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Abstract - Attention is a scarce resource in an 
increasingly distracting world. Although computing devices 
might well be blamed for much of the distraction we 
experience, these devices also afford an opportunity for 
feedback and improvement, as seen in a variety of contexts. 
This paper provides initial evidence that mouse movement 
data can be used to measure users’ attention control. 
Attention control refers to the ability to maintain top-down 
attention to goal-relevant stimuli and resist the distracting 
influence of irrelevant stimuli competing for attention. 
During a controlled experiment with conditions of varying 
levels of distraction, we captured participants’ mouse 
movements to determine whether mouse movement data can 
be used to detect both state and trait attention control. We 
discuss various applications of this approach as a feedback 
mechanism in situations where maintaining focus is an 
important determinant of system success, such as in online 
learning or training scenarios.   

Keywords – attention, distraction, mouse tracking, 
behavior analysis, human-computer interaction 

I. INTRODUCTION 
Attention is a scarce resource in the modern economy 

[1], becoming scarcer all the time as devices, feeds, and 
notifications compete for attention in an increasingly 
crowded technological landscape [2]. Among other 
effects, the proliferation of these technologies has had a 
general impact on many users’ ability to manage and 
focus their attention [3], driven mainly by a near-constant 
barrage of distractions [4]. 

Even without an array of distractions vying for 
attention, our species’ inability to sustain focused attention 
is well documented across a broad range of stimuli and 
environments [5]. Maintaining focus on a particular goal 
is effortful, requiring executive functions that consume 
cognitive resources such as working memory [6]. When 
those resources are depleted—because of distractions or 
from frequent task switching—cognitive performance 
suffers [7, 8].   

Although technology certainly plays a role in this 
attention problem, it may also be part of the solution. 
Research has demonstrated that real-time feedback about 
whether one is becoming distracted can help focus a 
wandering mind [9] and attention feedback systems have 
been studied in a variety of contexts, from distracted 
driving [10] to the workplace [11, 12]. 

A key drawback of existing attention feedback 
systems is their reliance on dedicated sensors to detect and 
monitor attention or focus. These include eye tracking [12, 
13], functional magnetic resonance imaging (fMRI) [9, 
14], or electroencephalogram (EEG) devices [15]. 
Although effective in providing real-time monitoring of 
attention, these technologies may not be practical for more 
general use, particularly in everyday web contexts. 

This paper describes an alternative approach to real-
time attention monitoring using mouse movements and 
describes the results of an initial test of the approach in a 
web-based setting. Based on the concept of attention 
control (AC) [16] and drawing on dual-process theory 
[17], we hypothesize that mouse movement data can be 
used to measure trait AC (i.e., an individual’s general 
propensity to maintain attention during goal-directed 
tasks) and to detect changes in state AC (i.e., to determine 
when an individual has become distracted during a given 
task).  

In summary, the research question that guides this 
research is: 

Can mouse-cursor movements be used to measure 
both trait and state attention control during a goal-
directed task?  

We address this research question by first 
summarizing prior research on attention feedback systems 
and related applications of mouse movement data. We 
then use dual-process theory and the response activation 
model to explain how and why mouse cursor movements 
can serve as a proxy for attention control. We summarize 
a controlled experiment that evaluates our hypotheses and 
conclude with a discussion of the results of our study and 
implications for future research.  

II. PREVIOUS RESEARCH 
Dual-process theories divide mental processing into 

two broad systems or types [18]: one that is reflexive, 
automatic, impulsive, and habit-driven, and another that is 
rational, logical, controlled, and cognitive [19]. Higher 
cognition—referred to as executive control [20]—results 
from the second system directing attention to the task at 
hand and, when necessary, intervening to override 
irrelevant distractions that activate the lower-level, 
automatic system [21, 22]. 
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Based on this dual-process view, many attention 
monitoring systems measure neurological activity, 
watching for signs that mental processing has shifted from 
the higher-level system to the reflexive, automatic system, 
indicating that the individual has become distracted. For 
example, EEG devices can detect sustained attention and 
provide real-time feedback to the wearer, significantly 
increasing focused attention [15]. Similar EEG monitoring 
and feedback systems have shown promise in improving 
outcomes in real-world scenarios, including therapeutic 
settings [23] and in the workplace [11]. 

Another application of attention monitoring and 
feedback uses fMRI to provide real-time feedback that 
indicates when someone has lost focus—a phenomenon 
known as mind wandering [24]. Researchers monitored 
brain-imaging data in real time and intervened when 
lapses in attention were detected, improving the focus and 
performance of study participants who received this 
“neurofeedback” [14]. 

Although these monitoring techniques provide 
relatively direct measurement of attention and focus, they 
are not practical for many everyday situations, despite the 
increasing availability of more wearable EEG sensors 
[e.g., 25]. By contrast, mouse movement data is 
ubiquitous in desktop computing situations and requires 
no specialized hardware. Mouse data has been used to 
infer attention in web-based settings [e.g., 26, 27], though 
much of this prior work has used mousing data as a way to 
measure and improve search engine results [e.g., 28, 29] 
or has been exploratory in nature without incorporating a 
theoretical lens to understand the mechanisms through 
which attention and distraction affect mouse movements 
[30, 31]. 

However, prior research has demonstrated that mouse 
movement data also reveals dynamic cognitive processes 
[32, 33], based on the notion that cognitive demands 
compromise motor function. Thus, mouse movements can 
detect deception [34], frustration [35], or fraud [36], using 
methods compatible with real-time monitoring that can 
detect state changes [37]. As dual-process theory argues, 
maintaining attention during goal-directed behavior is a 
process that evolves over time, whether because of a 
wind-wandering loss of focus or because of distractions. 
Thus, the present research explores whether mouse 
movements could be used to detect differences in 
attention, as informed by the cognitive resource 
perspective detailed in the next section. 

III. THEORY AND HYPOTHESES 
Dual-process theory explains that goal-directed 

behavior is guided by the intentional application of 
attention to a given task [20]. This process of attention 
control—defined as maintaining focus on goal-relevant 
information, particularly in the face of distraction [16]—
requires cognitive effort and is compromised when 
cognitive resources are strained [38-40].  

Individuals differ in their capacity for sustaining the 
cognitive resources AC demands [41]. Those who 
measure higher in this individual trait are less susceptible 
to distraction [42] and tend to perform better in, for 
example, academic settings [43]. Individuals can also 

improve their trait AC through practice or training, 
becoming less susceptible to distractions and better able to 
sustain focus over time [44, 45]. 

Distinct from trait AC, state AC is a measure of an 
individual’s ability to maintain attention during a given 
task and can be influenced by various aspects that 
influence the cognitive demands of the task. For example, 
a perceived threat [46] or other negative emotion [38] will 
decrease state AC, and distractions or other sources of 
cognitive burden during a task will temporarily deplete an 
individual’s AC [40, 47]. As prior research has shown that 
trait and state AC are distinct concepts [45], we treat them 
separately in this work, exploring whether mouse 
movement data can serve as a proxy measure for one’s 
trait AC (see H1) as well as measure differences in state 
AC resulting from experimentally induced distraction (see 
H2). 

Dual-process theory is used to explain the underlying 
mechanisms linking attention and distraction to motor 
movements, most notably in the Response Activation 
Model (RAM) [48]. The RAM argues that as a person 
interacts with the surrounding environment, stimuli with 
actionable potential are evaluated and selectively inhibited 
as movement toward goal-relevant stimuli is ultimately 
accomplished. Thus, the attention and movement systems 
are intimately linked [48]—perhaps resulting from their 
co-evolutionary roots [49]—and monitoring hand 
movements can reliably reveal many different attention-
related processes [50]. 

A growing body of prior mousing research has 
demonstrated that cognitive demands result in slower, 
more deviant, inefficient mouse movements, whether 
because of negative emotions [35], deception [34], or 
various forms of cognitive conflict [33]. Following this 
prior work and the dual-process RAM [48], we argue that 
a mouse user’s ability to maintain focus—both in general 
and in the face of temporary distractions—can be inferred 
from that user’s mouse movement patterns. Specifically, 
we hypothesize that higher AC will be characterized by 
faster, more efficient (i.e., with shorter distances), while 
low AC will be associated with slow, distracted, 
inefficient mousing patterns. These assumptions are 
incorporated for trait and state AC separately in the 
following hypotheses: 

H1: Mouse movements of individuals with low trait AC 
will be (a) slower and (b) cover more distance than 
individuals with high trait AC. 

H2: Mouse movements of individuals in a distracted 
state will be (a) slower and (b) cover more distance than 
individuals who are not in a distracted state. 

IV. METHODOLOGY 
We tested our hypotheses using a within-subjects 

experiment in which participants completed a simple 
mouse-clicking task on a website created by the research 
team.  

A. Procedure 
The task was adapted from a common experimental 

task in the attention research literature in which 
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participants perform a visual search to identify a single 
target among several distractors [51]. A typical mousing–
attention study uses highly controlled tasks with a single 
movement path from a starting location to a target [52]. 
We expanded and adapted the task to allow for more 
extensive mousing behavior that more closely 
approximates real-world web environments. Specifically, 
each trial asked the participant to click on a series of four 
numbered targets in sequential order. While the 
participant clicked the targets, the interface either 
displayed the numbered targets alone (high attention 
control) or also displayed four distractor targets and a 
distractor image to the right of the target area (low 
attention control). The distractor targets were visually 
identical to the numbered targets except that they 
contained letters. (The interfaces for the low AC and high 
AC treatments are shown in Figures 1 and 2.) The order of 
the conditions was randomly counterbalanced across the 
participants.  

 

Figure 1.  High Attention Control Task.  

 

 

Figure 2.  Low Attention Control Task.  

After completing the clicking task, participants were 
presented with a concluding survey. As a manipulation 
check, the survey displayed screenshots of the interfaces 
used in each condition and asked the participants to rate 
them in terms of how distracting the interface was. The 
post-survey also collected the attentional control scale 

(ACS) [53], a widely used survey measure of trait AC, as 
well as demographic information. 

B. Participants 
A total of 223 students from a large, private university 

participated in the study in exchange for 0.25% extra 
credit applied to a participating management course of 
their choice. Approximately 49% of the participants were 
male, 85% were from the USA, and the average age was 
21.8.  

C. Mouse Movement Data 
The web interface contained embedded JavaScript that 

captured mouse movement data during each trial. The 
library captured the x- and y-location of mouse 
movements, along with timestamps, which were then sent 
to a server to calculate speed and distance features.   

We calculated the total distance for each trial by 
summing the Euclidean distances between each pair of x-y 
positions ai and ai+1, given by the following equation: 

. This translates to a 

total distance of  between the recorded 

points a1, a2, …, an. Speed was then calculated as a 
function of cursor distance D and trial time t, and is thus 
measured in pixels per second: . 

D. Analysis 
We first used the manipulation check data to ensure 

that our experimental design reduced state AC as 
intended. A Wilcoxon rank sum test indicated that 
participants ranked the interface from the low AC 
condition significantly higher in terms of how distracting 
the interface was during the task. 

To test whether our two mouse movement measures 
could be used to effectively differentiate between different 
levels of trait AC, we used the ACS survey items. The 
ACS contains two subscale scores that represent different 
aspects of trait AC—focusing and shifting [54]. Thus, we 
first performed a basic factor analysis to evaluate the 
factor structure of the items, eliminating items that loaded 
poorly on their intended factor or that significantly cross-
loaded on both factors. The remaining items were then 
averaged to derive a single, continuous measure of trait 
AC that could be included in subsequent analyses. 

We first tested the first-order correlations among trait 
AC and our measures of speed and distance. The results 
revealed significant correlation between speed and 
distance (r = .65), but nonsignificant correlations close to 
zero between trait AC and speed (r = .04), and trait AC 
and distance (r = .03). Two additional tests for a possible 
relationship between trait AC and the two mouse 
movement measures were performed to further confirm 
the lack of results. First, to eliminate possible noise from 
the distractors used in the low AC condition, we 
performed the same correlation analysis using only 
mousing data from each participant’s high AC trial. 
Second, we categorized each participant’s trait AC score 
into one of four quartiles, comparing those individuals in 
the bottom quartile with those in the top quartile. Both of 

In sequential order, click on the dots from 1 to 4.
Then, click “Go to Next”.

(Distractor Image)
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these additional tests revealed no significant relationship 
between trait AC and the mousing measures (i.e., H1 was 
not supported). Thus, the trait AC measures were 
excluded from subsequent analysis. (These nonsignificant 
results are discussed further in the discussion section.) 

Next, we tested whether the mouse movement data 
could effectively differentiate between state AC, 
comparing each participant’s mousing data from the two 
experimental conditions in a mixed-effects linear 
regression analysis. Mixed-effects models use random 
effects to account for individual differences in repeated 
observations [55]—including differences in natural 
computing ability or, importantly, trait AC that may not be 
well captured by the ACS measures—and fixed effects to 
model the treatment effects—in our case, the high versus 
low AC manipulation. (Table 1 provides the descriptive 
statistics for the two conditions.) 

We specified one model with mousing speed as the 
dependent variable and a second with mousing distance as 
the dependent variable, allowing a random intercept for 
each participant and specifying the AC manipulation as a 
fixed effect. The regression model results are summarized 
in Table 2. Both models revealed significant effects 
resulting from the AC manipulation, providing initial 
evidence that mouse movements may be used as a proxy 
measurement for state AC. Thus, H2 was supported. The 
implications of our results and plans for future follow-up 
work are detailed in the next section.   

V. DISCUSSION AND FUTURE RESEARCH 
The goal of this research was to investigate whether 

mouse movement data can be used as a proxy measure for 
the attention (or, conversely, distraction) of the user in a 
web-based setting. The dual-process view explains how 
attention is managed by two different systems, with 
distractions adding additional cognitive burden during 
goal-directed tasks [20]. Prior research has demonstrated 
that dynamic feedback about individuals’ level of 
sustained attention can significantly improve their focus 

and other related outcomes [14, 15], but cumbersome 
brain monitoring technologies are not well suited to web-
based administration. Based on this same dual-process 
view of attention, we explored whether mousing behaviors 
could be used to identify both trait and state AC. Using a 
controlled, within-subjects experiment, we captured 
mousing behaviors during one high-AC and one low-AC 
task, hypothesizing that the depleted AC caused by visual 
distractions would cause systematic differences in 
mousing speed and distance. We also measured trait AC 
using the ACS [53], allowing us to test whether those 
same mouse movement features could reliably reveal 
individual differences in trait AC.  

The analysis revealed no significant relationships 
between trait AC and the mouse movement features. 
There are several plausible explanations for these 
nonsignificant results. First, this preliminary study design 
was a first attempt at investigating a potential link 
between trait AC and mousing behaviors and should not 
be considered comprehensive evidence for or against an 
observable relationship between the two. Prior research 
has demonstrated that individual differences in working 
memory capacity—closely related to trait attention control 
[41]—influence one’s susceptibility to distraction, 
observable in hand movements such as while using a 
handheld touchscreen pen [56]. The link between these 
individual differences and attention-related performance 
may also only apply to longer tasks [57] or in situations of 
real-world pressure like when an audience is watching 
[58]. Our preliminary experimental design is not likely to 
create those nuanced effects, and a more refined study 
design may produce the conditions necessary to observe 
the hypothesized effects. 

Another likely explanation for the nonsignificant trait 
AC results is the scale chosen to measure the construct. 
Although the ACS [53] is arguably the most widely used 
survey measure of trait AC, recent research has provided 
convincing evidence that the ACS may not correlate well 
with objective measures of AC [59, 60]. Thus, using a trait 
AC score derived from the ACS may be an inaccurate way 
to measure the construct and test the relationship. An 
improved study design could use a more objective 
measure of trait AC to afford a more reliable test of the 
hypothesize relationships between trait AC and mouse 
movements. 

However, our analysis provided evidence in support of 
H2, namely, that mouse movement data show promise as 
a method for identifying if a web user has become 
distracted. The state AC manipulation (in which various 
distractors were displayed among the goal-relevant 
targets) produced significant fixed effects in both the 
mousing speed and mousing distance models. This 
provides initial evidence that mouse movement data may 
be used in a web-based setting to detect when a user has 
become distracted. These findings have important 
implications for future research. 

First, state AC can be influenced by various internal 
and external factors, including stress, fatigue, and 
distraction. Having a way to measure the momentary AC 
in real-time could therefore provide insight into these 

TABLE I.  MEAN (SD) OF MOUSING MEASURES BY CONDITION 

Trial Condition Speed (px/s) Distance (px) 

High AC (no distractions) 460 (130) 3,180 (926)  

Low AC (with distractions) 427 (135) 3,550 (1,086) 

 

TABLE II.  MIXED-EFFECTS MODEL RESULTS 

Fixed Effect Estimate Std. Err. df t-value 

DV: Speed (px/s) 

(Intercept) 459.6 8.9 331.9 51.8*** 

Low AC  -32.3 8.1 222 -4.0*** 

DV: Distance (px) 

(Intercept) 3179.7 67.6 381.2 41.1*** 

Low AC  370.8 73.7 222 5.0*** 
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cognitive states, which could be used to inform the design 
and delivery of related interventions. 

Relatedly, research has shown that feedback 
interventions that are tailored to individuals’ cognitive 
states can be more effective than interventions that are not 
tailored [61]. Thus, a measurement technique such as that 
suggested by our results could be used in a range of 
different customized feedback loops to enhance outcomes 
in situations where user attention is crucial—most 
notably, perhaps, in the context of online learning. 

A final potential application for our preliminary 
findings further investigation is in helping users develop 
metacognitive skills, such as self-awareness and self-
regulation. Metacognitive skills are important for learning 
and cognitive performance, as they allow individuals to 
monitor and adjust their cognitive processes to meet the 
demands of the task [24]. Systems that provide real-time 
information on users’ attention states can help users 
develop metacognitive skills by increasing their awareness 
of their own cognitive processes. 

Despite these promising findings, the preliminary 
study reported here leaves room for further refinement and 
improvement. The mousing measures evaluated constitute 
a high-level representation of what is likely a complex 
cognitive process. Alternative explanations for the 
observed effects—such as frustration or task 
complexity—need to be ruled out. Moreover, expanding 
the approach to test the method’s validity during more 
complex and varied attention-related tasks will be required 
before a real-time attention feedback system based on this 
technology could be used reliably. Despite these 
limitations, however, the results reported here provide 
initial evidence that mouse movement data may contain 
signals that, with proper refinement and isolation, may 
prove valuable in detecting and promoting more focused 
attention.  

VI. CONCLUSION  
This research applied mouse movement data to a 

unique but promising area of potential application—
monitoring users’ attention in real-time. Based on dual-
process theory and aligned with attention feedback 
systems in offline settings, we developed hypotheses 
predicting how mouse movements will differ based on 
differences in attention control. A controlled experiment 
provided initial evidence that attention control impacts a 
user’s mousing behavior while also suggesting several 
promising opportunities for further development and 
refinement of the theory and approach used. With further 
exploration and additional empirical evidence, using this 
approach to monitor and respond in real time to users’ 
cognitive states could produce significant value in web-
based contexts where attention is a crucial resource 
relevant to system success. 
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