
Teaching Introductory Parallel Programming using
Two-Player Online Games

Sathiamoorthy Manoharan and Xinfeng Ye
School of Computer Science

University of Auckland
New Zealand

Abstract—Parallel programming is a powerful tool for comput-
ing tasks faster and more efficiently. Teaching an introduction
to parallel programming requires explaining the fundamentals
of parallelism, the various types of parallel programming con-
structs, and the tools and techniques used to build and debug
parallel programs. Teaching introductory parallel programming
can be a challenging task. This paper is an experience report,
detailing how a two-player online game is built as a motivating
focal point to engage students and explain various parallel
programming concepts and constructs.

Index Terms—teaching programming, parallel programming,
asynchronous programming, two-player games

I. INTRODUCTION

The benefits of parallel programming are readily realized in
the modern computing landscape where processors have many
cores. It is a powerful technique that can be used to drastically
improve the performance of applications and make them more
efficient. As such, it is essential for students to have a good
understanding of parallel programming techniques in order to
best utilize the technology.

A parallel program course would typically cover many
fundamental concepts such as threads, processors, cores,
distributed systems, and synchronization. It would compare
single-threaded and multi-threaded programming, and explore
the various types of parallel programming such as data paral-
lelism, task parallelism, and pipeline parallelism.

For an introductory course on parallel programming, some
of these concepts can be difficult to learn without hands-on
practical work. We took a project-based learning [1] approach
whereby the students built a two-player online game from the
ground-up to to gain a deeper understanding of the concepts
and apply their knowledge in a practical setting.

This paper is an experience report that discusses the benefit
of developing a two-player online game using a project-based
learning approach in achieving the learning outcomes of our
introductory course on parallel programming in the School of
Computer Science.

The rest of the paper is organised as follows: Section II
reviews some of the recent work related to ours. Section III
outlines the project as specified, while section IV discusses
how the project was executed. Section V adds further con-
siderations and reflections. The final section concludes with a
summary.

II. RELATED WORK

This section discusses some of the recent related work
in teaching parallel programming courses. Earlier works are
reviewed systematically by Carneiro Neto and colleagues [2].

Younis and colleagues [3] use a series of multi-themed
group projects to introduce parallel programming to their com-
puter organization class. They report results showing signifi-
cant improvement to the students’ parallel programming skills,
which they attribute to their use of project-based learning.

Chen reports on the design of a parallel programming course
for junior students, drawing from prior expertise in teaching
senior students [4]. Nearly half of the course is devoted to
programming exercises, offering students plenty of hands-on
experience.

Danelutto and Torquati leverage structured parallel program-
ming principles and several parallel programming frameworks
to improve the teaching and learning process [5]. They argue
that over a period of eight years, their teaching approach has
shown a steady trend of increase in student performance as
implied by the student grades.

Martins and colleagues use programming-contest-style chal-
lenges in parallel programming to encourage students to learn
parallel programming [6]. They argue, using quantitative and
qualitative scores, that such challenges engage students and
motivate them to master the concepts required to solve the
challenges.

Marzulo and colleagues, just like Martins and colleagues,
use challenges to teach parallel programming [7]. In this case,
the challenges are parallel programming marathons, which,
according to the authors, kindle student interest and increase
motivation.

Kurniawati presents a short paper on their experience with
teaching parallel programming, and notes the difficulty stu-
dents faced in designing and debugging parallel programs [8].

Conte and colleagues stress the importance of the teaching
parallel programming early in the degree program so that
students have the background and skills to use parallel pro-
gramming concepts throughout their degree [9].

III. THE PROJECT

The project required students to design and implement a
multithreaded game server suitable for two-player games (such
as Backgammon, Checkers, Chess, Go, etc.). The server helps
to pair up players and to coordinate the exchange of game

MIPRO 2023/EE 1857



moves. It does not know anything about the underlying game
itself. In other words, the game server does not attempt to
understand the game moves or enforce any rules. The game
rules are left to the two players to enforce, just like in a real
board game. This allows the game server to be generic, and
enables the students to focus their design and development
solely on the multithreading aspects.

The server was to be programmed using the C# program-
ming language, and needed to be constructed using a syn-
chronous server socket from the ground up. Higher-level APIs
(such as HTTPListener) were not allowed, and the students had
to implement the required multi-threading and synchronization
themselves.

Fig. 1: An illustration of the multithreaded game server for two-
player games. The game server does not attempt to understand the
game moves or enforce any rules. The game rules are left to the two
players to enforce, just like in a real board game. This allows the
game server to be generic, and enables the students to focus their
design and development solely on the multithreading aspects.

The server was to use HTTP REST as the basis for com-
munication with the game clients. To this end, the following
(GET) endpoints were suggested:
/register

This endpoint generates a random username for a player,
registers this name, and returns to the user the registered
name. The player is required to pass this username in all
subsequent transactions for identification.

/pairme?player={username}
This endpoint attempts to pair the given player with
another player. It returns a game record (or a suitable
subset of it). The game record is a tuple containing a
game ID, game state, username of the first player, user
name of the second player, last move of the first player,
and the last move of the second player. When there is no
other player waiting, the game record will contain a newly
allocated game ID (which could be a GUID), a game state
indicating ”wait”, and the username of the requesting
player as first player. The rest of the elements in the
tuple are not defined. When there is a waiting player,
the game record will be the game record first created for

the waiting player, updated to add the second player and
the state indicating ”progress”. The state ”progress” tells
both players that the game can now begin. The endpoint
can be invoked by both players as many times as they
want before the commencement of the game. This helps
the first player to ”poll” the state to see if a second player
has been paired up.

/mymove?player={username}&id={gameId}&move={move}
This endpoint, when used during the game’s ”progress”,
will supply the user’s move to the server. The ”last move”
of the player in the corresponding game record will be
updated with this supplied move.

/theirmove?player={username}&id={gameId}
This endpoint, when used during the game’s ”progress”,
will collect the other player’s move from the server. The
game server will supply the ”last move” of the other
player from the game record corresponding to the given
game ID.

/quit?player={username}&id={gameId}
This endpoint notes to the server the intention of the
player to quit the game. The server will remove the game
record corresponding to the given game ID. Attempt by
the players to access the game record (for example, to
get a move) will fail after the record is removed.

Students were told to implement other endpoints for diag-
nostic or informational purposes (e.g., a /debug endpoint or a
/version endpoint) as required.

They also needed to take appropriate actions when errors
are encountered (e.g., invalid endpoints, malformed endpoints,
invalid parameters to endpoints, etc.).

Typically, a single thread will handle a single player’s end-
point interactions. The server, for the sake of efficiency, should
keep the connection alive to handle the player’s requests in the
same thread. However, it is possible that the client may, from
time to time, close the connection. For example, a browser will
close the connection if it deems the connection inactive for a
period of time. The server should be able to gracefully handle
this scenario and continue to serve the client (potentially using
a new thread).

Students were asked to think about what information is
shared among the threads and avoid potential race conditions
efficiently using appropriate concurrency controls.

In order not to complicate the server implementation more,
students were asked not to persist any of the information.
Meaning that, there was no database backend involved – the
information is kept only in nonpersistent memory and lost if
the server is restarted.

One thing that the server specification did not include is the
ability to support multiple game types. This was intentional,
as we wanted to see if any student picks this up (and none
did).

A. Testing

The students were asked to come up with an appropriate
testing strategy for verifying the correctness of the server. They

1858 MIPRO 2023/EE



were required to build a browser-based client for a chosen two-
player game to help with their testing and verification plan,
and to demonstrate game play using their server.

B. Learning Outcomes

The parallel-programming-related learning outcomes of this
project are the following

1) being able to create and use multiple threads
2) understanding critical sections
3) understanding and using mutexes and condition variables
4) avoiding deadlocks
5) ordering events
The marking rubric took into account these learning out-

comes. A high mark in the project therefore is likely to indicate
that the student met most of the learning outcomes.

IV. PROJECT EXECUTION

Most projects require one to have a broad knowledge of
many concepts to execute and complete them successfully. In
addition to parallel programming skills, the students required
good classic programming skills, an understanding of net-
work programming, in particular socket programming, basic
knowledge of HTTP, and systematic testing skills. While most
of these topics had been covered in prerequisite subjects the
students had studied, we observed gaps in their knowledge as
well as lack of practice becoming a barrier to the successful
completion of the project.

The key skills a large proportion of students lacked are
incremental development and effective testing strategies, both
of which are prerequisite material and are well outside of the
scope of this subject.

This required us to have additional help sessions to guide
students on iterative development. In particular, for this
project, we outlined an iterative development plan as follows.

1) Compile and run the synchronous server socket example
from the documentation. You will see that the server
closes the connection soon after sending the response,
and telnet client will terminate since the server closed
the connection.

2) Now change the server so that it does not close the
connection soon after sending the response. When you
have successfully done this, you can use the same telnet
client to send requests to the server and receive responses.
This connection is now alive, and this is what HTTP’s
keep-alive does (loosely speaking, since HTTP has a
timeout).

3) Now that you have a server that keeps the connection
alive, test with another concurrent telnet client (while
your first one is still active and connected to the server).
You would see that the second telnet client would connect
to the server but it won’t receive any response to requests
it sends. The first client is keeping the server busy here.

4) Try closing the first client and see if the server now
responds to the second client. You will see that it won’t.
This is because the server does not see that the first client
has closed the connection. You need to find out how to

detect this and get the server to be ready to serve the
second client when the first client quits.

5) At this point you have a server that keeps the connection
alive and is able to tidy itself up when clients disconnect
from the server.

6) Now you are ready to get multithreading into the play to
make the server service multiple clients concurrently.

Yet, a number of students did not test their implementation
fully. In addition, some of the students assumed that an HTTP
request would come in a single packet, an assumption that
would not hold if a slow client such as telnet were to be used.
This resulted in the average project mark being 48%, less than
the pass mark of 50%. We therefore gave everyone a second
chance to test and resubmit their project, after providing
student-specific feedback in one-to-one sessions. Fig. 2 shows
each student’s mark for their initial submission as well as their
second attempt.

Note that, the class size is small (just 28 students, as can
be inferred from Fig. 2), and therefore having one-to-onse
feedback sessions with students was possible.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

M
ar

k

Student ID

Initial submission Second attempt

Fig. 2: Initial marks and marks for the second attempt for each
student. The project was marked out of 15 and contributed to 15%
of the final mark.

On average, students gained 4.2/15, or 28%, marks in their
second attempt. If we exclude the three students who already
scored full marks in their initial submission, then the gain
becomes 4.7/15, or 31%. The average project mark after the
second attempt rose to 76%. These observations lead us to be-
lieve that the feedback from the initial submission contributed
to better marks in their second attempt, and consequently a
better overall learning.

Seven students did not use proper synchronization or lock-
ing in their implementation. One of the students had a demon-
strable deadlock in their game play.

Most students spent a lot of effort to complete the project to
a high standard, and informal feedback from the students in-
dicated that they highly appreciated the project-based learning
approach and being able to develop a complete game from the
ground up. Being generic, the game server allowed students
to implement a game client of their choice. Students therefore
implemented a variety of good, and working game clients.
Fig. 3–Fig. 6 show screenshots of some of these clients.

MIPRO 2023/EE 1859



Fig. 3: A chess client implementation.

Fig. 4: A checkers client implementation.

V. DISCUSSION

Teaching introductory parallel programming can be a dif-
ficult task, especially for those who are new to the subject.
There is a lot of material to cover, and it can be difficult to
decide what topics to focus on and how to best approach them.

Fig. 5: A gomoku client implementation.

Fig. 6: A tic-tac-toe client implementation.

A practical project such as the one used in this paper
provides students with opportunities to explore and extend the
topics discussed in class. It helps them gain a better under-
standing of how parallel programming works in practice in a
wide context. Formative feedback and fostering collaborative
discussions during the project also help.

Most of the difficulties a number of students faced did
not arise from the main focus of the course. They had
difficulties with incremental development, testing, debugging,
and also lacked network programming skills. While project-
based learning is fun and effective, it requires students to have
a broad understanding of many related subjects in order to
successfully complete the project.

VI. CONCLUSIONS

Teaching introductory parallel programming can be a chal-
lenging task. However, by providing hands-on experience, and
giving students opportunities to explore, it is possible to create
an effective and engaging course. Giving students a chance to
re-work their practical work after feedback is also a strategy
to improve the overall gain in learning outcomes.

REFERENCES

[1] G. E. Veselov, A. P. Pljonkin, and A. Y. Fedotova, “Project-based learning
as an effective method in education,” in Proceedings of the 2019 Interna-
tional Conference on Modern Educational Technology, ser. ICMET 2019.
New York, NY, USA: Association for Computing Machinery, 2019, pp.
54–57.

[2] J. A. Carneiro Neto, A. J. Alves Neto, and E. D. Moreno, “A systematic
review on teaching parallel programming,” in Proceedings of the 11th
Euro American Conference on Telematics and Information Systems, ser.
EATIS ’22. New York, NY, USA: Association for Computing Machinery,
2022.

[3] A. A. Younis, R. Sunderraman, M. Metzler, and A. G. Bourgeois,
“Case study: Using project based learning to develop parallel programing
and soft skills,” in 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2019, pp. 304–311.

[4] X. Chen, “Designing a parallel programming course for lower-division
students,” in 2020 International Conference on Computational Science
and Computational Intelligence (CSCI), 2020, pp. 1009–1011.

1860 MIPRO 2023/EE



[5] M. Danelutto and M. Torquati, “Increasing efficiency in parallel pro-
gramming teaching,” in 2018 26th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP), 2018, pp.
306–310.

[6] G. Martins, P. S. Lopes de Souza, D. Jose Conte, and S. M. Bruschi,
“Learning parallel programming through programming challenges,” in
2020 IEEE Frontiers in Education Conference (FIE), 2020, pp. 1–9.

[7] L. Marzulo, C. Bianchini, L. Santiago, V. Ferreira, B. Goldstein, and
F. França, “Teaching high performance computing through parallel pro-
gramming marathons,” in 2019 IEEE International Parallel and Dis-

tributed Processing Symposium Workshops (IPDPSW), 2019, pp. 296–
303.

[8] R. Kurniawati, “Teaching parallel programming with Java and Pyjama,” in
Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education V. 2, ser. SIGCSE 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1109.

[9] D. J. Conte, P. S. L. de Souza, G. Martins, and S. M. Bruschi, “Teaching
parallel programming for beginners in computer science,” in 2020 IEEE
Frontiers in Education Conference (FIE), 2020, pp. 1–9.

MIPRO 2023/EE 1861




