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Abstract—Graph Neural Networks (GNN) emerged as
increasingly attractive deep learning models for complex
data, making them extremely useful in biochemical and phar-
maceutical domains. However, building a good-performing
GNN requires lots of parameter choices and Hyperparameter
Optimization (HPO) can aid in exploring solutions. This
study presents a comparative analysis of several strategies
for Hyperparameter Optimization of GNNs. The explored
optimization techniques include complex algorithms such as
the bio-inspired Genetic Algorithm, Particle Swarm Opti-
mization, and Artificial Bee Colony. In addition, Hill Climb
and Simulated Annealing as well as the commonly used
methods Random Search and Bayesian Search have also been
covered.

The proposed optimization algorithms have been evaluated
on improving the performance of the GNN architectures
developed for predicting mRNA degradation. The Stanford
OpenVaccine dataset for mRNA degradation prediction has
been used for training and testing the predictive models.
Finding mRNA molecules with low degradation rates is
important in development of mRNA vaccines for diseases
such as COVID-19 and we hope to benefit research on ML in
this domain. According to the analysis’s findings, Simulated
Annealing algorithm outperforms other algorithms on both
architectures. Furthermore, population based algorithms like
Particle Swarm Optimization show promising results, with
certain limitations related to the complexity of the algorithms
which encourages further exploration of the subject.

Keywords—Hyperparameter Optimization, Random Search,
Bayesian search, Hill Climbing, Simulated Annealing, Genetic
Algorithm, Artificial Bee Colony, Particle Swarm Optimization,
GCN, GAT, mRNA degradation, mRNA vaccines

I. INTRODUCTION

Graph Neural Networks (GNN) are state-of-the-art
methods for deep learning on data with a complex graph
structure. Graphs can represent a wide variety of problems,
which allows these models to be very expressive and
applicable to arbitrary graph data of different shapes and
sizes

Due to the growing quantities of biological and medical
data, Graph Neural Networks have become an important
tool in bioinformatics over the past years [1]. Graphs have
been used to represent various types of biological infor-
mation like genetic disease association networks, protein
interaction networks, structure of molecules and macro-
molecules (proteins, DNA, RNA), brain networks, etc.
With the growing complexity of these graph models, the
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need for an optimization strategy to build effective models
also increased.

A model performance is directly linked to how well
it was built to fit the specific data and problem. This
requires choosing the right values for a wide range of
hyperparameters that lie in both continuous and discrete
feature spaces. Hyperparameter optimization (HPO) or
tuning is the problem of selecting a set of values for the
parameters of a learning algorithm, with the expectation
of achieving better model performance. A hyperparameter
is a parameter whose value is used to control the algo-
rithm’s learning process. As the hyperparameter space gets
broader so does the difficulty of finding a good-performing
architecture for the given problem. An extensive grid
search over all those values is expensive and not always
an option.

This study presents an experimental comparative anal-
ysis over a larger selection of optimization methods for
the Hyperparameter Optimization of GNNs on the task
of mRNA degradation prediction. In doing so, the aim
is to facilitate future research of GNN application in
bioinformatics. The experiments include the following
HPO algorithms: Random Search (RS) [2] for benchmark,
Bayesian Search (BS) [3], Hill Climb (HC) [4], Simulated
Annealing (SA) [5], Genetic Algorithm (GA) [6], Particle
Swarm Optimization (PSO) [7] and Artificial Bee Colony
(ABC) Optimization [8]. The GNN architectures probed
in the HPO experiments are GCN [9] and GAT [10]. The
analysis used the Stanford OpenVaccine Dataset [11] for
mRNA degradation prediction which is an important issue
when developing mRNA vaccines for diseases such as
COVID-19, and a relatively novel field. The GNN predic-
tion task involved regressive multi-target node prediction.

The rest of the paper is structured as follows: an
overview of the existing literature on the topic is given
in section II. The dataset, explored GNN architectures as
well as the hyperparameter optimization algorithms are
explained in detail in section III. The experimental setup
with results and discussion of the experiments are laid out
in section IV. Finally, section V concludes the findings,
and a reference to supplementary material is given in
section VI.

II. RELATED WORK

Hyperparameter optimization (HPO) is a crucial step in
the development of any high-performing neural networks.
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Fig. 1: (a) The 2D structure of an example mRNA
molecule. Nodes represent the nucleotides of the mRNA.
Image generated with the ViennaRNA package [12]. (b)
Average of target values, with each line representing a

different target, along all train molecules.

However, only a few studies have been undertaken to
tackle the issue of finding a well-performing HPO strategy
for GNNs.

A systematic comparison of three HPO algorithms, with
RS for baseline, Tree-structured Parzen Estimator (TPE),
and Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), was conducted in [13] on GNN models for
molecular property prediction using three representative
datasets from DeepChem’s [14] MoleculeNet [15]. The
search space includes values for batch size, learning
rate, size of fully-connected layer, and size of a graph
convolution layer. TPE outperforms RS and CMA-ES,
achieving the best overall performance. Different studies
such as DeepHyper [16], or [17], [18] suggest a prefer-
ence for BS HPO techniques and also show promising
results on GA for HPO. Moreover, other bio-inspired
population algorithms like PSO have been effectively used
in hyperparameter optimization tasks for Convolutional
Neural Networks and Long Short-Term Memory (LSTM)
networks (see [19], [20]).

Neural Architecture Search (NAS) framework can be
considered as another automatic approach for choosing
hyperparameters. For example the work on AGNN [21]
proposes an AutoML framework NAS on GNNs, with
the use of reinforcement learning for decisions on new
actions for each class, while trying to optimize the ob-
jective function - the model performance. [22] proposes
another AutoML framework for GNNs called DFG-NAS
(Deep and Flexible Graph Neural Architecture Search)
that employs an evolutionary algorithm and search space
decoupling into propagation and transformation. Both of

these works are evaluated on popular benchmarks like
Cora, Citeseer, and PubMed, however their optimization
frameworks are model specific to the chosen architecture
compared to the model-agnostic optimization algorithms
explored in this study.

Overall, while several studies have explored HPO meth-
ods for GNN-based models, our survey aims to provide
a comprehensive comparison of seven different HPO al-
gorithms (RS, BS, HC, SA, GA, PSO, ABC) on GNN
models like GAT and GCN. This study focuses on the
HPO of GNNs built specifically for prediction on mRNA
molecules which we found to be a less explored topic. Our
search space includes a wide range of micro and macro
architecture hyperparameters such as learning rate, dropout
rate, number of prediction layers, number of hidden units,
number of graph layers. Since the optimization algorithms
explored in this solution are model and problem agnostic
we hope this study benefits research in other areas as well.

III. MATERIALS AND METHODS

This section presents the dataset, GNN architecture, and
hyperparameter optimization algorithms used.

A. Dataset

The Stanford Eterna Dataset [11] consists of mRNA
molecules represented by it’s sequence of nucleotides with
structural features and targets. A visual representation
of an mRNA molecule can be seen on Fig.1. During
preprocessing each mRNA molecule was transformed into
a graph G = (V,E), with nodes V representing the
nucleotides and edges E - the chemical bonds between
them. Nucleotide types are used as node features while
the primary structure bonds as well as the base pair
probabilities are used as edge features, as in [23], [24].

The Eterna Dataset comes separated into a train set of
2400 molecules and a test set of 3634 molecules. The
train set contains values for five different prediction tar-
gets (including reactivity, deg_Mg_pH10, deg_Mg_50C’,
’deg_pH10’, ’deg_50C’) whereas the test set contains three
of them (reactivity, deg_Mg_pH10, deg_Mg_50C’ ). For
data visualization a line plot of the mean targets along all
sequences in the training data can be seen on Fig.1. In
this study we utilized the training set to perform model
model HPO and training. The chosen models from the
HPO process are trained on 80% of the train set and are
validated on the other 20%. To evaluate each of the full
models we utilized the test set from the Eterna Dataset.
The data splits are available on the Kaggle link in Section
VI along with our prepossessing code.

B. Graph neural networks models

The explored architectures are composed of two
machine-learning stacks. A Graph Stack for creating node
embeddings from the graph structured input and a Predic-
tion Stack for getting output predictions. Furthermore, two
variations of the Graph Stack are implemented using the
models GCN and GAT, respectively. An overview of the
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Fig. 2: High level overview of the GNN architecture tuned in the HPO experiments.

architecture can be found in Fig.2 and the hyperparameters
of each part are listed in Table I. GNN models have
been chosen to fit the problem inspired by other works
that explored them [23], [24]. The suitability of the GNN
architecture for the chosen data is beyond the scope of this
study.

1) Graph Convolutional Network: Graph Convolutional
Network (GCN) [9] emerged as an effective approach
for semi-supervised learning on graph data. These models
learn the features by performing convolution over neigh-
boring nodes directly on the graph. Multiple layers of
graph convolution can be added. Feed Forward layers
have been added to get output node features. The various
hyperparameters (graph layers, hidden size, dropout rate)
chosen during HPO are detailed on Table I.

2) Graph Attention Network: The Graph Attention Net-
work (GAT) [10] include attention [25] on top of the con-
volution. Similar to GCN multiple layers may be stacked
on top of each other. Likewise, Feed Forward layers have
been added to get output values. The hyperparameters
explored in this study can be seen in Table I).

C. Optimization algorithms

The following optimization methods have been used in
this study.

1) Random Search: Random Search is favored for
hyperparameter optimization [2], and generally the most
simple way to tackle this problem. It replaces the exhaus-
tive enumeration of all combinations by selecting them
randomly. Moreover, it is simple to apply to both discrete
and continuous spaces. It performs better than Grid search
[26] when only a few hyperparameters have an impact
on the model performance. RS is a crucial benchmark
for evaluating the effectiveness of new hyperparameter
optimization techniques.

2) Bayesian Search: Another intuitive approach and a
common choice for HPO is Bayesian Search [3]. It is
a global optimization method for any noisy black-box
functions. BS creates a probabilistic model that maps
the values of the hyperparameters to the objective as
determined by a validation set. By iteratively evaluating
hyperparameter configurations, BS gathers observations

about the optimum. This algorithm attempts to find the
best solution by maintaining a balance between open
exploration - hyperparameters for which the outcome is
uncertain, and information exploitation - hyperparameters
expected to be close to the optimum.

3) Hill Climbing: Hill Climbing [4], as a member of
the family of local search algorithms, has an objective
to minimize or maximize a target function by gradually
updating the hyperparameter vector. The iterative process
starts with a randomly chosen solution that is evaluated to
find the direction of progress. Subsequently, in each iter-
ation, HC adjusts a single hyperparameter and determines
whether the change improves the performance. It differs
from gradient descent methods, which adjust all of the
values at each iteration.

4) Simulated Annealing: Simulated annealing [5] is
a probabilistic technique for approximating the global
optimum of a given function. Applied to hyperparameter
tuning, SA is an iterative process which updates the
solution while slowly adapting the exploration probability.
Values for all hyperparameters are randomly chosen and
an initial "temperature" is set. Alteration of the current
state is done by updating one hyperparameter with a
random value in the immediate neighborhood, with a
certain probability based on the temperature. On every nth

step the temperature is decreased by a chosen rate. SA is
preferred for discrete feature space problems when finding
an approximate global optimum quickly is important.

5) Genetic Algorithm: The Genetic Algorithm [6] is
an iterative, heuristic method inspired by the process of
natural selection where the fittest individuals give rise to
the following generation. In the context of HPO each
individual is a proposed solution for the hyperparame-
ter values. The population of solutions in each iteration
is referred to as a generation. In each generation, the
members of the population are evaluated in terms of their
fitness, in this context the performance of the solution. The
new generation is created by stochastically selecting the
fittest solutions from the current population, recombining
them, and introducing random mutations. The algorithm
gradually generates better solutions by combining the best
of each generation.
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TABLE I: Summary table containing hyperparameters and explored ranges for optimization.

Configuration Hyperparameter Name Description Hyperparameter Type Explored Range

GCN Stack
Graph Layers number of GCN layers discrete [1, 3]

Hidden Channels dimension of the hidden layers discrete [32, 128]
Graph Dropout dropout rate after GCN layers continuous (0.2, 0.5)

GAT Stack

Graph Layers number of GCN layers discrete [1, 3]
Hidden Channels dimension of the hidden layers discrete [32, 128]
Graph Dropout dropout rate after GAT layers continuous (0.2, 0.5)

Attention Dropout attention dropout rate continuous (0.2, 0.5)

Prediction Stack
Prediction Layers number of Feed Forward layers discrete [1, 3]
Hidden Channels dimension of the hidden layers discrete [32, 128]

Prediction Dropout dropout rate after Feed Forward layers continuous (0.2, 0.5)

Training
Batch Size size of batches during training discrete [8, 32]

Learning Rate model learning rate continuous (0.00001, 0.01)
Loss loss function categorical [CrossEntropy, MSE, MAE]

6) Particle Swarm Optimization: Particle Swarm Op-
timization [7] is a well-known swarm intelligence tech-
nique, inspired by the navigation strategy of bird flocks in
quest of food. The technique has been tested on a variety of
high-dimensional real-world applications and has shown to
be efficient and reliable [27], [28]. It starts with a random
set of individual search ’particles’, each representing a
potential solution. The particles update states iteratively
based on others in the swarm. PSO has an advantage in
exploring a wide, multi-dimensional search space. While
it cannot guarantee to find the global optimum solution it
is likely to find a close-to-optimum solution in relatively
few generations (iterations).

7) Artificial Bee Colony: Another swarm intelligence
algorithm is Artificial Bee Colony [8], inspired by the
foraging behavior of honey bee swarms. It contains three
main components: employed bees, onlookers, and scouts.
The position of the bees represents a set of hyperparameter
values. The artificial bees cooperate to find better solutions
using neighbouring search by choosing the best directions
to move towards. By combining the gathered info, the
population iteratively improves its performance.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

A. Experimental details

The optimization algorithms are implemented to probe
the hyperparameter space of two GNN architectures. A
detailed list of hyperparameters tackled in the experiments
can be found in Table I. The GNN architectures are
implemented to perform multi-regression to predict five
different numerical prediction targets. The predictions are
performed on each node (nucleotide). Model performance
is evaluated through the Mean Column-wise Root Mean
Squared Error (MCRMSE) metric - following the Kaggle
Competition [29] which uses this dataset. The optimization
objective function is the training of the GNN configu-
ration as given by the hyperparameters. The objective
goal is minimizing the evaluation performance metric -
MCRMSE.

In this experiment the GCN and GAT architectures have
been optimized for 1h by each algorithm. In each opti-

mization, model configurations were trained and validated
for 5 epochs on a subset of 240 molecules with 107
nodes (nucleotides) and 5 targets per node, or a total of
25,680 labeled nodes. The optimal model configuration
found by each algorithm was trained and validated on the
full training set of 2400 molecules for 10 epochs. The
developed models were additionally evaluated on the test
set of 3634 molecules with 3 targets per node.

Due to the large differences in the internal process
of each optimization method and following the recom-
mendations of [13] the experiments are ran on a fixed
time of 1 hour to assess the optimization performance
fairly. The parameters of the HPO algorithms, also called
meta-hyperparameters are left to default values. Explo-
ration of the meta-hyperparameters is outside the scope
of this study. The HPO algorithms are implemented with
the NiaPy package [30], whereas the GNN models with
PyTorch [31]. All experiments have been performed on
an Intel(R) Core(TM) i7-10510U CPU with 1.80GHz and
16GB RAM. Additional details about the implementation
can be found in Section VI.

B. Results and discussion

The results show that RS stands its ground as the most
common HPO algorithm and manages to find the best
performing model configuration for both GCN and GAT
architectures on the HPO validation subset with MCRMSE
of 0.55 and 0.60 respectively. Although, the fully trained
models for RS do not hold the top performance on the
train validation subset and are outperformed by ABC’s
model for GCN and HC’s model for GAT. SA however,
outperforms RS and all other algorithms for both GCN and
GAT on the test set with Test MCMRSE of 2.86 and 3.05
respectively. Albeit the solutions found by the population
based methods fall short compared to the simpler methods
on the optimization set, PSO and GA offer the next best
performances after SA on the evaluation set for GCN,
while PSO comes close to SA on the evaluation set for
GAT after RS.

By looking at the chosen hyperparameters from each
algorithm, high heterogeneity in the values of the top
architectures can be concluded (Fig. 3). Some hyperpa-
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TABLE II: Summary table containing performance comparison between the HPO algorithms for both the GCN and
GAT architectures. HPO MCRMSE is the top validation performance during the 1h HPO experiment. Train and Test
MCRMSE are the validation and test performance respectively of the fully trained top architectures (best results with

lowest MCRMSE).

HPO GCN GAT
Algorithm HPO MCRMSE Train MCRMSE Test MCRMSE # Sol. HPO MRCSE Train MCRMSE Test MCRMSE # Sol.
RS 0.552111207 1.197424498 3.142875612 24 0.606282744 1.227286043 3.085664921 18
BS 0.663734097 1.397005282 3.73452739 24 0.701095777 1.237067464 3.607524834 17
HC 1.34278588 1.776945629 3.020120101 17 0.658518997 0.754333032 3.621118421 17
SA 0.594058272 1.568616626 2.858786327 28 1.19119597 1.19119597 3.049026682 18
GA 0.882215188 1.428922103 2.950592929 17 0.841650576 1.430237301 3.205829579 16
PSO 0.799015684 1.348786081 2.91169034 19 0.858330531 1.427626225 3.193924 19
ABC 0.751826537 1.039043296 3.686253486 12 0.716234768 2.027690987 3.159572088 18

Fig. 3: Parallel coordinate plots showing the hyperparameter values chosen by each HPO algorithm during the 1h
optimization experiment for a) the GCN and b) the GAT configurations, along with Test MCMRSE performance

values.

rameters values as 2 for graph layers, a batch size of 8,
learning rate of 0.001 or the MAE loss type are more
dominant and agreed upon by most algorithms for both
architectures. Other hyperparameter values for GCN with
a majority vote are 0.5 for graph dropout, 2 for prediction
layers, 32 for prediction hidden channels and 0.2 for
prediction dropout, while there is no consensus on the
choice of graph hidden channels. For the GAT architecture
the algorithms generally agree more on the chosen values
with a consensus on 128 for graph hidden channels,
0.2 for graph dropout, 0.5 for attention dropout, 3 for
prediction layers, 64 for prediction hidden channels and
0.5 for prediction dropout. Additionally, the analysis of the
optimization runs performance at each step during the 1h
tuning shows there is high variation between performances
of consecutive steps especially for the GAT. This points to
a high level of complexity in the search space and large
performance differences for small parameter changes.

Overall, the results suggest that SA might be a good
choice for HPO on GNN in this application and also
shows promising results for population based algorithms.
The present findings confirm the state-of-the-art usage of

these methods in line with the ideas of [16], [17], [18],
[19], [20]. A summary of the results can be seen in the
performance comparison table II. More details on the
implementation and performance of each HPO algorithm
separately can be seen in Section VI.

V. CONCLUSION

The objective of this study was to make an experimental
comparison of HPO strategies for Graph Neural Networks
implemented in an mRNA node-wise prediction problem.
The performance analysis has shown promising results
for HPO algorithms such as the SA algorithm as well as
population based algorithms like PSO, which performed
better than RS at choosing GNN hyperparameters. The
SA algorithm found the best-performing GAT and GCN
architectures, while being highly efficient and exploring
the largest amount of configurations.

The population algorithms including GA, PSO and ABC
show promising results and might perform even better
given a bigger population size. It must be noted that this
type of algorithms give significant memory complexity
overhead and therefore had to be limited in population
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size. The overhead also explains the smaller amount of
configurations explored by them.

This survey offers a practical comparison of multiple
algorithms (RS, BS, HC, SA, GA, PSO, ABC) with
focus on the HPO of GNNs specifically for prediction on
mRNA molecules. We attempted to cover a wide range
of hyperparameters and problem agnostic algorithms in
hopes of facilitating other areas as well. A more ex-
tensive exploration involving diverse meta-hyperparameter
choices is needed for a more informed comparison. The
overall effectiveness of the GNN architecture itself for the
chosen task is a topic for another study. Additionally, this
survey needs to be further expanded to other problems and
datasets to get a more holistic review of the effectiveness
of the HPO algorithms. Future work involves the aim
to deepen the exploration of HPO algorithms on GNN
architectures for mRNA modelling in order to support
researchers in this and other related interdisciplinary fields.

VI. SUPPLEMENTARY MATERIAL

The code for all the experiments, GNN models and HPO
algorithms, as well as all additional results, are available
on the repository https://github.com/ViktorijaVodilovska/
mRNA_pred. The data used in this study is avail-
able on https://www.kaggle.com/c/stanford-covid-vaccine/
overview.
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