
Hybrid Agile Approach in Software Engineering

Education – A Case Study

M. Kaluza, S. Candrlic and M. Asenbrener Katic

Faculty of Informatics and Digital Technologies, Rijeka, Croatia

marina.kalu5a@gmail.com, sanjac@inf.uniri.hr, masenbrener@inf.uniri.hr

Abstract - By definition, software engineering is a

systematic approach to software development. However, to

succeed in today's dynamic business environment,

development teams must adapt and respond to change

quickly. To prepare students for their role in real-world

software development teams of which they will soon be a

part, teachers attempt to create as realistic a project

environment as possible. The software development

education model presented in this paper is based on the

hybrid agile approach. It combines both the agile approach,

which is suitable for dealing with changes in requirements,

and the planning-oriented, systematic approach, which is

traditionally used in software engineering. In addition, the

students' attitude towards this hybrid agile model is

investigated.

Key words – hybrid agile, agile, software engineering,

education

I. INTRODUCTION

Higher education courses are prone to many changes
over time as the industries and jobs, for which
universities prepare students evolve and change. Software
engineering is one of the fundamental courses of study
programs in the field of informatics, computer science
and engineering. Software engineering is a systematic
approach to software development in which the software
development process is viewed as a series of phases and
steps [1], [2].

Traditional development approaches are focused on
predefined phases. Requirements are fully specified
before coding begins. This approach gives large
companies a structure for monitoring, and simplifies the
understanding and scheduling of tasks. Managing large
teams of developers is easier because the end goal and all
requirements are specified before the development phase.
Some of the drawbacks include lack of adaptability,
delayed testing, and delayed product release. The lack of
customer involvement in development can lead to
dissatisfied customers who have waited too long for a
product that ends up not providing everything the
customer wants. One of the most commonly cited
traditional models is the waterfall model [1], [2], [3].

The Waterfall model consists of seven development
phases: requirements analysis, design, coding and
implementation, testing, operation and deployment, and
maintenance. Each of these phases must be fully
completed before moving to the next phase. In the first

three phases, all planning is done, and only when all
coding and testing is completed, can the project be
deployed. The last phase does not end, because perfecting
the product and improving of its functionalities will
continue as long as the product is used [3].

With the publication of the agile manifesto, a rapid
development of many different agile methods began.
Agile approaches were created to overcome the
shortcomings of traditional approaches. The agile
approach focuses on tasks, users and team members,
rather than documentation, and it focuses more on
responding to change rather than following a fixed plan.
Development in agile approaches is carried out through
iterations. Unlike traditional approaches, user
involvement and feedback are crucial in the development
process. Some advantages of agile approaches are easier
adaptability to changes, quick user feedback, and earlier
product implementation. On the other hand, agile
approaches lack documentation, which can be a problem
when new members join the project. It is more difficult to
measure progress because the end result is not completely
known. Short iterations can also lead to avoiding the
development of some large features due to their
complexity and not leaving enough time to design ideas,
which can lead to later changes due to user dissatisfaction
[4], [5], [6].

Scrum is the best-known agile methodology. In
Scrum there are three different roles: Scrum team, Scrum
master and product owner. The Scrum team is a team of
different experts who work together to develop the
product. The Scrum master is a member of the team who
makes decisions when there are disagreements within the
team. The product owner provides feedback to the user.
The Scrum methodology is based on development in
iterations, sprints. At the end of each sprint, a new
product increment is achieved. A Scrum sprint lasts from
at least a week to a month and consists of brief planning,
development of selected tasks from the backlog, testing,
and at the end a sprint review is conducted. Progress is
presented to the project owner in the review meeting.
Development is monitored through daily scrums when
developers discuss what smaller tasks should be
completed that day. Scrum promotes good
communication between team members and ensures
regular communication with the product owner, which is
why it is possible to reduce costs, since in each
development step only what the project owner needs is

1758 MIPRO 2023/EE

mailto:sanjac@inf.uniri.hr
mailto:masenbrener@inf.uniri.hr

done, and all members are well acquainted with the
requirements and needs of the project [7].

In addition to traditional methodologies and the agile
approach, companies today also use a hybrid agile
approach. This approach combines the advantages of
traditional and agile methodologies to produce a
methodology which can be used with minimal
customization [8], [9]. Hybrid approach is usually based
on waterfall model and some agile methods. The focus is
on the need for an initial plan, which is not as extensive
as in the waterfall model, but consists of initial
documentation, time and cost estimates and main goals.
In the next step, development is carried out according to
an agile model. For example, if the Scrum methodology
is used, the sprint iteration begins in this step [9], [10].
Since the main development is done using an agile
approach, this approach to software development can also
be called a hybrid agile approach, which is the focus of
this paper.

The paper describes the implementation of the hybrid
agile approach in a software engineering course and the
evaluation by the students. After the introduction, the
second chapter presents related work on the
implementation of the hybrid agile approach in industry
and software engineering courses. The methodology that
covers course structure and the evaluation of the
implemented approach is described in the third chapter.
The fourth chapter presents the survey results and their
discussion. Finally, the conclusions and plans for future
work are presented.

II. RELATED WORK

Many different studies have been conducted on the
implementation of traditional and agile methods in work
and educational environments. The main focus of this
paper is on the hybrid agile approach.

A. Development methodologies used in work

environments

Previous research shows that companies mostly use
different hybrid approaches for software development
[11], [12]. The authors in [11] explored which
methodologies are used in different organizations. Out of
6 respondents, 5 use a hybrid development model,
consisting of the waterfall model and the Scrum
methodology, while only one respondent uses a pure agile
approach with the XP methodology. Based on this, it can
be concluded that in the organizational environment, when
developing complex projects, it is usually not possible to
exclude documentation, which is emphasized in traditional
methodologies but neglected in agile methodologies. The
authors in [12] collected survey data on global software
development (GSD), which is characterized by distributed
and large-scale development and concluded that GSD
needed to move away from the use of traditional
approaches, resulting in companies primarily using some
type of hybrid approach to development. They also noted
that pure agile approaches are somewhat rare in GSD,
which is consistent with [11].

The authors in [13] discuss adoption of a hybrid
development model in companies outside the IT

industries. The implementation of the hybrid methodology
was conducted under the supervision and guidance of
three agile methodology coaches who participated in this
study. Companies that moved to a hybrid model
experienced several benefits of implementing some agile
practices in development, such as creative contributions
from individuals, as well as better communication
between different teams and more transparency within the
team.

When companies hire new employees, they want
applicants to have extensive knowledge that universities
have difficulty providing [14]. The authors in [14] noted
that because expectations are too high, companies are
forced to hire individuals who lack soft skills, which
proves to be a greater disadvantage than less knowledge.
Software engineering education needs to focus more on
computer science and the current tools used by the
companies that will employ the students upon their
completion of higher education. On the other hand,
companies need to hire people who are ready for
teamwork even if they have less knowledge than other
applicants.

B. Implementation of agile approaches in education

The authors in [15] conducted a comprehensive study
of software engineering education papers that address
software engineering trends. The most common trend used
in education was agile software development. The authors
of the paper found that, while the trend of implementing
agile approaches in education is the most popular, it
comes with its own challenges. This paper provides
guidelines for practitioners, researchers, and educators.

The following papers describe how hybrid agile
practices have been implemented in the higher education
environment. The most commonly cited agile
methodology in software engineering education is Scrum
[16-20], which is not surprising since Scrum is often used
in industry. The following papers show the
implementation of agile approaches in higher education
courses.

The authors in [16] presented a course in which a
project for a real user was carried out. A team of 6
students participated in this course. Students were
assigned roles and each was responsible for a different
aspect of the project. The main problem was that the
students had to learn about the technologies and
procedures and apply them at the same time applying
them. In addition, the students had to be encouraged to
communicate with the users, so that the final product met
user expectations. The authors concluded that not all agile
practices are appropriate for the educational environment,
but that they should still be used. Another conclusion is
that the project needs to be designed simply enough that it
can be done in a single course and students have enough
time for other courses during the semester.

The authors in [17] did not face the problems
mentioned in [16] that the students did not know
fundamentals and technologies because their course
consisted of a 3-week fast-track theoretical course and a
10-week product development course. Each team had the
same assignment and was given a user with whom they

MIPRO 2023/EE 1759

had to analyze and specify product requirements. Students
could choose which agile methodology and practices they
wanted to use. The course was deemed successful as all
teams were able to successfully produce a final product. It
was found that weekly meetings and user involvement
played the biggest role in project success as students were
warned if they were going in the wrong direction or taught
how to adopt more agile practices.

The authors in [18] had also introduced agile
development in the form of 1-week and in later years 2-
week assignments for teams. The teams worked on all
assignments separately, so the final results were different.
Students confirmed that this type of project in a course
gave them a better understanding of software
development.

In contrast to the before mentioned sources, the
following initially implemented traditional methodologies
and then gradually implemented Scrum [19] or completely
switched to Scrum [20]. Both papers found that the
introduction of Scrum increased student interest. The
authors in [19] initially taught students a traditional
approach to software analysis. The agile approach was
introduced gradually so that students could become more
familiar with agile practices. Daily meetings encouraged
students to actively participate. With this approach,
student satisfaction in learning and developing software
was observed as they developed a project that had a value
to the end user. The authors in [20] faced the problem of
students’ working at the last minute when using traditional
methodology which led them to switch to agile
methodology. The introduction of Scrum in education was
done in a controlled environment where students were
given detailed instructions for the goals of each sprint. The
authors also wanted to prevent non-participation in the
team, so team work was eliminated and assessments were
introduced at the end of each sprint. To promote the team
aspect of agile methodologies, a platform was introduced
where students could communicate, ask questions, and
help each other. The conclusion is that independent
projects like this, with the introduction of some aspects of
agile approaches, can teach students about agile
paradigms and development.

III. METHODOLOGY

The Software engineering course is one of the
fundamental courses of the Graduate University Study
Program Informatics at the Faculty of Informatics and
Digital Technologies, University of Rijeka. The course
was offered in the winter semester with 2 hours of lecture
and 2 hours of practical work per week. The workload for
the course is 6 ECTS credits. The course is taught by two
teachers: a professor and a teaching assistant.

The aim of the course is to acquire knowledge in the
field of software engineering and covers software
development phases: requirements analysis, project
development, team software development and software
testing. It covers the application of both agile and
traditional methods, techniques, and approaches that help
with planning, team organization, and task management
during software development within a specific
timeframes and resources.

The course includes the following topics: Models of
software development; Traditional, agile, and hybrid
approaches to software development; Methods and
techniques used in different phases of software
development; Team management; Analysis and
management of user requirements; Estimation of
resources for software development; Risk management;
Software design and architecture; Implementation;
Construction of program code in collaboration;
Refactoring; Testing; Version management; Software
documentation; Professional responsibilities of software
engineers; Software re-engineering.

Course outcomes are listed below. It is expected that
upon completion of all course assignments, students will
be able to:

 O1. Distinguish basic concepts, methods,
techniques, and approaches in the field of
software engineering, particularly as they relate
to traditional and agile approaches.

 O2. Develop models of a system based on an
analysis of user requirements and market needs in
a given domain.

 O3. Estimate the resources required to build the
software.

 O4. Plan software development considering the
various roles of development team members and
users in a software development team project.

 O5. Based on the analysis performed and the
project created, create the software in the chosen
development environment and prepare its
documentation.

 O6. Perform tests based on the planned test cases
and document the test results.

Course content is delivered through project-based
learning, so that assignments simulate real-life situations.

The activities used to assess the acquisition of
learning outcomes are a written exam (max. 30 points),
project meetings (0-20 points for active participation,
preparation, and proposed solutions) and software
development using a hybrid agile approach (0-50 points).

At the beginning of the semester, students were
divided into five teams of four. Each team member was
assigned a primary role (project manager, designer,
programmer, and tester), with responsibilities for the
work performed. The teachers presented two main
topics/themes that were used as global user requirements.
Staring from these, each team developed its project idea.
Each topic was selected by at least two project teams
competing to develop better software for that topic.

The project began with a software requirements
analysis to derive the key requirements for software
development. Each team chose its own development
framework. For each project meeting, the teams were
given several tasks and deliverables to complete. Each
meeting focused on a different deliverable, e.g., data
model, mockup, test cases and scenarios, program logic
and flow, etc. During the meetings, students presented

1760 MIPRO 2023/EE

what they had done so far, commented on their solutions
to the tasks, and set new tasks and plans for the next
project meeting. There was a total of 4 project meetings
and a final presentation of the software created by the end
of the semester. A combination of traditional face-to-face
classes and online classes supported by a learning
management system (Moodle LMS) was used. Figure 1
shows the main activities in the course.

Figure 1. Activities in the course

After completing all teaching activities, students were
asked to participate in a survey. The questionnaire was
created using Google Forms. It consisted of questions
with predetermined answers (yes/no), questions with a
Likert scale of 1 to 5, where 1 was “strongly disagree”
and 5 was “strongly agree”, and open-ended questions.
The survey was sent to all 20 students taking the
“Software Engineering” course in 2020/2021, and all
completed the survey. The Likert scale questions are
shown in Table I, and the responses to the remaining
questions are discussed in the text, both of which are
listed in the next chapter.

IV. SURVEY RESULTS AND DISCUSSION

Students on the teams were assigned roles (project
manager, architecture designer, programmer, and tester),
and most (95%) were satisfied with the role they chose.

When asked if they would prefer to perform all activities
equally, without being responsible for only one group of
activities (e.g., as a tester for all testing activities), they
had mixed opinions. 60% of students thought
independent, separate roles were a better option, while
40% would prefer to participate equally in all activities,
without being a separate person responsible for each
activity. The latter group explained that with independent
roles, team members are not equally motivated to
participate and do not gain the same knowledge during
the project. When asked how students should choose a
role on the team, most agreed that everyone should try to
expand their knowledge. However, when asked how this
could be achieved, they had different ideas. Some felt that
everyone should choose a role where they know more
(60%) and then help the rest of the team learn, a few
students felt it was better to choose a role where they are
less experienced (15%) so that they can learn through the
project, and others (25%) could not decide between the
two because they felt that all students should participate
in every aspect of the project.

Most students (75% strongly agreed and 10% agreed)
felt that it was easier to work in a team with friends, i.e.,
they favoured independent division into teams rather than
random assignment to a team. Opinions were divided on
the question of whether the choice of the main project
topic should be predetermined by the teacher: 35% of the
students disagreed with this statement, 35% agreed, and
30% did not know.

Almost all agree (45% strongly agree, 45% agree) that
the project meetings are a good way to evaluate progress.
They think that it was good that the tasks for the project
meetings were set 3 weeks in advance. One of the
questions on which there was no unanimous opinion was:
is it better to set the content and required documents of
the meeting in advance, or should the meeting be flexible
without full planning in advance. The general opinion is
that some level of meeting organization is necessary to
promote progress, but that too much documentation
should be avoided to be consistent with the spirit of agile
development. Some students suggested writing tasks on a
Kanban board each week.

When asked if everyone participated equally, they
were divided. Consistent with the previous question,
students were asked how they would describe their
contribution (Figure 2). Almost half of the students (45%)
felt that their contribution was equal to that of the rest of
the team, 35% and 20% felt that they had contributed less
and more, respectively, to the final solution than the rest
of the team.

Figure 2. Contribution in team

MIPRO 2023/EE 1761

It is interesting to note that only the students who held
the roles of architecture designers and testers felt that
their contribution to the final solution was less than the
contribution of the other team members. The role of
programmer was considered the most challenging by
more than half of the students (55%), 25% considered the
role of project manager the most challenging, and 20%
considered all roles equally challenging, with no focus on
the roles of architecture designer and tester (Figure 3).

When asked which approach, they thought should be
the first choice for the software engineering course
project, half of the students answered that it was a hybrid
agile approach, the other half chose the pure agile
approach, while no one chose the traditional approach.
Even though they do not have much practical experience
to judge this issue, the students’ opinion was based on the
theoretical ground they acquired in this this course.

Figure 3. Hardest role

The students' opinions on the questions about the

course organization and the project are shown in Table I.

A Likert scale of 1 to 5 was used, with 1 representing

“strongly disagree” and 5 representing “strongly agree”.

Students generally found this project to be a useful

experience, as all topics were adequately supported by

theoretical classes and they were satisfied that it was

possible to choose the development framework in which

to develop the application. Suggestions for improvement

included the introduction of "user" feedback to bring the

agile approach closer. It was also suggested to introduce

the Scrum methodology and define the objectives until

the next meeting at the end of the previous meeting. In

addition, it was suggested to introduce individual

evaluation in the teams, as some students felt that not

everyone contributed equally to the final product.

V. CONCLUSION

The survey results confirm some of the conclusions
drawn in previous research on agile and hybrid agile
methods in teaching. It was found that continuous
monitoring of project progress is necessary, while
evaluation of only the final product is rejected. Students
believe it would be useful to introduce as many features
of agile development as possible, less structured meetings
and the introduction of some form of feedback
immediately after the meeting.

However, as shown in the survey results, many
students think that it is beneficial to have roles in the

TABLE I. QUESTIONS WITH LIKERT SCALE ANSWERS

Question
1

(%)

2

(%)

3

(%)

4

(%)

5

(%)

Having roles in the team organization is a good way for all members to acquire equal knowledge 5 20 50 25 0

I am satisfied that we could chose our team 5 0 10 10 75

It is easier to work in a team with friends 0 10 15 10 65

Teacher should assing students into teams 25 50 10 5 10

In our team, the responsibilities were shared - everyone was responsible for the task they undertook (or were
assigned)

0 20 20 35 25

The teacher's instructions for a main project topic (general user request) were sufficient to develop the

project idea
0 0 15 20 65

The fact that we were competing with another team on the same topic motivated me to work harder and
better

5 25 15 30 25

I would prefer if each team had a different topic as a main project topic, instead of having team competition 25 45 15 10 5

I would prefer each team to define on their own main project topic and idea 10 25 30 10 25

Project meetings are a good way to evaluate the progress of the project 0 0 10 45 45

Project meetings are a good way to evaluate the contribution of each individual team member 0 10 25 40 25

For a successful participation in a team (such as during this project), all team members should have the

same level of knowledge
15 40 25 15 5

For a successful participation in a team (such as during this project), team members should have

complementary levels of knowledge
0 10 5 50 35

It is good that tasks for each project meeting are set in advance (3 weeks before the meeting) 0 0 5 35 60

I would prefer that all tasks for all the meetings are known at the beginning of the semester 15 35 10 15 25

I would prefer that instead of having pre-defined content and required documents for each meeting,

problems faced by the team and the functionalities to be included in the next version are discussed freely

during the meeting, without planning it in advance

10 35 15 30 10

The assessment done during meetings encouraged me to actively participate in all project meetings and

prepare the required deliverables of the project activities (documentation).
0 0 15 55 30

All members of my team participated equally actively in the project 5 25 20 40 10

Having a prototype required for one of the project meetings motivated me to work on the project. 0 5 0 75 20

I would prefer teachers to evaluate only the final product, without the checkpoints that were introduced

during the project meetings
35 45 10 5 5

I believe that this project gave mean understanding of the problems and insight to real team software
development.

5 5 10 55 25

In general, I think the experience of working on this project was useful. 0 10 0 30 60

1762 MIPRO 2023/EE

team organization, which was also the case in [16].
Another opinion, as well as the conclusions from [17-19],
is that roles should not be used to avoid the possibility of
only 1 or 2 students can complete the whole project
alone. However, it would be useful to improve the
organization of roles or find another way to evaluate
individual work, since half of the students felt that not
everyone contributed equally to the project, and that some
roles had more tasks and responsibilities at the end. The
authors suggest dividing work by tasks rather than roles,
which is more in line with the spirit of the agile approach.
This would prepare the ground for all students to
contribute equally to the development process through
different types of tasks.

The competitive nature of the course organization was
very motivating for the students. As in [16-20], a
predefined project topic and implementation method
(using specific tools) was considered a good way to go.
However, unlike [16], [18-20], in the implementation of
this project it was possible to choose a development tool
that the students were satisfied with.

In our future work, we plan to improve the presented
hybrid agile model. To make the agile approach more
prevalent, this model will introduce a work management
tool. This will allow teachers to better monitor the work
done by students, as well as their individual
contributions. Our future research will also focus on
methods to assess individual contribution in software
development team projects.

ACKNOWLEDGEMENTS

This work has been fully supported by the University
of Rijeka under projects uniri-drustv-18-73 and uniri-
drustv-18-140.

REFERENCES

[1] KPI Partners, “Traditional vs. Agile Software Development
Methodologies”, 2023. Available:
 https://www.kpipartners.com/blog/traditional-vs-agile-software-
development-methodologies [Accessed:15-Jan-2023]

[2] Geeksforgeeks, “Difference between Traditional and Agile
Software Development”, 2023. Available:
https://www.geeksforgeeks.org/difference-between-traditional-
and-agile-software-development/ [Accessed:15-Jan-2023]

[3] B. Lutkevich, “Waterfall Model”, Available:
https://www.techtarget.com/searchsoftwarequality/definition/wate
rfall-model [Accessed:18-March-2023]

[4] S. Al-Saqqa, S. Sawalha, & H. AbdelNabi, Agile software
development: Methodologies and trends. International Journal of
Interactive Mobile Technologies, 14(11), 2020.

[5] A. M. Gheorghe, I. D. Gheorghe, I. L. & Iatan, Agile Software
Development. Informatica Economica, 24(2), 2020.

[6] Active Collab, “Advatages and Disadvatages of Agile Project
Management”, 2017, Available:
https://activecollab.com/blog/project-management/agile-project-

management-advantages-disadvantages [Accessed:18-March-
2023]

[7] A. Srivastava, S. Bhardwaj and S. Saraswat, "SCRUM model for
agile methodology," 2017 International Conference on
Computing, Communication and Automation (ICCCA), Greater
Noida, India, 2017, pp. 864-869, doi:
10.1109/CCAA.2017.8229928.

[8] J. Noll, & S. Beecham, How agile is hybrid agile? an analysis of
the helena data. In Product-Focused Software Process
Improvement: 20th International Conference, PROFES 2019,
Barcelona, Spain, November 27–29, 2019, Proceedings 20 (pp.
341-349).

[9] M. A. Jabar, S. Abdullah, Y. Y. Jusoh, S. Mohanarajah and N. M.
Ali, "Adaptive and Dynamic Characteristics in Hybrid Agile
Management Model for Software Development Project Success,"
2019 6th International Conference on Research and Innovation in
Information Systems (ICRIIS), Johor Bahru, Malaysia, 2019, pp.
1-5, doi: 10.1109/ICRIIS48246.2019.9073337.

[10] N. Smits, “A Hybrid Software Development Method”, 2022
Available: https://www.devfacto.com/blog/a-hybrid-software-
development-method [Accessed:18-March-2023]

[11] N. Yahya, & S. S. Maidin, The Waterfall Model with Agile Scrum
as the Hybrid Agile Model for the Software Engineering Team. In
10th International Conference on Cyber and IT Service
Management (CITSM), 2022, pp. 1-5.

[12] M. Marinho, J. Noll, I. Richardson & S. Beecham, Plan-driven
approaches are alive and kicking in agile global software
development. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2019,
pp. 1-11.

[13] F. P. Zasa, A. Patrucco & E. Pellizzoni, Managing the hybrid
organization: How can agile and traditional project management
coexist?. Research-Technology Management, 64(1), 2020, pp. 54-
63.

[14] V. Garousi, G. Giray, E. Tuzun, C. Catal and M. Felderer,
"Closing the Gap Between Software Engineering Education and
Industrial Needs," in IEEE Software, vol. 37, no. 2, pp. 68-77,
March-April 2020, doi: 10.1109/MS.2018.2880823.

[15] O. Cico, L. Jaccheri, A. Nguyen-Duc & H. Zhang, Exploring the
intersection between software industry and Software Engineering
education-A systematic mapping of Software Engineering Trends.
Journal of Systems and Software, 172, 110736, 2021.

[16] M. Olszewska, S. Ostroumov and M. Olszewski, "To Agile or not
to Agile Students (With a Twist): Experience Report from a
Student Project Course, 2017 43rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2017,
pp. 83-87, doi: 10.1109/SEAA.2017.54.

[17] D. F. Rico and H. H. Sayani, "Use of Agile Methods in Software
Engineering Education," 2009 Agile Conference, 2009, pp. 174-
179, doi: 10.1109/AGILE.2009.13.

[18] K. Fertalj, B. Milasinovic, B., & I. Nizetic, Problems and
experiences with student projects based on real-world problems: a
case study. Technics Technologies Education Management, 8(1),
2013., pp.176-186.

[19] B. Bruegge, M. Reiss and J. Schiller, "Agile Principles in
Academic Education: A Case Study," 2009 Sixth International
Conference on Information Technology: New Generations, 2009,
pp. 1684-1686, doi: 10.1109/ITNG.2009.76.

[20] M. Madeja and M. Biňas, "Implementation of SCRUM
Methodology in Programming Courses," 2018 16th International
Conference on Emerging eLearning Technologies and
Applications (ICETA), 2018, pp. 333-340, doi:
10.1109/ICETA.2018.8572161.

MIPRO 2023/EE 1763

https://www.kpipartners.com/blog/traditional-vs-agile-software-development-methodologies
https://www.kpipartners.com/blog/traditional-vs-agile-software-development-methodologies
https://www.geeksforgeeks.org/difference-between-traditional-and-agile-software-development/
https://www.geeksforgeeks.org/difference-between-traditional-and-agile-software-development/
https://www.techtarget.com/searchsoftwarequality/definition/waterfall-model
https://www.techtarget.com/searchsoftwarequality/definition/waterfall-model
https://activecollab.com/blog/project-management/agile-project-management-advantages-disadvantages
https://activecollab.com/blog/project-management/agile-project-management-advantages-disadvantages
https://www.devfacto.com/blog/a-hybrid-software-development-method
https://www.devfacto.com/blog/a-hybrid-software-development-method

