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Abstract—In the past decade, eye-tracking technology has
been increasingly utilized in healthcare settings to assess
an individual’s cognitive status under various circumstances
to evaluate the presence of brain injuries and monitor the
evolution of temporary or permanent cognitive illnesses.
More specifically, emerging research has confirmed that
disconjugate eye movements can be utilized as a predictor
of a concussion and potentially return-to-play protocols.
Currently, most healthcare applications use eye-tracking
devices requiring more detailed signals at a higher sampling
rate and with better camera resolution compared to the eye-
tracking technology used in the consumer market. Unfortu-
nately, this limits the availability of this type of diagnostic
system to clinical settings and prevents its use in situations
where early diagnosis is crucial (e.g., during a football game,
where 300,000 concussions are reported yearly).
In this paper, we introduce a solution for potentially diag-
nosing and treating concussions based on images acquired
with inexpensive and more available camera devices such as
webcams, and we detail a performance evaluation study of
a popular image segmentation and object detection machine
learning model (i.e., MediaPipe Facemesh and Iris) applied
to the acquisition and analysis of eye-related signals (e.g., eye
movements and blinking) for healthcare applications.
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I. INTRODUCTION

A concussion is considered a mild traumatic brain injury
that is caused by a bump or jolt to either the head or the
body resulting in rapid brain movements inside the skull.
Of the 1.4 million annual traumatic brain injuries (TBI) in
the United States, 50,000 persons die and another 235,000
will require hospital admission while 50% of incidents
go unreported or undetected [1]. More specifically, it is
estimated that more than one-third of concussions go un-
diagnosed in athletes [2]. The lack of proper diagnosis of
concussion may result in serious long-term consequences
or risk of coma or death [3].
To avoid catastrophic injury and long-term negative health
consequences due to undiagnosed concussions, accessible
and affordable technology should be utilized and better
developed for consumer and medical-grade consumption.
Technology advances in the last decade have found eye-
tracking can be used to assess brain injury and it can be
utilized as a high-sensitivity biomarker compared to other
types of subjective exams and assessments to determine
concussion symptoms that are commonly administered by
physicians [4] [5] [6].

Current eye-tracking solutions are expensive, are not ac-
cessible to many areas and people, and are only available
via a healthcare provider. A frequent issue with non-
computerized concussion assessments is the duration of
the test and the likelihood of false-positive diagnoses
or data to support a return to play or work [7]. For
example, baseline testing batteries with reliable day-to-day
change indices have merit, but invalid changes in a gait
test or dexterity test can result in false-positive diagnoses
due to faulty tests or interpretations [7] [8] [9]. Reliable
and noticeable change indices can become even more
challenging to interpret when implementing a multitest
battery for concussion assessment [9]. There is emerging
data and technology to support eye-tracking as a means for
rapid diagnosis of concussions from youth to professional
athletes [6] [10]. Eye-tracking can be a valuable tool
to monitor subtle daily changes in eye movements that
may indicate improvements in cognitive function resulting
in well-calculated quantitative assessments for return to
play, as opposed to subjective physician assessments.
Neurocognitive testing is a method to assess brain function
by implementing various noninvasive tests such as paper
and pencil or computerized neurocognitive tests (CNT) [8]
[11] [12]. More specifically, computerized neurocognitive
testing can provide valuable concussion-related informa-
tion only if a baseline test has been administered to serve
as a reference for each individual [11]. In addition to a
well-designed baseline test, these assessments can take
a minimum of 15-30 minutes, need to be supervised by
a clinical professional, and must be administered in an
environment with no distractions with specific lighting that
can also be administered on a sideline or in a locker room
[13].
To avoid the complexity of cognitive assessments, rapid
eye-tracking can be done more quickly, would not require
a significant cognitive component, and could be used with
minimal supervision as a computer program could guide
the process. Rapid and reliable diagnosis of a concussion
can occur on a field, in a gymnasium, or even at a residen-
tial home with portable and computerized technology de-
signed to assess eye conjugation [5] [4] [14]. Accessibility
to initial concussion diagnosis can further improve short
and long-term health care by providing physicians with
additional information regarding the extent of disconjugate
eye movements [3] [10] [9] [15]. In addition to diagnosis,
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accessible eye-tracking technology can improve recovery
assessments for patients as data can be collected daily to
observe and record improvements in eye movements [10].
The information can then be relayed to a physician for a
more accurate determination of return to play or return to
work.

II. RELATED WORK

Several companies have developed commercial eye-
tracking solutions based on expensive dedicated hardware
that can be utilized to aid the diagnosis and treatment of
concussions. The Oculogica EyeBox is approved by the
Food and Drug Administration (FDA) to detect concus-
sions, does not require a baseline assessment, and can be
completed in 4-5 minutes [4] [5]. Additionally, due to its
cost and acquisition processes, clinical-grade eye-tracking
technology is only available at certain clinics or medical
facilities, which limits the possibility of reaching people
in rural areas and results in underserved populations.
Nevertheless, eye tracking is an established technology
that utilizes sensors such as infrared or RGB cameras to
track the pupil and its movement, it can be accomplished
with consumer-grade web cameras. Unfortunately, given
the cost, eye-tracking is not widely available, especially
in high schools and underserved locations, where most
traumatic brain injuries and concussions are undiagnosed.
Most eye-tracking applications involve the use of dedi-
cated external devices that range in price from $250 to
$10,000 USD and can only be accessed via a healthcare
provider. As previously mentioned, eye-tracking is used as
a tool to diagnose concussions in a non-invasive, acces-
sible, and quantitative way. Eye-tracking can also collect
and obtain novel information about the severity of concus-
sions that is unavailable from traditional, noncomputerized
examinations alone [4]. When compared to the Sports
Concussion Assessment tool version 3 (SCAT3) [15],
eye-tracking produced results with both specificity and
sensitivity that could be useful as a baseline-free means of
diagnosis, as well as having the potential to be the standard
for the detection of brain injury [5]. In patients with head
injuries, eye-tracking revealed a correlation between the
severity of the oculomotor disruption and the severity of
the symptoms displayed [5]. Results showed that both the
horizontal and vertical conjugacy of both eyes can be
compromised due to a traumatic brain injury that was
not present in non-trauma patients [5]. Applying eye-
tracking to young athletes also yielded different results
than commonly used clinical assessments, suggesting that
it may be an objective addition to concussion examinations
[10] [15]. With the correlation between eye movement
and concussive symptoms, eye-tracking technology can
be used to detect concussions with reasonable accuracy
[4] [5] [6]. Studies have shown that there is a need for
objective concussion examinations outside of a hospital
environment, as many concussions go undiagnosed due to
a lack of testing accessibility as well as errors in objective
concussion examinations [2] [3] [14]. The abnormalities
in the eye movements of concussed patients can be very

subtle, which can make them difficult to subjectively
detect even when diagnostic examinations are performed
by trained professionals on cooperating patients [4] [5].
Common causes of misdiagnoses in patients examined by
medical professionals include lack of transparency from
patients, miscommunication between patients and profes-
sionals, and bias on the part of medical professionals and
their equipment or the type of test [2] [4] [8] [15] [16]. Un-
diagnosed concussions can lead to health complications,
such as an increased likelihood of comorbid events [17].
Eye-tracking can be used to prevent the consequences of
undiagnosed concussions by making accurate concussion
technology readily available to a wider range of patients
and reducing qualitative errors.

III. EYE TRACKING USING MEDIAPIPE

In the last years, several groups explored viable alter-
natives to dedicated eye-tracking devices using traditional
RGB cameras and image processing algorithms to support
the wider use of eye-tracking technology in healthcare.
A potential solution resides with recent developments in
camera technology, suggesting that standard webcams can
be utilized to realize accurate eye tracking at sampling
rates and with resolutions that would be appropriate for
healthcare applications. However, standard consumer cam-
eras such as the webcams that are commonly incorporated
in notebooks or used for video conferencing, have a lower
acquisition frame rate (i.e., 24-30 frames per second),
provide only a monocular view of the subject’s face, and
process the acquired images via software. Moreover, as
described in [18], eye-tracking based on RGB cameras
involves a sophisticated workflow consisting of multiple
steps, that is, detecting and tracking the user’s face,
locating their eyes, identifying the position of their pupils,
and subsequently estimating the coordinates of the point
of the screen where the user is looking, in real-time.
Indeed, each step involves a different problem, specific
image processing techniques, and computational concerns
and requirements, which significantly affect performance
(i.e., speed), accuracy (i.e., the distance between the pre-
dicted gaze location and actual target), and reliability (i.e.,
within-subject and cross-subject accuracy).
More recently, MediaPipe [19] [20] has been introduced
as an efficient solution for real-time computer vision tasks.
It comprises a set of models optimized for specific image
segmentation and object recognition problems such as
face, hand, posture, and iris detection. Moreover, Medi-
aPipe Iris [21] focuses on identifying a subject’s pupils,
tracking their movement, and estimating their distance
from the camera.
MediaPipe FaceMesh predicts the facial topology of the
user based on a still image and represents it as an array of
468 key points, that is, vertexes each associated with a set
of three-dimensional coordinates that enable describing the
components of the face (e.g., silhouette, nose tip, cheeks,
and iris). Each property provides useful information about
the positioning and alignment of the subject with respect
to the camera, including face posture and rotation.
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Fig. 1: The 478 landmarks utilized by MediaPipe
FaceMesh and Iris to estimate the subject’s facial

geometry and the coordinates of their pupils.

In addition, MediaPipe Iris estimates the position of the
user’s pupils and represents them as an array of five
landmarks for each eye (i.e., top, bottom, left, right, and
center vertexes).
The opportunities offered by these models are remarkable,
as MediaPipe FaceMesh and Iris are designed to be
incorporated into cross-platform mobile applications and
websites, which makes the library one of the promising
candidates for exploring the feasibility of healthcare ap-
plications of eye-tracking based on standard RGB cameras.
However, their clinical use has not been fully explored yet.

IV. PERFORMANCE EVALUATION

The purpose of our work is to enable the development
of healthcare applications based on the use of ML mod-
els such as MediaPipe FaceMesh and Iris. The ultimate
goal of the proposed project is to develop a concussion
assessment solution that would increase the affordability
and availability of exams. If computer-grade webcams
and Machine Learning models can predict eye features
with sufficient accuracy, they could be advantageous in
reassessing the subjects’ conditions and managing their
rehabilitation without expensive equipment. To this end, it
is crucial to assess the model’s performance in effectively
detecting and tracking eye movements with a signal-
to-noise ratio (SNR) that is appropriate for supporting
diagnosing and monitoring cognitive conditions and brain
injuries.
Therefore, we realized a performance evaluation study
aimed at understanding the key factors that affect signal
quality in terms of accuracy and reliability when using Me-
diaPipe FaceMesh and Iris to estimate the facial geometry

Fig. 2: One frame collected by the experimental software.

and position of the pupils from the images acquired with
a standard webcam.

A. Materials and methods

In our data acquisition, we utilized five different note-
books incorporating 720p (1280 x 720 pixels) webcams
with standard lenses. Also, we recorded data using an
external 720p webcam mounting a wide-angle lens to
compare the performance and evaluate any differences.
We developed a dedicated data collection software that
estimated the distance of the subject based on their facial
landmarks by using the focal length of the camera. Also,
the software recorded the location of the center of each
pupil using a coordinate system relative to the size of
the frame. Figure 3 shows a frame captured by the
experimental software: the distance and frames-per-second
are shown at the top left corner, whereas the bottom right
corner shows an enhanced view of the right (red) and left
(green) pupils. At the beginning of each trial, the software
asked the subject to position themselves at a distance
of 10 centimeters from the camera. Subsequently, every
five seconds, the software asked the subject to move one
distance step (i.e., 1 cm) away from the camera while
keeping their eyes aligned with the lens. The trial stopped
when the subject was at a distance of 110 cm from the
camera. This is because a range of 10-110 cm is the
typical distance at which individuals either stay when they
use their computers or can be asked to maintain for the
duration of a quick assessment (i.e., shorter end of the
range). We did not use any physical guidance or constraint
to keep the subject aligned with the camera’s lens as
they moved away from it. However, data recording was
supervised to prevent the subject from moving too fast or
significantly deviating from the ideal alignment with the
camera. As each camera recorded at a rate of 30 frames
per second, we collected 90-150 frames for each distance
step from each subject, which we considered sufficient to
evaluate SNR and signal dispersion.
Five healthy subjects participated in our data collection. A
smaller pool of subjects was sufficient because the purpose
of our study was to evaluate the performance of the system
in terms of signal accuracy and reliability of webcam-
based eye tracking. Each subject realized four trials with
each camera, for a total of 20 trials per subject. As a result,
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Fig. 3: Calculation of the distance of the subject based
on the size of the iris and the focal length using similar

triangles.

we acquired a total of 288,000 frames. After removing
signal artifacts such as blinking, we had a total of 261,375
data points for each pupil (i.e., approximately 2600 frames
for each distance step).

B. Results

Our data show that signal dispersion linearly increases
with distance. The ideal SNR is achieved when the user is
at a range of 10-50 centimeters from the webcam, where
the dispersion is less than 4%, that is, less than 50 pixels
on a 720p frame. Also, SNR degrades at a faster pace on
the Y axis. This could be caused by vertical adjustments
in the pose of subjects as they were moving away from
the camera. Our findings are represented in Figures 4 and
5, which show the signal dispersion for the left and right
eye, respectively.
Furthermore, by analyzing the variance of the signal
dispersion, we can confirm that distances in the range of
10-50 centimeters are ideal for achieving more reliable
SNR, with dispersion affecting the signal by less than 1
pixel, on average. Conversely, as shown by Figures 6 and
7, the signal shows wider dispersion when the subject
is positioned more than 50 centimeters away from the
camera. The dispersion variance, which is shown in pixels
because of its small values, is contained within a range of
3.5 pixels on a 720pm webcam even at distances in the
range of 100-110 centimeters, which shows the robustness
of the facial geometry pipeline in accurately tracking the
pupils.
Data from the wide-angle webcam show a statistically
significant difference in the calculation of the distance of
the subject from the camera, which is due to a different
field of view (FOV) of the lens. However, our data did
not show any statistically significant difference regarding
SNR.

 

    

    

    

    

   

                        

                                   

  

Fig. 4: Horizontal and vertical signal dispersion
(percentage relative to the frame size) on the left eye.

 

    

    

    

    

   

                        

                                    

  

Fig. 5: Horizontal and vertical signal dispersion
(percentage relative to the frame size) on the right eye.

 

   

 

   

 

   

 

   

                        

                                    

  

Fig. 6: Horizontal and vertical dispersion variance (in
pixels) on the left eye.

 

   

 

   

 

   

 

   

                        

                                     

  

Fig. 7: Horizontal and vertical dispersion variance (in
pixels) on the right eye.
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C. Discussion

Our data show that MediaPipe FaceMesh and Iris are
viable tools for potentially developing healthcare appli-
cations that leverage standard webcams for eye-tracking.
Another contribution of our paper is that the subject’s
distance from the camera is a key factor. Based on our
findings, the signal acquired by the system has sufficient
accuracy and reliability when the subject is positioned at
a distance ranging from 10 and 50 centimeters from the
camera. Conversely, the SNR degrades significantly when
the subject is more than 50 cm away from the camera,
where noise values as high as 10% would not support
the use of the system for the assessments of concussions.
However, increased noise dispersion reported when the
subject is more than 50 cm from the camera could also be
caused by the subjects’ movements as they were asked to
distance themselves from the webcam.
Our experimental setup was designed to address the worst-
case scenario, that is, circumstances in which subjects
would not keep a fixed distance or hold their position
in front of the camera. We were interested in evaluating
the accuracy and reliability of MediaPipe FaceMesh and
Iris at different distances from the camera and when the
signal is affected by small movements of the subject to
mimic real-world scenarios in which users would take their
assessments at home, without supervision, or without ad-
hering to recording protocols strictly. Even in this case, the
system’s performance supports tracking eye movements,
including disjointed eye movements, fixations, and blink-
ing, with sufficient accuracy. However, a higher precision
assessment would require the subject to maintain their
position at a specific distance (or within a defined range)
from the camera, which can be obtained by implement-
ing constraints based on the facial geometry estimated
by MediaPipe FaceMesh. In addition to increasing the
reliability of the signal acquired from the user, smoothing
and denoising techniques could further enhance the signal.
Moreover, we discovered that standard and wide-angle
lenses can be used for data acquisition, provided that the
focal length can be set as a configuration parameter to
obtain more consistent results.

V. CONCLUSION

The goal of our work is to increase the availability
of solutions for assessing and monitoring cognitive con-
ditions and brain injuries such as concussions through
the development of user-friendly technology that can be
utilized more conveniently outside healthcare settings and
without the direct supervision of clinical personnel.
In this paper, we presented a study in which we evaluated
the performance of a Machine Learning model that could
potentially be employed for estimating eye movements
with a standard webcam. Specifically, we utilized Medi-
aPipe FaceMesh and Iris, a cross-platform object segmen-
tation and landmark detection library. Its advantage relies
on leveraging standard webcams for estimating the facial
geometry of the subject and tracking their eyes instead

of requiring dedicated eye-tracking devices. However, as
clinical assessments require high-quality signals, in our
work we primarily focused on analyzing the accuracy and
reliability of the data acquired by MediaPipe FaceMesh
and Iris.
To this end, we realized a preliminary experiment in
which we identified the ideal conditions for obtaining
high-quality signals from MediaPipe FaceMesh and Iris.
Our findings show that when the user is positioned at a
range of 10-50 cm from the camera, the signal obtained
by the webcam and processed by MediaPipe FaceMesh is
sufficiently accurate and reliable for achieving a detailed
assessment of eye movements, including disjointed eye
movements, as discussed in previous studies. However,
our data show that the SNR obtained by the system
becomes very poor when the subject is located more
than 50 cm away from the camera. Nevertheless, the
information produced by the system is enough for adding
constraints that provide the subject with guidance on the
ideal positioning for signal collection.
In our future work, we will compare the performance
of the proposed system with clinical-grade devices and
realize control studies involving healthy subjects and indi-
viduals affected by brain injuries or cognitive conditions
to assess the validity of our system and its potential uses
in healthcare settings.
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