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Abstract—Metagenomics is a rapidly growing field that
allows for studying complex microbial communities. One of
the first steps in the metagenomic analysis is the classification
of the organisms present in a sample. This is usually done
by comparing sequencing reads to a database of known
organisms. With the recent development of long-read se-
quencing technologies, such as PacBio and Oxford Nanopore
Technologies (ONT), it is now possible to generate highly
accurate assemblies of genomes from metagenomic samples.
This is typically done using a combination of reference-based
and de novo assembly approaches. Assembling the genomes
from the metagenomic sample, prior to classification, could
improve classification results and also aid in identifying
new, previously unknown species. However, the evaluation
of metagenome assemblies is a challenging task and it is
important to assess the quality of the assemblies in order to
ensure the accuracy of downstream analyses. In this paper,
we provide a detailed overview of metagenomic classification,
de novo metagenome assembly process, and evaluation of
metagenome assembly, highlighting various tools and tech-
niques currently available for each step. We also present
initial results showing that metagenomic classification can
benefit from a previously assembled metagenome.

Keywords—metagenomics, metagenomic classification,
metagenome assembly, metagenome assembly evaluation

I. INTRODUCTION

The term microbiota refers to the microbial population
present within the human body, including bacteria, viruses,
archaea, protozoans, and fungi [1]. Over the course of
genetic evolution, humans have formed symbiotic re-
lationships with various microbes. To understand these
relationships and the role of microbes in human health
and disease, it is necessary to identify these microbes and
determine their genome sequences [2].

Metagenomic sequencing is an alternative approach that
allows for direct sequencing of a mixture of microbial
DNA without the need for isolation, providing a more
comprehensive understanding of microbial genomes with
diverse characteristics. The field of metagenomics has
seen significant growth in recent years due to increased
interest in microbial communities and the development
of techniques for analyzing their diversity and genetic
potential [3].

Partial sequencing of microbiota DNA can provide
information on the diversity of a given community, but
more comprehensive insights into the genetic potential of
the microbiome require the analysis of extended genomic
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regions or fully reconstructed genomes, which can be
obtained through the use of metagenome assemblers [4].
Metagenomics involves sequencing and analysis of the
genomic DNA of entire microbial communities in environ-
mental samples, allowing researchers to better understand
the makeup of these communities.

PacBio [5] and Oxford Nanopore Technologies (ONT)
[6] are DNA sequencing methodologies that generate long
reads with average lengths of 10-25 kilobase pairs (kbp)
for Pacbio and 10-100 kbp for ONT. Recent advancements
in ONT have enabled the production of ultra-long reads
exceeding 1 megabase pair (Mbp). In metagenomic se-
quencing, long reads can be particularly useful as they
provide more continuous DNA sequences and facilitate
the identification of structural variations within a genome.

De novo metagenome assembly is the process of re-
constructing genomic sequences of microorganisms from
DNA sequencing reads without the use of reference
genomes. This process involves the use of specialized
software tools to assemble the reads into longer contiguous
sequences, known as contigs. The complexity and compu-
tational intensity of this process may be heightened due
to the potential for a high number of reads originating
from diverse microorganisms, as well as the potential for
significant differences between the reads.

One crucial aspect of the metagenomic analysis is
metagenomic classification, which typically involves com-
paring the sequencing reads to databases of known genes
and genomes to identify the microorganisms present in the
sample. Once the microorganisms present in the sample
have been identified, the genes present in the reads can
be annotated by assigning functions to the genes based
on their known or predicted roles. However, this approach
may be problematic when the database is too large or when
there is a new, unknown species in the sample. To address
these issues, first, the metagenome can be assembled, and
then metagenomic classification can be performed using
the obtained contigs.

In order for contigs generated through metagenome
assembly to be utilized for metagenomic classification, it
is essential to accurately evaluate them. Many existing
evaluation tools rely on the availability of a reference
genome, which can complicate the evaluation process if
the sample contains previously unknown species.
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II. METAGENOMIC CLASSIFICATION

Metagenomic classification is the process of accurately
identifying all species present in a sample and is a
challenge because metagenomic sequencing generates ge-
nomic data from a mixture of species. During metage-
nomic classification, reads are assigned to taxonomic
groups using various methods. This involves comparing
the reads to databases of known reference genomes, which
can be used to infer the taxonomic identity of the original
organisms. Several classifiers have been developed to help
with this process, but choosing the best method requires
understanding the characteristics and limitations of each.

The first method for assigning taxonomic labels to
unknown reads was using BLAST (basic local alignment
and search tool) [7], a high-sensitivity DNA alignment
tool. But, due to its high computational demands, it’s
infeasible for large metagenomic sequencing data.

Metagenomic classifiers can be roughly divided into two
groups [8]:

1) k-mer-based: Kraken2 [9], Centrifuge
CLARK [11], CLARK-S [12], etc.

2) mapping-based: MetaMaps [13], MEGAN-LR [14],
Minimap2 [15], MetaPhlAn3 [16], etc.
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K-mer-based metagenomic classifiers use the presence
and frequency of k-mers to classify DNA sequences to
species or higher taxonomic groups. They compare the k-
mer count of a query sequence to a reference database of
labeled sequences and assign the query to the group with
the highest similarity score. These classifiers are fast but
often have lower accuracy (reporting many false positives)
and can be affected by k-mer length and reference database
quality. Kraken2 is a k-mer-based metagenomic classifier
tool with fast classification and reduced memory usage.
Its reference database is built from the NCBI RefSeq
database [17] and offers high accuracy, especially at
the genus level. However, it may be difficult to run on
lower-end computers due to its high memory requirement.
MiniKraken [18] is a smaller, less accurate version that
requires less memory. Kraken2 also includes features like
a spaced seed search scheme and compatibility with the
Bracken algorithm [19] for estimating species-level se-
quence abundance. The Centrifuge uses Burrows-Wheeler
Transform (BWT) and Ferragina-Manzini (FM) index for
sequence storage and mapping. The transformed string
from BWT enables efficient compression and string match-
ing. FM index combines BWT and suffix array for efficient
searching. CLARK and CLARK-S classify metagenomic
reads by comparing them to a reduced k-mer database
and classifying them as the target with the highest shared
k-mers. CLARK-S has specific databases for bacteria,
viruses, and fungi.

Mapping-based metagenomic classifiers use a sequence
alignment algorithm to align the reads generated from
metagenomic sequencing to a reference database. The
basic idea is to identify the reference sequences that
the reads in the query sample map to with the highest
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degree of similarity and use this information to classify
the reads to the species or taxonomic group they belong
to. These classifiers have the advantage of being able
to classify reads with high accuracy, but they can be
computationally intensive and may not be suitable for
very large datasets. Minimap2 is a sequence alignment
tool that aligns reads to a reference genome. In order
for Minimap2 to be used as a metagenomic classifier,
its output needs to be reformatted and specially inter-
preted, as the authors did in a recent study [8] where
it achieved fairly successful results. When it encounters
a sequence that is not in its database, Minimap2 adds
it to the most similar organism, which helps increase
its classification accuracy on the genus level. However,
it is slower than k-mer-based tools. MetaMaps employs
probabilistic scoring to approximate sample composition,
while MEGAN-LR, built on MEGANG®, interprets long nu-
cleotide sequences using a translation alignment method.
MEGAN-LR assigns reads to taxa using the LCA (Lowest
Common Ancestor) algorithm, along with other factors
such as IcaCoveragePercent, minSupportPercent, and min-
PercentReadCover. In contrast, MetaPhlAn3 calculates the
relative abundance of taxa by mapping reads to a database
of unique, clade-specific marker genes and using coverage
scores.

Metagenomic classifiers rely on a pre-computed
database. A large and rapidly increasing size of such
databases can make metagenomic analysis computation-
ally demanding [20]. The most widely used reference
databases are RefSeq complete genomes for microbial
species, and the BLAST database [21]. Other commonly
used databases include SILVA [22], which contains 16S
ribosomal RNA sequences, and Genbank [23], which
contains a larger number of genomes with lower quality
control standards. Many metagenomics tools allow users
to create their own reference database based on a specific
set of sequences. While this process can be computation-
ally demanding, especially for large databases, it gives
users greater control over the analysis, particularly when
studying rare, newly discovered, or highly diverse species.
Using a uniform reference database is important when
comparing results from different classifiers to prevent
potential confounding effects from differences in default
databases.

Benchmark papers show that most classification tools
that obtain a low false positive rate tend to have a lower
recall. Due to the inherent variability in the specific needs
of metagenomic analyses, it is challenging to establish
a universally superior classification tool. Longer reads
tend to improve accuracy, but using only the longest
reads can reduce accuracy due to varying read length
distributions. Furthermore, the presence of novel species
within a metagenomic sample has been found to have
a significant impact on classification accuracy, yet this
aspect has not been extensively investigated in previous
benchmark studies [8] [24]. Currently, most metagenomic
tools classify unknown species into a genus or report them
as unclassified. A better solution would be having tools
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that not only detect unknown species but also provide
information on their closest related species. This can
be achieved through metagenome assembly and contig
classification. A large contig classified under a genus could
indicate a previously unknown species in the sample.

III. METAGENOME ASSEMBLY

De novo genome assembly is the process of reconstruct-
ing a full genomic sequence from DNA reads without the
use of a reference genome. It is more challenging than
reference-based genome assembly, which uses a known
genome as a starting point. De novo genome assembly is
necessary when studying organisms for which no reference
genome is available, and it is accomplished using com-
putational algorithms that align the reads and reconstruct
the full genomic sequence. Metagenome assembly is the
process of reconstructing sequences from a metagenomic
sample to obtain a representation of the genomes present in
the sample. The full genetic potential of a microbial com-
munity can be determined by analyzing extended genomic
regions or complete genomes, obtainable through modern
sequencing technologies. However, genome assembly of
metagenomic data is challenging due to factors such as
large data volume, uneven representation of community
members, and the presence of multiple strains and closely
related microorganisms.

Tools for metagenome assembly can be divided into
three groups:

1) short-reads assemblers: Omega [25], MetaVelvet
[26], IDBA-UD [27], MEGAHIT [28], RayMeta
[29], etc.

2) long-reads assemblers: Canu [30], metaFlye [31],
HifiAsm-meta [32], etc.

3) hybrid assemblers metaSPAdes [33], DBG20OLC
[34], OPERA-MS [35], etc.

Short-read metagenome assemblers typically have more
difficulty reconstructing genomic sequences of the indi-
vidual microorganisms present in a metagenomic sample
compared to long-read metagenome assemblers. Short
reads are typically 100-150 bp long and are very ac-
curate (error rate is around 0.5%). On the other hand,
long reads are several thousand bp long, so even though
they are more error-prone, they provide more information
about the genomic sequence, making it easier for the
assembler to distinguish between the different genomes
and correctly reconstruct the individual sequences and
handle repetitive regions of the genome. Assembling a
metagenome can be difficult, especially with short reads,
but even an incomplete and fragmented assembly can
help improve metagenomic classification, particularly in
identifying new species. Omega uses hash tables to store
the prefix and suffix sequences of each read and then uses
these sequences to construct a bi-directed graph by linking
the reads with their overlapping sequences. MetaVelvet
creates a de Bruijn graph using Velvet and then divides it
into subgraphs using coverage peaks of k-mers to separate
different microbial genomes. IDBA-UD tries to trim the
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graph iteratively and merge bubbles using increasing k-
mer sizes. MEGAHIT combines the process of selecting
k-mer sizes with a succinct de Bruijn graph and has strong
computational efficiency, while RayMeta generates the
local depth distribution for each seed path in a de Bruijn
graph.

Hybrid metagenome assembling merges the benefits of
long reads (contiguous sequences) and short reads (error
correction) to achieve more accurate and complete assem-
blies. A popular metagenome assembler is metaSPAdes,
which combines various assembler strengths including
the OLC (overlap-layout-consensus) approach, using long
reads for assembly and short reads for error correction.
DBG2OLC uses OLC and OPERA-MS combines long
reads with low coverage and short reads to create a scaf-
fold graph and group contigs into species-specific clusters
using a Bayesian clustering algorithm that leverages read
depth and long-read connections.

Long-read metagenome assemblers generate accurate
and complete assemblies by producing contiguous se-
quences that can resolve complex regions of the genome.
Canu is a long-read metagenome assembler that generates
assemblies using the OLC approach. It error-corrects high-
noise, high-coverage long reads, then uses "unitigging"
to construct contigs from the graph representation of
the genome/metagenome. MetaFlye generates genome as-
semblies from high-coverage long reads. It starts with
constructing a de Bruijn graph from input reads, then
identifies paths most likely to correspond to genomes.
Error correction and polishing are done by aligning reads
to the genome assemblies and correcting errors to improve
the final genome quality. HifiAsm-meta uses the de Bruijn
graph to identify probable paths of individual genomes
from low-error PacBio-HiFi reads. Contigs are generated
from these paths, which can then be used to reconstruct
MAGs (Metagenome-Assembled Genomes) with the bin-
ning algorithm.

Most of the current assemblers do not represent com-
plete microbial genomes with a single sequence so dif-
ferent binning algorithms are used. Metagenome binning
algorithms group sequences into clusters. Many algorithms
use features like TNFs (taxonomic novelty features), k-
mer frequencies, and read depth to differentiate sequences
and assign them to bins. MetaBAT?2 [36] is a metagenome
binning tool that uses TNFs and read depths to compute
sequence similarities and partitions the graph of similar-
ities into subgraphs using a modified label propagation
algorithm (LPA).

IV. EVALUATION OF METAGENOME ASSEMBLY

The evaluation of the quality of contigs assembled
through metagenomic sequencing is a challenging prob-
lem. High-coverage regions of the contig, which are de-
fined as regions that are overlapped by a large number
of reads, are often associated with high-quality contigs.
However, the development of a method for quantification
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of these observations into a comprehensive quality score
for the entire contig is a topic of ongoing research.

The majority of methods employed for the assessment
of the quality of metagenomic assemblies depend on the
availability of a set of annotated reference genomes for
comparative analysis. One such commonly used reference-
based method is metaQUAST [37], which aligns the
contigs of the assembly to the reference genomes and
subsequently computes various statistical measures such
as: number of contigs, length of the largest contig, total
length, N50, NG50, etc. MetaQUAST is a customized
metagenomics version of the QUAST tool [38], which
is one of the most widely used tools for genome as-
sembly evaluation. Additionally, metaQUAST provides
the capability to detect and visualize misassemblies and
extract unrepresented genomic regions. However, it can
be challenging to select a reference for novel MAGs from
distantly related organisms, and the presence of similar
organisms can lead to incorrect contig assignments. For the
listed reason, the evaluation of the metagenomic assembly
would be much more accurate and realistic if methods
without reference requirements were used. An example
of such a method is CheckM [39], which be utilized
to evaluate the quality of metagenome assemblies by
determining their completeness and contamination. The
measures used by CheckM are based on the occurrence
of specific genetic loci, and thus do not evaluate genome
assembly at the level of individual contigs.

Repetitive genomic regions within the same genome
or conserved sequences shared among different organisms
can lead to assembly errors, including both inter- and intra-
genome misassemblies. This is particularly likely to occur
when multiple strains that are closely related are present
in the same environment [40]. There are several existing
reference-free methods for evaluating contig misassembly.
ALE [41] provides nucleotide-level likelihood scores for
assembled contigs, but not contig-level quality scores.
SuRankCo [42] uses machine learning to provide contig
quality scores based on length and coverage. VALET
[43] detects misassemblies by combining multiple metrics
extracted from the alignment of reads to contigs. Deep-
MASED [44] is a deep learning-based tool for evaluating
metagenomic assemblies by predicting the error rate using
a CNN that analyzes k-mer content. The tool is trained on
error-free reference assemblies and then used to predict the
error rate of new assemblies by comparing k-mer content
to the reference assemblies. metaMIC [45] is a tool for
identifying and correcting misassemblies in metagenomic
assemblies by localizing breakpoints. It uses features from
both reads and assemblies, such as read coverage and k-
mer consistency, to detect both intra- and inter-genome
misassemblies. It can be adapted to work with assemblies
from various assembler tools.
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V. TEST EXPERIMENT

A. Experimental setup

To demonstrate the impact of metagenome assembly
on metagenomic classification, we conducted two ex-
periments, one based on species level and the other
on strain level classification. First, we generated three
metagenomic samples by simulating reads from known
references using the Badread tool [46]. Two simulated
datasets were used for experimental setup 1 and the third
one was used for experimental setup 2. The simulation
included ONT and PacBio long reads, incorporating the
respective built-in gscore and error models (nanopore2020
and pacbio2016). To investigate differences between ONT
and PacBio sequencing technologies, experimental setup
1 included simulated reads for both of them. Because
the results showed no significant difference between the
technologies, experimental setup 2 included only ONT
simulated reads.

The presence of similar or low abundant organisms in
the metagenomic sample may result in poor classification
or assembly, however, we are using simulated reads with
sufficient coverage. In contrast to actual metagenomic
samples, our samples are characterized by a reduced num-
ber of organisms. The selection of a reduced number of
organisms was done deliberately to facilitate the evaluation
of the entire method. In the first sample, organisms were
chosen based on their shared taxonomic levels, specifically
order. The second metagenomic sample was simulated
using organisms that are representative of those present
in Zymo D6331 Gut Microbiome Standard metagenomic
sample, where their relative abundance is well-established.
This methodology ensures the preservation of authentic
inter-organism associations present in the original sample.
Simulated samples also contain errors, random reads as
well as chimeric reads and thereby additionally reflect
real samples. In addition, the second dataset contains five
strains of E.coli, which also reflects the real situation,
because metagenomic samples generally contain multiple
strains of the same species, which makes strain level
classification more challenging.

Once we simulated the reads, we performed metage-
nomic classification using the Kraken2 as a tool that
provides the best balance between speed and accuracy.
After the initial classification of raw reads, we assembled
metagenomic samples using the metaFlye as a state-of-the-
art metagenome assembly tool and additionally performed
classification on the obtained contigs. Our main hypoth-
esis was that assembling the metagenomic sample could
enhance strain level classification and reduce the number
of false positives.

To compare the classification outcomes, we took into
account the abundance of individual organisms. Specifi-
cally, we estimated the approximate abundance of assem-
bled contigs by considering their length and coverage.
To calculate the approximate number of reads utilized
for assembling a single contig, we applied the following
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formula:

contig_len x contig_cov

num_of_reads = ceil(

) (M

mean_read_len

where contig_len and contig_cov are the length and
coverage of the contig for which we estimate the number
of reads, and mean_read_len is the mean length of all
reads in the dataset.

B. Results and discussion

Table I presents the number of false positive classifi-
cations on species and strain level for reads and contigs
classification. From the results, it can be seen that with
contigs classification the number of false positive species
and strain identifications is significantly lower.

To reduce the number of incorrect classifications due to
sequencing errors and other causes, a strain or species is
considered identified if at least 50 reads are assigned to it.
The used threshold (50 reads) was determined based on
the study [8]. However, further investigation is necessary
to establish the optimal threshold. Setting the threshold
too high may result in true positive (TP) classifications
reduction.

Table II shows calculated abundances for experimental
setup 1. It can be seen that the classification at the species
level is quite successful in both cases, but the abundance
values of the contigs classification are still closer to the
actual abundance values for all organisms. It can also be
seen that there is no significant difference in the results for
ONT and PacBio datasets. What additionally contributed
to the success of the classification is the fact that all
organisms in the sample are equally represented. However,
even in this less complex scenario, it can be seen that the
classification of reads reports a higher number of false
positives and that the estimation of abundance is more
accurate with the classification of contigs.

The calculated abundance values for experimental setup
2 are shown in Table III. The Table III does not show
the results for 4 organisms: Bifidobacterium adolescentis
(taxid: 367928), Clostridioides difficile (taxid: 1121308),
Escherichia coli (taxid: 2605619), and Roseburia homi-
nis (taxid: 585394). strain level classification for these
organisms resulted in strains not being detected at all or
being detected with abundance orders of magnitude lower
than expected. Additionally, for 2 organisms (Prevotella
corporis and Veillonella rogosae) the exact strain level was
not known because the strain TAXID of those species is
not present in the Kraken2 database. Abundance values for
those two organisms were calculated at the species level.

In Table III, abundance values closer to the true abun-
dances are presented in bold. The results show that there is
a significant improvement in abundance values for contigs
classification in 9 out of 14 cases. Additionally, in the
case of non-bolded organisms with TAXIDs 83334 and
941322, the abundance values are quite different from the
true values, but they are still better in the case of contigs
classification.
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TABLE I: Number of FP classifications

reads contigs
classification | classification
. experimental setup 1 ONT 14 2
species . .
level experimental setup 1 PacBio 15 1
experimental setup 2 ONT 7 1
strain .
experimental setup 2 ONT 61 31
level

The results of experimental setup 2 show that, in
general, strain level classification is significantly worse
compared to species-level classification. Four of the strains
were not detected by either method (reads and contigs),
and in several cases reported abundance differs signifi-
cantly from the true value. However, regardless of the fact
that strain level classification in general requires further
improvement, it is evident that the classification after
assembling the metagenome gives better results in the
context of the abundance of expected strains.

VI. CONCLUSION

The process of metagenomic analysis includes sev-
eral steps, including metagenomic classification, de novo
metagenome assembly, and the evaluation of metagenome
assemblies. A variety of tools and techniques are available
for each step, including long-read sequencing technologies
such as PacBio and ONT, which have increased the
accuracy of assemblies. It is challenging to identify a
single tool that is superior to others, as most tools are
well-suited to specific data or metagenomic analysis tasks.

One crucial aspect for future advancements in the field
is the simulation of realistic metagenomic samples, which
can greatly enhance the successful implementation of
new tools for metagenomic classification, assembly, and
assembly evaluation. The use of realistic datasets can
provide a better understanding of the complexity of real-
world samples and improve the performance of the new
tools.

While single-genome assembly techniques have seen
significant success in reconstructing a majority of
genomes, metagenomic assemblers continue to face chal-
lenges in achieving high-quality reconstruction of the
organisms present in a sample. It is necessary to develop
appropriate methods for properly segregating reads accord-
ing to the organisms present in the sample. Additionally,
in order to evaluate the performance of metagenomic
assemblers, quality assessment tools are needed, which
particularly have difficulties when similar organisms are
present in the sample, as it makes it challenging for these
tools to distinguish between them.

In the context of this research, two simple experiments
were conducted to test if there are indications of im-
provement in metagenomic classification with previous
metagenome assembly. The datasets that we used in these
experiments, although they contain errors as well as ran-
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TABLE II: Results for experimental setup 1.

ONT PacBio

species name - TAXID true abundance || reads abundance | contigs abundance ||| true abundance || reads abundance | contigs abundance
Staphylococcus aureus - 1280 7,9% 8,7% 7,9% 8,0% 8,8% 8,0%
Staphylococcus epidermidis - 1282 7,0% 10,1% 6,9% 7,1% 10,6% 7,0%
Streptococcus mutans - 1309 5,7% 6,9% 5,9% 5.8% 7,6% 5,7%
Streptococcus agalactiae - 1311 5.3% 3,7% 5,4% 5.3% 3,6% 5,3%
Enterococcus faecalis - 1351 8.2% 10,4% 8,4% 8.2% 10,7% 8,2%
Bacillus cereus - 1396 15,0% 9,1% 14,7% 14,9% 9.3% 14,9%
Lactobacillus gasseri - 1596 6,1% 4,1% 6,0% 6,1% 3,4% 6,1%
Pseudomonas aeruginosa - 287 19,4% 20,1% 19,2% 19,3% 18,6% 19,4 %
Acinetobacter baumannii - 470 10,5% 12,8% 10,8% 10,5% 12,8% 10,6 %
Escherichia coli - 562 14,9% 14,0% 14,7% 14,8% 14,5% 14,9%

TABLE III: Results for experimental setup 2.

species name true reads contigs

- strain TAXID abundance | abundance | abundance
Akkermansia muciniphila - 349741 4,9% 0,2% 6,1%
Bacteroides fragilis - 295405 10,0% 8,8% 12,1%
Clostridium perfringens - 451752 6,5% 1,8% 7,8%
Enterococcus faecalis - 936153 5.9% 29,0% 7,2%
Escherichia coli strain 1 - 83334 10,7% 7.2% 13,9%
Escherichia coli strain 2 - 2778656 9.4% 3,4% 7,8%
Escherichia coli strain 3 - 941322 9,7% 0,9% 3,0%
Escherichia coli strain 5 - 83333 8.8% 1,5% 1,0%
Faecalibacterium prausnitzii - 657322 6,3% 8,7% 7,4%
Fusobacterium nucleatum - 469607 4,4% 6,8% 5,2%
Lactobacillus fermentum - 1381124 4,4% 5,1% 5,5%
Prevotella corporis - 28128 5.8% 8.8% 7,1%
Salmonella enterica - 59201 8.8% 11,0% 10,6 %
Veillonella rogosae - 423477 4,4% 6.9% 5,5%

dom and chimeric reads, do not fully reflect the real
situation due to the composition of the sample. However,
even in such a less complex case, the results of the
experiments show that the classification after the assembly
of the metagenome significantly improves the estimation
of the actual number of organisms in the sample, both at
the species level and at the strain level. In addition, the
experiments show that assembling the metagenome results
in a smaller number of false positive classifications.

Further research of this approach is necessary, which
would include simulation of more realistic datasets (larger
number of species, more uneven true abundances, more
strains of the same species, organisms that are not present
in the database...) and testing other tools for classification
and metagenome assembly. Also, it is necessary to inves-
tigate a method of evaluating the metagenome assembly
to be used for further classification, including finding a
correct way to detect contigs that do not contribute to the
correct classification due to poor or incorrect assembly.
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