈𝐶 =
1

2
 (

𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃
) (6)

The recall/precision trade-off should be noted. In this
trade-off, the higher the recall is, the lower the precision
becomes and vice versa. Because of this, the F1-score
measure or the harmonic mean of precision and recall is
usually applied [22]. AUC is an abbreviation for area
under the ROC Curve, AUC is the probability that the
model ranks a random positive example more highly than
a random negative example. ROC stands for receive
operating characteristic curve, and in a nutshell, it pots
TPR vs FPR at different classification thresholds. A
perfect classifier will have a ROC AUC equal to 1,
whereas a purely random classifier will have a ROC AUC
equal to 0.5. When a feature distribution has a heavy tail
(i.e., when values from the mean are not exponentially
rare), both min-max scaling and standardization will
squash most values into a small range. So, before we scale
the features, it is recommended first to transform it to
shrink the heavy tail and, if possible, to make the
distribution roughly symmetrical and bell-shaped
distributions (e.g., by computing their logarithm or square
root). To improve performance of the classifier, first we
can gather more training data so that the classifier learns
to distinguish them. Second, we could engineer new
features that would help the classifier. Third, we can try to
preprocess the data.

V. CONCLUSION

Client-side vulnerabilities exploit Web browser
weaknesses. Most Web applications do not accurately
filter the user's input data, so both the client and the server
are invaded. The main difference between DL and
traditional ML is that performance of DL algorithms
benefits more when the dataset augments. DL models do
not require complicated artificial feature engineering.

MIPRO 2023/ISS 1389

Retraining using online data opens the possibility of
incorporating attack data into the normal dataset and
avoiding detection. Class imbalance can cause DL models
to be biased towards the negative class and negatively
impact classification performance. Random sampling can
help to balance it. The goal of detecting unseen attacks
(zero-day) should be elaborated as detecting new attacks
that share specific characteristics with the known attack
used in training. Some models are better at limited dataset
size and for specific Web attacks. Unsupervised DL
models, like Autoencoders, can achieve high F1-scores in
Web attack detection without domain knowledge and
labeled training data. Publicly available datasets are
outdated and not representative in most use cases.
Therefore, we can conclude that data quality and feature
extraction are critical components for the robustness and
precision of these classifiers. Moreover, the proposed DL
methods effectively detect Web attacks with FPR close to
zero and the corresponding TPR (AUC-ROC curve) of
almost 100%. Furthermore, codes and preprocessing
details or datasets need to be publicly available for
reproducibility and as a contribution to similar works in
the future. New models should aim to achieve better
detection accuracy, low computational cost, high
flexibility, and high robustness. Some possible future
works or improvements in this area are as follows: (i)
finding and correcting misclassified labels in the original
dataset, (ii) extracting more characteristic information of
the Web attack besides the HTTP request or URL. (iii)
creating a new standardized dataset of Web attacks (iv)
improve existing approaches even further by exploring
alternative combinations of DL models, (v) determine the
frequency when DL models should be retrained and (vi)
develop a methodology for creating new DL models and a
framework for evaluating existing ones.

REFERENCES

[1] Liu, H., & Lang, B. (2019). Machine learning and deep learning
methods for intrusion detection systems: A survey. applied
sciences, 9(20), 4396.

[2] Ahmad, R., Alsmadi, I., Alhamdani, W., & Tawalbeh, L. A.
(2023). Zero-day attack detection: a systematic literature review.
Artificial Intelligence Review, 1-79.

[3] Gong, X., Lu, J., Wang, Y., Qiu, H., He, R., & Qiu, M. (2019,
December). CECoR-Net: A character-level neural network model
for web attack detection. In 2019 IEEE International Conference
on Smart Cloud (SmartCloud) (pp. 98-103). IEEE.

[4] Liang, J., Zhao, W., & Ye, W. (2017, December). Anomaly-based
web attack detection: a deep learning approach. In Proceedings of
the 2017 VI International Conference on Network,
Communication and Computing (pp. 80-85).

[5] Karacan, H., & Sevri, M. (2021). A novel data augmentation
technique and deep learning model for Web application security.
IEEE Access, 9, 150781-150797.

[6] Yu, L., Chen, L., Dong, J., Li, M., Liu, L., Zhao, B., & Zhang, C.
(2020, July). Detecting malicious web requests using an enhanced
textcnn. In 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC) (pp. 768-777). IEEE.

[7] Tian, Z., Luo, C., Qiu, J., Du, X., & Guizani, M. (2019). A
distributed deep learning system for web attack detection on edge
devices. IEEE Transactions on Industrial Informatics, 16(3), 1963-
1971.

[8] Yang, W., Zuo, W., & Cui, B. (2019). Detecting malicious URLs
via a keyword-based convolutional gated-recurrent-unit neural
network. IEEE Access, 7, 29891-29900.

[9] Pan, Y., Sun, F., Teng, Z., White, J., Schmidt, D. C., Staples, J., &
Krause, L. (2019). Detecting web attacks with end-to-end deep
learning. Journal of Internet Services and Applications, 10(1), 1-
22.

[10] Luo, C., Tan, Z., Min, G., Gan, J., Shi, W., & Tian, Z. (2020). A
novel web attack detection system for internet of things via
ensemble classification. IEEE Transactions on Industrial
Informatics, 17(8), 5810-5818.

[11] Liu, T., Qi, Y., Shi, L., & Yan, J. (2019, August). Locate-Then-
Detect: Real-time Web Attack Detection via Attention-based Deep
Neural Networks. In IJCAI (pp. 4725-4731).

[12] Tang, R., Yang, Z., Li, Z., Meng, W., Wang, H., Li, Q., ... & Liu,
Y. (2020, July). Zerowall: Detecting zero-day web attacks through
encoder-decoder recurrent neural networks. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications (pp. 2479-
2488). IEEE.

[13] Tang, P., Qiu, W., Huang, Z., Lian, H., & Liu, G. (2020).
Detection of SQL injection based on artificial neural network.
Knowledge-Based Systems, 190, 105528.

[14] Xie, X., Ren, C., Fu, Y., Xu, J., & Guo, J. (2019). Sql injection
detection for web applications based on elastic-pooling cnn. IEEE
Access, 7, 151475-151481.

[15] Seyyar, Y. E., Yavuz, A. G., & Ünver, H. M. (2022). An attack
detection framework based on BERT and deep learning. IEEE
Access, 10, 68633-68644.

[16] Kadhim, R., & Gaata, M. (2020). A hybrid of CNN and LSTM
methods for securing web application against cross-site scripting
attack. Indones. J. Electr. Eng. Comput. Sci, 21, 1022-1029.

[17] Mokbal, F. M. M., Dan, W., Imran, A., Jiuchuan, L., Akhtar, F., &
Xiaoxi, W. (2019). MLPXSS: an integrated XSS-based attack
detection scheme in web applications using multilayer perceptron
technique. IEEE Access, 7, 100567-100580.

[18] Melicher, W., Fung, C., Bauer, L., & Jia, L. (2021, April).
Towards a lightweight, hybrid approach for detecting dom xss
vulnerabilities with machine learning. In Proceedings of the Web
Conference 2021 (pp. 2684-2695).

[19] Maurel, H., Vidal, S., & Rezk, T. (2022). Statically identifying
XSS using deep learning. Science of Computer Programming,
219, 102810.

[20] Deshpande, G., & Kulkarni, S. (2019). Modeling and mitigation of
XPath injection attacks for web services using modular neural
networks. In Recent findings in intelligent computing techniques
(pp. 301-310). Springer, Singapore.

[21] Ali, W., & Ahmed, A. A. (2019). Hybrid intelligent phishing
website prediction using deep neural networks with genetic
algorithm ‐ based feature selection and weighting. IET
Information Security, 13(6), 659-669.

[22] Feng, F., Zhou, Q., Shen, Z., Yang, X., Han, L., & Wang, J.
(2018). The application of a novel neural network in the detection
of phishing websites. Journal of Ambient Intelligence and
Humanized Computing, 1-15.

[23] Yadav, S., & Subramanian, S. (2016, March). Detection of
Application Layer DDoS attack by feature learning using Stacked
AutoEncoder. In 2016 international conference on computational
techniques in information and communication technologies
(icctict) (pp. 361-366). IEEE.

[24] Chen, J., Yang, Y. T., Hu, K. K., Zheng, H. B., & Wang, Z. (2019,
February). DAD-MCNN: DDoS attack detection via multi-channel
CNN. In Proceedings of the 2019 11th International Conference
on Machine Learning and Computing (pp. 484-488).

[25] Lv, Z. H., Yan, H. B., & Mei, R. (2019). Automatic and accurate
detection of webshell based on convolutional neural network. In
Cyber Security: 15th International Annual Conference, CNCERT
2018, Beijing, China, August 14–16, 2018, Revised Selected
Papers 15 (pp. 73-85). Springer Singapore.

[26] Xuan, S., Man, D., Wang, W., Qin, K., & Yang, W. (2018,
November). Hybrid Classification of WEB Trojan Exploiting
Small Volume of Labeled Data Vectors. In 2018 14th
International Conference on Computational Intelligence and
Security (CIS) (pp. 286-290). IEEE.

1390 MIPRO 2023/ISS

