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Abstract - The study of proteins has been of high 

importance because it is needed to understand the processes 

in the living organisms in which these molecules are 

involved. Proteomics is the research area that studies the 

protein structures. One of the tasks on which proteomics is 

focused on is solving the protein classification task. 

Although there are many studies focused on this problem, it 

is still a popular task because there is still need for faster 

methods for protein classification. The aim of the study 

presented in this paper is to develop a fast and accurate 

protein classification model. For that purpose, for feature 

extraction we use our protein ray-based descriptor. We use 

a deep learning architecture for generating prediction 

model. Besides the standard form of the protein ray-based 

descriptor, we also consider several other representations of 

the proteins and make examination which is the most 

appropriate representation. Some experimental results are 

given and discussed. 

Keywords - protein structure; protein classification; 

feature extraction; deep learning 

I. INTRODUCTION 

Proteomics focuses on the study of protein molecules, 
which are among the most vital compounds present in the 
human body. They participate in a variety of cellular 
processes, making them indispensable for various 
biological functions. Proteins serve critical roles in 
biochemical reactions as enzymes, also play a role in the 
transport of oxygen to cells, have signaling role such as 
insulin, and serve as antibodies thus providing a defensive 
mechanism. Due to their importance in the functioning of 
organisms, there is a significant interest in the proteomics 
community to understand the structure and functions of 
proteins. By studying the structure and properties of 
proteins, researchers can gain valuable insights into their 
functional roles in different cellular processes. 

The development of technology has provided various 
techniques to determine the structure of protein molecules. 
These techniques enable the determination of protein 
structures, which are subsequently deposited in the Protein 
Data Bank (PDB) [1], [2], serving as the primary 
repository for this purpose. Protein structures are stored in 
PDB files, which provide information about the primary, 
secondary, and tertiary structures of proteins. Despite the 
vast amount of data available on protein structures, there 

remains a significant need for research to discover the 
functional roles of proteins in living organisms. 

There are various approaches for determining the 
functions of proteins. Some approaches rely on the 
assumption that proteins belonging to the same class share 
similar functions. Therefore, the protein classification task 
is of high importance in this regard. Numerous methods 
have been introduced for classifying protein structures. 
However, despite these efforts, there is still a significant 
gap between the number of known protein structures and 
the number of proteins that are functionally annotated. 
This highlights the high need for computational methods 
for fast and accurate classification of proteins. 

The Structural Classification Of Proteins (SCOP) [3] is 
widely recognized as a very important method for protein 
classification. This method is highly accurate, as it 
involves visual inspections by human experts in order to 
make a decision. However, this process is not very fast, 
which highlights the need for automatic or semi-automatic 
methods. One such method is the Class, Architecture, 
Topology and Homologous superfamily (CATH) [4]. 
CATH uses a semi-automatic approach because it 
considers manual decision for a particular protein only if 
the automatic classification is not appropriate. 

Also, there are methods that utilize protein sequence 
alignment to solve the protein classification task. For that 
purpose, methods like Needleman–Wunch [5], BLAST [6] 
and PSI-BLAST [7] could be applied. Nevertheless, these 
methods may not be suitable for proteins with similar 
structures whose sequences are not so similar. Therefore, 
it is preferable to align protein structures rather than 
sequences using methods such as CE [8], MAMMOTH 
[9] and DALI [10]. Additionally, some methods [11], [12] 
combine sequence alignment and structure alignment for 
improved accuracy. 

Methods based on feature vector comparison offer a 
solution to the problem of long classification times using 
alignment. These methods extract the most relevant 
characteristics of protein sequences or structures and use 
them to create a prediction model. Feature vectors can be 
extracted from protein sequences [13] or structures [14], 
containing the most informative features for the analysis. 
The use of these feature vectors reduces the amount of 
data that’s been processed, speeding up the creation of the 
classification model and reducing the time required for 
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testing for novel proteins. Different machine-learning 
algorithms can be used to create the classification model 
from the extracted feature vectors. 

The goal of this research is to develop a fast and 
accurate method for protein classification. Our attention is 
on the last category of methods that utilize feature vectors 
for representing the key characteristics of protein 
structures. Our previous studies have concentrated on the 
extraction of feature vectors for protein tertiary structures. 
In [15], we conducted a comparative analysis of different 
methods for comparing protein structures. These methods 
are for solving protein retrieval task, where for a given 
target protein the most similar proteins from the database 
are identified. They can also be employed for solving the 
task of protein classification based on the extracted feature 
vectors. In this paper, we present a method for solving 
protein classification task. Our approach involves 
extracting feature vectors, and to accomplish this, we have 
selected the protein ray-based descriptor as it has 
demonstrated high accuracy, compactness, and ease of 
extraction in our previous research [15]. This descriptor 
captures information about the geometrical characteristics 
of the protein structure, specifically how the protein 
backbone is oriented in space relative to the center of 
mass. Once the feature vectors have been extracted, we 
then employ a deep learning architecture to generate 
classification models. Besides the standard form (variant) 
of the protein ray-based descriptor, additionally we 
employed three other variants of the protein ray-based 
descriptor that we previously used in [16], where several 
well-known classification methods were used for protein 
classification. 

The rest of this paper is organized as follows. Section 
2 provides an overview of the method that is used in this 
research. We outline the process for extracting the protein 
ray-based descriptor and present the deep learning 
architecture used for generating prediction models. We 
also present the four variants of the protein ray-based 
descriptor that are considered in this study. In Section 3, 
we present the experimental results obtained using various 
neural network settings and we discuss the effect of these 
settings. Section 4 gives conclusion of the paper and 
suggests future directions for enhancing this research. 

II. THE METHOD USED IN THIS STUDY 

In this paper, we present a method that solves the task 
for classifying proteins by considering only their tertiary 
structure. The method comprises two main steps. First, we 
extract feature vectors by employing our protein ray-based 
descriptor [15]. Besides its standard form, we also use 
three additional variants that are obtained from the 
standard form of the protein ray-based descriptor. 
Subsequently, we employ deep learning architecture to 
create a classification model for classification of new 
proteins. For that purpose, we employ fully connected 
neural network by using several hidden layers. 

The training phase elucidates the process of generating 
the prediction model. In the testing phase, for a particular 
test (query) protein the respective class is determined. 
Both training and testing protein data are preserved in the 
corresponding PDB files, which are taken from the PDB 

database [2]. These files contain information regarding the 
primary, secondary, and tertiary structure of the proteins. 
In this study, the focus is on the tertiary structure of 
proteins, thus we inspect the proteins’ geometry. 

The training phase begins with the extraction of 
feature vectors for the training proteins. These feature 
vectors are utilized as samples in the process that is 
employed in the succeeding stage where the model is 
generated. Next, the model is created by using deep 
learning architecture where the weights in the neural 
network model are adjusted. 

Upon creation of the model, it is possible to classify 
novel proteins. For the query protein, the feature vector is 
extracted in the same manner as the training proteins. The 
extracted descriptor is then presented to the model that 
generates corresponding output (class decision) for that 
protein. In this research, the classes relate to the SCOP 
domains used by the SCOP method. We consider only the 
domain level from the SCOP hierarchy as a level enabling 
the distinction between the proteins based on their 
functions. According to this, the query protein is classified 
into a corresponding SCOP domain. 

A. Protein Ray-based Descriptor 

Proteins are made of multiple chains, which are folded 
into specific 3D compositions. The SCOP database [3] 
provides information about the SCOP domains for the 
protein chains, so the protein chains are the samples 
within the dataset that is used. Each protein chain is 
comprised of amino acid residues, which are connected to 
form the protein backbone. The amino acid residues 
within each chain are folded in a particular way. The 
amino acid residues within each chain consist of various 
atoms. The Cα atoms within the amino acids connect two 
consecutive amino acid residues and form the protein 
backbone. 

In a previous study, as documented in [15], we 
explored various methods for protein structure retrieval. 
While some of these methods take into account all atoms, 
the others are focused solely on the Cα atoms. As per the 
findings presented in [15], the accuracy of the protein 
structure retrieval process was observed to decline with 
the inclusion of the remaining atoms. It was concluded 
that considering only the Cα atoms is the more suitable 
approach. The protein ray-based descriptor was applied to 
extract information concerning the 3D coordinates of the 
Cα atoms, and as a result, the confirmation of the protein 
backbone is presented. These findings facilitated the 
creation of a 3D model for the protein, where the protein 
backbone was defined as a 3D object that occupies a 
position in the 3D space. 

The 3D model created for the protein is scaled 
ensuring that the Euclidean distance between the most 
distant Cα atom and the center of mass is 1. With that, we 
provide scale invariance of the feature vectors. In 3D 
object retrieval, it is important to provide not only scale 
invariance but also invariance to translation and rotation. 
This implies that the same feature vector should be 
extracted for a given protein chain, regardless of any 
translations or rotations that are performed. The approach 
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by which this descriptor is extracted guarantees these 
properties. 

Another challenge in protein structure retrieval is 
representing protein chains with feature vectors of the 
same length, considering their differing numbers of Cα 
atoms. To address this, the protein backbone is 
interpolated with a fixed number of interpolation points, 
ensuring that the same number of interpolation points is 
utilized for each protein chain, regardless of the number of 
Cα atoms. In [15], we employed two approaches for 
interpolating the protein backbone. The first approach 
entailed uniformly interpolating the backbone with 
interpolation points equidistantly spaced along it, while 
the second approach involved using more interpolation 
points in parts of the backbone where consecutive Cα 
atoms are spaced farther apart. The findings reported in 
[15] indicate that the feature vectors extracted using 
uniform interpolation are more accurate. Hence, in this 
study, we utilize the uniform interpolation of the protein 
backbone. 

The uniform interpolation of the backbone of a given 
protein involves the initial step of determining the length 
of the backbone, which is achieved by applying Eq. (1). 
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Here, dEuclidean(i,i+1) represents the Euclidean distance 
between the i-th and (i+1)-th Cα atoms, and Nα denotes 
the total number of Cα atoms in the protein chain being 
analyzed. 

In our previous work presented in [15], we conducted 
an analysis to identify the optimal number of interpolation 
points for uniform interpolation of the protein backbone. 
The findings indicated that the most effective number of 
interpolation points is 64. It was observed that increasing 
the number of interpolation points above this value did not 
significantly enhance retrieval accuracy, while using a 
lower number of interpolation points resulted in a notable 
decrease in performance. Consequently, in this paper, we 
have employed 64 interpolation points for uniform 
interpolation. The interpolation points are uniformly 
spaced along the curve of the protein backbone, with a 
distance between two consecutive points equal to L/(N-1), 
where L denotes the length of the backbone calculated 
using Eq. (1), while N denotes the number of interpolation 
points (64 in this study). 

Upon determining the interpolation points, the 
subsequent step involves extracting the feature vectors. 
The feature vector, as its name implies, draws inspiration 
from the ray descriptor [17], which was initially proposed 
for 3D objects retrieval. The name indicates that rays are 
"emitted" from the center of mass towards the points that 
represent the object, which in our case are the 
interpolation points. The features are obtained by 
calculating the Euclidean distances between the center of 
mass and the points that represents the object. This way, 
the feature vector provides invariance to translation and 
rotation. The protein ray-based descriptor obtained for a 
given protein chain elucidates how the backbone of the 

inspected protein chain is positioned in the space relative 
to the center of mass. 

B. Four Approaches for Extraction of the Protein Ray-

Based Descriptor 

In the standard form of the protein ray-based 
descriptor described above, each element of the feature 
vector pertains to an individual interpolation point. In 
essence, the protein ray-based descriptor aims to elucidate 
the traversal of the protein backbone from one concentric 
sphere to another if we divide the 3D space with 
concentric spheres. In [18], it is illustrated visually how 
the protein backbone traverses between these concentric 
spheres as we go along the backbone. 

In [16], we utilized three additional variants of the 
feature vector obtained based on the Euclidean distances 
for the interpolation points. In the standard form (standard 
variant) of the protein ray-based descriptor [15], the 
feature vector fEucl = [f1, f2,…, fN] contains the Euclidean 
distances from the interpolation points towards the center 
of mass. For example, the feature for the i-th interpolation 
is fi = Di, for i=1, 2,…, N, where Di is the Euclidean 
distance from the i-th interpolation point to the center of 
mass. In the other three variant, we consider pairs of 
consecutive interpolation points. With the second variant, 
we calculate the difference between the Euclidean 
distances for two consecutive interpolation points, so the 
i-th feature is calculated as diffi = fi – fi+1 = Di – Di+1, i=1, 
2,…, N–1. The remaining two variant considers only the 
magnitude of this change (difference), or only the sign of 
this change. In the third variant, the i-th feature is 
calculated as absi=|diffi|, i=1, 2,…, N–1. The fourth 
variant examines whether backbone goes towards the 
surface or towards the center of mass as we traverse along 
the backbone without reflecting the quantity of the 
increase or decrease of the Euclidean distance. With this 
variant, the i-th feature is calculated as signi= sign(diffi), 
i=1, 2,…, N–1, where the function sign(x) returns 1 for  
x > 0, 0 for x = 0 and -1 for x < 0. 

C. Deep Learning Models 

This study is concerned with the development of 

classification models through the application of deep 

learning. Specifically, a fully connected neural network 

was utilized. The hidden layers are dense layers, wherein 

each neuron is interconnected with the neurons from the 

preceding and succeeding layers. This architecture 

enables a heightened degree of connectivity, resulting in a 

more intricate representation of the input data, and 

thereby leading to enhanced performance of the neural 

network. 

The input layer of our neural network model consists 

of 64 neurons, corresponding to the length of the feature 

vectors. Each neuron in the hidden layers is activated 

using the rectified linear unit (ReLU) activation function. 

The output layer is composed of 150 neurons, with each 

neuron corresponding to one of the classes, namely SCOP 

domains in this context. The softmax activation function 

is employed in the output layer. The optimization 

algorithm used in this study is stochastic gradient descent 

(SGD), which is utilized for optimizing the objective 
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function. Moreover, SGD is also employed as a bias 

updater. The Adam optimizer is employed as an updater 

in this study and the learning rate equals 0.001. 

In [19], we used the same deep learning architecture 

to build prediction models. However, in this study 

besides the standard form of the protein ray-based 

descriptor we also use the three remaining variants of this 

descriptor that were described before.  

Based on the results obtained in [19], we used the best 

settings for the number of hidden layers and number of 

neurons per hidden layer. In the experiments we used 3 

hidden layers with 100 neurons per layer. We trained the 

models for 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 

epochs. In this way we wanted to find out if the models 

are underfitted or overfitted. 

WekaDeeplearning4j package [20] was used in this 

study that utilizes the Deeplearning4j Java library. We 

used the default setting for the rest of the parameters. 

III. RESULTS AND DISCUSION 

To evaluate the efficacy of the approach used in this 

study, we employed data from the PDB database [2] 

regarding the confirmation of the protein backbone 

presented by the 3D coordinates data of the Cα atoms. As 

for the class labels, we utilized knowledge from the 

SCOP database [3]. It is worth noting that, in this study, 

we considered only the domain level, thereby establishing 

a correspondence between the domains of the analyzed 

protein chains and the classes to which they would be 

assigned. 

The dataset used in this study comprises 6145 protein 

chains, evenly distributed across 150 SCOP domains, 

which serve as the potential classes for classification. To 

evaluate the proposed method, this dataset is split into 

training and testing sets where 90% of the samples are 

training data and 10% are test data, ensuring that the 

uniform distribution of the classes is maintained in both 

subsets. The resulting training set consists of 5531 protein 

chains, while the remaining 614 protein chains are used 

for testing the accuracy of the classification models. 

In this section, we will present the results regarding 

the classification accuracy achieved with the 

classification models. Given that the test set is balanced, 

classification accuracy is suitable to measure the 

predictive performance of the models. 

The results given in Table 1 present the classification 

accuracy of the models. The results revealed that by using 

the original form of the protein ray-based descriptor, as 

the number of epochs is increased, the accuracy also 

increases slightly, but when training for more than 80 

epochs, the classification accuracy decreases that 

indicates that the model is overfitted. The best model is 

obtained when training the network for 80 epochs. 

However, with the other three variants, the same pattern 

is not shown. With the remaining three variants, the best 

model is obtained when training for 80, 100 and 20 

epochs respectively. The best models obtained with the 

second and third variant achieved the same value for 

classification accuracy. The fourth variant has slightly 

lower accuracy (around 1% lower) due to the fact that 

only the sign of the change (difference) is considered. 

Although the original version of the protein ray-based 

descriptor outperforms the other models for almost 0.5% 

and 1.5%, it encapsulates more info, although the 

descriptor is longer just for one element. When 

comparing the second, third and fourth variant, we can 

note that using more info (magnitude and sign of the 

change with the second variant), the model is tuned for 

less epochs (80 in this case for the best model), while 

when the sign is not considered (with the third variant) a 

little bit more training is needed (the best model is 

obtained for 100 epochs). The fourth variant holds least 

info (only the sign of the change), but it still can provide 

accurate retrieval comparable to the other variants. Since 

the dataset is simpler in this case, there is a need for 

lower number of epochs. The best model in this case 

(with the fourth variant) is obtained for 20 epochs, and by 

training further, the model is overfitted, and more 

significant drop in the accuracy is observed. 

In our earlier research [15], we conducted an analysis 

in which various approaches for comparing proteins were 

assessed in respect with DALI and CE methods. The 

results of this analysis demonstrated that, despite its 

simplicity and speed, the protein ray-based descriptor 

yields precise predictions of similar proteins and is 

competitive with time-intensive state-of-the-art methods. 

In our study, we conducted an analysis to compare the 

performance of the models created in this research with 

those from our previous study [16], which utilized 

different classification methods and the protein ray-based 

descriptor. The results of this comparison are presented in 

Table 2. Our analysis revealed that the best model 

obtained in this study outperforms the majority of the 

models obtained in [16], with the exception of knn. 

However, it is worth noting that the testing time with knn 

is higher. If larger dataset is used, the difference in testing 

TABLE I. THE RESULTS OBTAINED USING  
DIFFERENT NUMBER OF EPOCHS 

Number 

of epochs 
Euclidean 

distance 

Diff Abs diff Sing diff 

10 97.07 95.77 95.60 94.63 

20 97.39 96.91 94.79 96.25 

30 97.23 97.07 95.77 95.44 

40 97.23 96.91 96.42 95.77 

50 97.23 96.42 95.77 95.60 

60 97.23 96.74 96.91 94.79 

70 97.56 95.60 96.42 94.79 

80 97.72 97.23 96.58 96.09 

90 97.56 96.74 96.42 95.77 

100 96.91 97.07 97.23 94.95 
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time would be even more significant, as knn is an 

instance-based learning classifier where model is not 

created, rather it makes decision based on the similarity 

between the query and the training samples. 

IV. CONCLUSION 

In this research paper, we presented a two-steps 

approach that could be used to classify novel protein 

structures utilizing the data regarding their tertiary 

structure. Firstly, we extract the protein ray-based descri-

ptors for the training protein chains. Besides the standard 

form of the protein ray-based descriptor, we also used 

three other variants where instead of the Euclidean 

distances between the interpolation points and center of 

mass, the change of the Euclidean distance was 

considered. Particularly, we analyzed the difference 

between the Euclidean distances for two consecutive 

interpolation points, as well as the absolute value and the 

sign of this difference. In this way, we examined what is 

the best variant to represent the confirmation of the 

protein backbone in the 3D space. After extracting the 

feature vectors, then the second step utilizes a deep 

learning architecture to create classification models. We 

utilized fully connected neural network models with 3 

hidden layers, each containing 100 neurons, as these 

settings showed best performance in our former study. 

The evaluation is based on knowledge obtained from the 

SCOP database. As evaluation measure, the classification 

accuracy was used as it is appropriate when using 

balanced dataset. As standard of truth, knowledge about 

the belonging to SCOP domains from the SCOP 

hierarchy was used. 

In this study we performed experiments by training 

the model using different setting for the number of 

epochs. The best model is obtained with the first variant 

(the original form of the protein ray-based descriptor) 

when training the network for 80 epochs. The accuracy 

increased by increasing the number of epochs up to 80, 

while when training further the model is overfitted. The 

other three variants showed other patterns, and they lead 

to the best model for 80, 100 and 20 epochs respectively. 

The accuracy with the fourth variant is slightly lower 

(around 1% lower) since it considers only whether the 

backbone goes towards the surface or center of mass 

(presented with the sign of the change). The first variant 

(the original version of the descriptor) slightly 

outperforms the others since it considers more data. It is 

interesting to note that this variant is longer just for one 

element compared to the others. When comparing the 

three other variants we can make conclusion that using 

both the magnitude and sign of the change (the second 

variant), the model is fine-tuned earlier (for less epochs) 

compared with the case when the sign is not considered 

(third variant). The fourth variant considers info only for 

the sign of the change but is comparable to the other 

variants. With this variant, the data are simpler, so less 

training is needed, leading to best performance when 

training the model for 20 epochs. If the model is trained 

further, the model becomes overfitted. Although this 

variant has lowest accuracy (less than 1.5% lower 

compared to the first variant), it is comparable to the 

others, and especially it is worth due to the faster training 

of the network. This would be more important if larger 

dataset is used for training where more time would be 

needed for training, so for less epochs an appropriate 

model would be obtained using this variant. 

As regards potential improvements, there exist 

various possible directions that could be taken. Aside 

from the protein ray-based descriptor, other feature 

vectors could also be employed. In relation to the neural 

network model, other parameters such as activation 

function and optimization algorithm could be assessed. 

Also, the other settings could be examined in order to 

create more accurate model. Additionally, beyond the 

fully connected neural network, other deep learning 

architectures could be explored. It is also intended to 

apply deep learning architectures that exploits the fuzzy 

logic. Besides deep learning architectures, also other 

approaches based on other classification methods could 

be employed, taking into consideration algorithms that 

are established on classical sets and fuzzy sets. 
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