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Abstract—Recent developments in single-cell RNA se-
quencing techniques (scRNASeq) have made large quantities
of sequenced data available across numerous species and
tissues. Alternative splicing (AS) of pre-mRNA introns varies
between tissues and even between cell-types and can be
altered in disease. The study of novel AS, using standard
RNASeq data, has been extensively studied for many years,
while similar work on scRNASeq data has been scarce,
despite its potential to offer a broader insight into cell-type
specific processes. In this paper, we propose a novel pipeline
that uses fortuna, a method that efficiently classifies and
quantifies novel AS events, to process scRNASeq samples.
Due to its short lifespan, high number of progeny, low
maintenance cost, and intricate alternative splicing patterns
similar in complexity to those of mammals, Drosophila
Melanogaster (fruit fly) is a species of particular interest
to researchers. Therefore, we experimentally evaluate our
pipeline on real-world Drosophila single-cell data samples
from the Fly Cell Atlas.

Keywords—novel splicing events, scRNASeq, fortuna,
drosophila, alignment

I. INTRODUCTION

Multiple different mRNA molecules (transcripts) can
be transcribed from the same genomic region [1] [2].
These overlapping transcripts, which contain codes for
protein synthesis, can be the result of the mechanisms
that regulate alternative splicing (AS) [3]. Known AS
events are recorded in the transcriptome annotation, while
novel and aberrant AS events can occur in disease [4]
and are often unannotated. Deviations from the regular
splicing process may have a significant impact on the
organism, as discussed in [5]. Therefore, analysis of AS
events is an important topic in the field of computational
molecular biology. With the advent of single-cell RNA
sequencing (scRNASeq) [6], an opportunity to study AS
events from a different perspective has presented itself to
researchers. As it is discussed in [7], the study of AS in
the context of scRNASeq is challenging and the related
research has been scarce, despite its clear benefits. The
authors of [8] have created a comprehensive reference
atlas comprising of nearly 500,000 cells from 24 different
tissues and organs and have dedicated a part of their
research to AS events. A similar reference atlas has
been created for the fruit fly (Drosophila Melanogaster)
[9], called the Fly Cell Atlas. It contains approximately
580,000 cells from 15 different tissues, but no analysis of
AS events has been conducted. In data obtained by the
means of traditional RNA sequencing (RNASeq), novel

AS events can be indentified and quantified [10] after
conducting the computationally challenging alignment
process. Pseudoalignment methods such as [11] and [12],
significantly outperform traditional alignment methods
such as [13], [14], and [15] in terms of running time.
Though, they are usually limited to pseudoaligning short
reads to annotated transcripts and are unable to detect
novel AS events. Only a single tool exists, to our best
knowledge, that combines the speed of a pseudoaligner
with an ability to detect novel splicing [16]. In the
scRNASeq case, additional computation is required to
account for differentiation between cells, correcting
for in-vitro [17] or PCR [18] amplification and related
sequencing errors.

In this paper we propose a novel pipeline which can
be used to catalog novel AS events in scRNASeq data.
It uses fortuna [16], a tool originally developed for
novel AS event quantification in bulk RNASeq data, in
conjunction with 10x Genomics Cellranger [19] to offset
for the specifics of the scRNASeq analysis. Additional
scripts are used to extract the information from fortuna
and Cellranger output files and adjust the counts of novel
AS events in line with corrections for scRNASeq. We test
our pipeline on 12 real-world scRNASeq 10x samples
from Fly Cell Atlas, obtained from ArrayExpress with
the accession number E-MTAB-10519. The aim of our
experiments is to produce a catalog of novel AS events
which could be expanded to include the entire dataset or
to process entirely different data. Apart from the catalog,
we provide a running time and memory usage analysis.
The code for the additional scripts can be found at fortuna
fly atlas github page1, while fortuna can be obtained at
its official github page2.

The structure of the paper is as follows. In the Methods
section we will formulate the problem of building a
novel AS catalog from scRNASeq data and present a
novel pipeline which solves it. Then, in the Experiments
section, we will present a catalog built from the real world
data, analyze the novel splicing events found within and
discuss the running time and memory usage of the tools
that comprise our pipeline. Finally, in the Conclusion

1https://github.com/canzarlab/fortuna_flyatlas
2https://github.com/canzarlab/fortuna
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section we will provide a discussion and a brief overview
of our work.

II. METHOD

A. Problem formulation

There are a couple of challenges that need to be over-
come in order to build a catalog of novel AS events from
scRNASeq data. Reads coming from different cells are
identified by their respective cell barcodes and each read
is assigned a unique molecule identifier (UMI). During
the sequencing process, both barcodes and UMIs may
be incorrectly sequenced and, thus, have to be corrected.
Furthermore, due to amplification, UMIs with the same
corrected sequence have to be collapsed into a single
UMI before further analysis can be conducted. Another
issue that arises is the alignment of the reads to the
transcriptome - a process in which we find the origin the
read was likely sampled from. Each read that supports
a novel AS event, i.e. splices over an unannotated intron,
has to be recorded in the catalog. Finally, the catalog must
only contain a list of novel AS events supported by the
reads with corrected barcodes and UMIs.

B. Pipeline

Our proposed pipeline for classification and quantifica-
tion of novel events in scRNASeq is comprised of two
major steps:

1) sample processing, and
2) (pseudo-)alignment processing.

During the first step, we use fortuna to identify and
quantify novel alternative splicing events, and Cellranger
to perform barcode correction and UMI collapsing. During
the second step, we adjust the counts of the events
identified by fortuna according to Cellranger’s corrections
and output them into the final catalog. In the next two
subsections we will explain each step in more detail.

C. Sample processing

The workflow of fortuna can be separated into three
steps: indexing, pseudoalignment and postprocessing,
out of which we will use only the first two. During the
indexing step, fortuna supplements the annotation with a
virtual transcriptome that enables the detection of novel
AS events. An index constructed that way is used to
pseudoalign an arbitrary number of samples and, at the
same time, detect any potential novel splicing. We will
use fortuna’s pseudoalignments and novel AS catalog
outputs (obtained by specifying -bam and -alt when
running fortuna).

Cellranger is a software comprised of five pipelines
intended for different steps of the single-cell analysis.
We will use its cellranger count pipeline to correct cell
barcodes and collapse UMIs. It stores known barcodes in a

pre-defined whitelist and includes into the analysis all sam-
pled barcodes that are a part of it. Each sampled barcode
that has not been whitelisted, is included in the analysis if
it is 1-Hamming-distance away from a whitlisted barcode,
and additionally, if its probability of having originated
from the whitelisted barcode is sufficiently high. Reads
that contribute to UMI counts, i.e. are selected among
other reads with the same UMI, are considered valid if
their corresponding barcodes are valid and if they have
sufficient mapping quality. Valid non-whitelisted barcodes
have their UMIs merged with their respective whitelisted
barcode. Cellranger outputs an alignment file with flags
identifying the corrected values of UMIs and barcodes that
we will use in the next step of our pipeline.

D. (Pseudo-)alignment processing

Cellranger’s alignments are written in a binary file
which can be converted to a plain text file using samtools
view command [20]. On the other hand, similar binary
file produced by fortuna has to be converted using
pseudo-to-genome-alignment (p2g) tool provided as a
part of our pipeline. This is a necessary step because
pseudoalignments provided by fortuna are expressed in
local fragment coordinates and have to be converted
into standard genomic coordinates. The final part of our
pipeline, barcodeAS tool, adjusts fortuna’s catalog of
novel AS events according to the information obtained
from both pseudoalignment and alignment files by
removing the contribution of the discarded reads (4th bit
of the flag xf:i: in the alignment file).

III. EXPERIMENTS

The experiments were conducted on dual 2.30 GHz
Intel® Xeon® E5-2697 v4 processors, 320GB 2.40GHz
DDR4 memory operating on Scientific Linux 7.5
(Nitrogen). C++ compiler used to compile fortuna and
other scripts was GCC 4.8.5 20150623. GNU time
command was used to record the running times and
memory usage.

In the next subsection we will describe the dataset
we processed and highlight the importance of correcting
barcodes and UMIs. After that, we will present a novel
AS catalog and will focus on the classification of novel
AS events and their coverage over chromosomes in
the dataset. Finally, we will discuss running times and
memory usage of the tools we have used.

A. Experimental data

We obtained 12 Fly Cell Atlas testis samples sequenced
using 10x Genomics technologies from ArrayExpress.
Genome and annotation files were downloaded from
FlyBase FTP, release number FB2019_06. The annotation
was preprocessed for usage by Cellranger in accordance
to [9], and for usage by fortuna using processGTF script
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available at the fortuna github repository.

Each raw sample has between 125.6 and 183.1 million
reads spread across between 6 and 7.7 million barcodes.
The number of unique barcode and UMI combinations
in the raw data ranges between 93.3 and 123.9 million.
Cellranger count was run using default settings, 16
cores (–localcores), and 64GB memory (–localmemory).
After the corrections made by Cellranger, the number
of barcodes dropped to between 1.41 and 1.82 million
across all samples, while the number of unique barcode
and UMI combinations ranged between 61.47 and 81.62
million. The latter number coincided with the number of
reads which we considered in our analysis.

The distribution of UMIs across barcodes in raw and
corrected sample S44 is depicted in Fig. 1. The number
of barcodes with less than 120 UMIs steadily drops after
we run Cellranger due to it discarding a lot of invalid
ones. On the other hand, on the interval between 120
and 300 UMIs per barcode, the total number of barcodes
increases. While correcting barcodes, Cellranger reassigns
their UMIs to others, thus increasing the number of UMIs
per barcode. But, the number of discarded raw barcodes
is significantly larger than the number of those that have
been merged, as can be seen in Fig. 1. There is little
difference between raw and corrected barcodes with more
than 300 UMIs, so we have omitted them from the figure.
Similar conclusions can be made for all other samples on
different intervals.

B. Novel alternative splicing catalog

We constructed a T as fortuna index (–index) limiting
the number of skipped exons (-exs) to 8 and the number
of transcript fragments per gene (-Mc) to 25000. The
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Fig. 1: Overlapped log-scaled histograms representing the
number of barcodes having between 1 and 300 unique
UMIs in raw (blue) and corrected (orange) sample S44.

Overlap between bars has been colored light blue.

rest of the settings were set to default. Alignment and
novel AS event analysis were done using fortuna –quant
using 4 processing threads and default settings. (Pseudo-
)alignment files were processed using samtools and p2g,
whose outputs were passed to barcodeAS to obtain the
catalog.

Across all 12 samples, 23078 novel introns supported
by a total of 2318688 reads were identified. We observed
5 different kinds of novel AS events induced by these
introns, namely intron-in-exon (IE), alternative donors
(AD), alternative acceptors (AA), alternative donor-
acceptor pairs (AP) and exon skipping (ES). We have
included them in our analysis only if their respective
number of supporting reads was at least 2. The definitions
of these novel AS events are consistent with those in
[16]. The number of novel AS events and their read
support is summarized in Table I. Note that most events
are detected in multiple samples so the sum over the
number of events in Table I does not yield the total
number of unique events. Furthermore, some novel
introns can be classified in multiple ways, and thus
increase the count in multiple columns. Approximately
93.47% of all novel AS events we have detected have
been exon skipping events, supported by about 81.26%
of the reads. Alternative donors amounted to 4.68%
and 6.28%, alternative acceptors to 3.93% and 6.01%,
intron-in-exon events to 2.63% and 5.75%, and alternative
donor-acceptor pairs to 1.07% and 0.69% of the total
events and reads, respectively. Fig. 2 depicts the total
amount of novel splicing events and their supporting
reads across combined samples.

We analyzed events supported by at least 2 reads, and
cells in which we have detected at least one novel AS
event, for all combined samples. In 90.5% of the cells we
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Fig. 2: Log-scaled amount of detected novel AS events
separated by their type (intron-in-exon, alternative

donor-acceptor pairs, alternative acceptors, alternative
donors, exon skipping) and their supporting reads from

twelve combined Drosophila samples.
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Sample Number of events Read coverage
# IE AP AA AD ES IE AP AA AD ES

S44 350 116 485 583 9577 10319 1333 11641 11935 151275
S48 391 121 509 628 10694 12861 1615 14192 14642 183180
S49 370 109 481 584 9934 11052 1382 10955 12541 161098
S56 337 98 454 573 9377 9665 1177 9655 10277 143079
S59 366 109 463 581 9739 10650 1269 11718 11617 150414
S60 389 111 478 590 9911 11825 1330 11353 12434 159158
S61 370 117 472 607 9820 10692 1272 11836 11970 152819
S65 364 99 473 564 9419 10861 1175 10465 11506 147321
S67 353 104 464 574 9514 10002 1214 10067 11002 143471
S68 357 112 489 583 9773 11039 1255 12209 12313 154495
S69 395 116 520 657 10707 13659 1586 14637 14817 183609
S70 365 114 479 587 9792 10807 1345 10703 10602 154297

TABLE I: Number of detected novel AS events separated by their type and their supporting reads in each of the
twelve Drosophila samples.
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Fig. 3: A histogram of the log-scaled number of cells in
relation to the number of novel AS events detected in

them for the twelve combined Drosophila samples.

found at most 8 different novel AS events, and in 54.8%
no more than 1 novel AS event. The highest number of
events detected in a single cell was 423. We present the
distribution of the number of novel AS events across the
cells in Fig. 3.

In Fig. 4 we present the combined coverage of novel
AS events (blue bars) across different chromosomes.
X-axis represents genomic coordinates, while the left
y-axis depicts the number of detected novel AS events.
Additionally, the red line signifies the number of different
cells in which we have detected the aforementioned novel
AS events. Its corresponding values are located on the
right y-axis. As can be seen in Fig. 4, there exist a few
regions on each chromosome where certain novel AS
events have been observed in a large amount of different
cells, e.g. red line reaching a value over 60000 on
chromosome 2R. This could indicate the existence of AS
events that are common across multiple cells or tissues.
Such cases could be investigated in the data comprised
of multiple samples of different tissues and any suitable
AS events could be considered for patching into the
annotation. On the other hand, high coverage of novel AS

events present in a low number of cells, visualized by tall
blue bars and low red values, might point to processes
affecting only specific cells that are worth investigating.
Such examples can be visually detected in Fig. 4 on, e.g.
chromosome 4.

We have investigated the outlier on chromosome 2R and
found that a single novel AS event at genomic coordinates
2R:17478508-17485002 is supported by 135285 reads and
is detected in 64511 different cells across all samples.
It might suggest that the particular intron is a part of a
common unannotated transcript. Investigation of this as
well as other similar outliers through the genome might
prove an interesting topic for further research.

C. Running time and memory usage

The experiments section will be concluded with a
running time and memory usage analysis. There are
five essential components of our pipeline - Cellranger,
fortuna, samtools, p2g, and barcodeAS. Their memory
usages and running times are presented in Table II.
Cellranger and fortuna ran, on average, for 48m50s and
26m43s, respectively, while consuming 3.32 and 6.90 GB
of memory. Increasing the amount of available threads
would decrease the running time for both tools with some
diminishing returns, likely due to disk-related limitations.
Average samtools and p2g running times were 11m28s
and 15m4s, while their memory consumtion was 1.29
and 310.39 MB. Finally barcodeAS ran for 24m56s
while using 14.02 GB. That would mean that an average
run of the entire pipeline would last slightly less than
130m and consume 14.02 GB of memory. Notice that
barcodeAS consumed the most memory out of all listed
tools. Reducing its memory usage could be an important
part of our future work.

IV. CONCLUSION

We have presented a novel pipeline for building
a catalog of novel alternative splicing events from
scRNASeq data which uses fortuna and Cellranger in
its core. Then, we have tested the pipeline using 12
real-world Drosophila Melanogaster testis samples from
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Fig. 4: The coverage of novel AS events across the chromosomes (blue) and the number of cells in which these
events have been detected (red) for the twelve combined Drosophila samples.
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Sample Running time Memory consumption (GB)
# fortuna Cellranger p2g samtools barcodeAS fortuna Cellranger p2g barcodeAS

S44 26m39s 50m54s 15m05s 8m47s 24m32s 6.88 3.26 0.30 13.85
S48 34m42s 60m08s 19m41s 12m04s 35m41s 6.90 3.50 0.30 16.79
S49 29m19s 55m39s 17m20s 10m03s 28m30s 6.90 3.32 0.30 14.76
S56 23m52s 44m18s 14m12s 11m46s 25m27s 6.88 3.17 0.30 13.03
S59 25m00s 44m33s 13m36s 14m24s 26m18s 6.90 3.29 0.30 13.37
S60 25m35s 47m25s 14m11s 9m20s 25m08s 6.90 3.36 0.30 13.98
S61 24m33s 49m28s 14m20s 15m10s 25m01s 6.90 3.34 0.30 13.38
S65 23m48s 42m08s 13m16s 8m26s 29m52s 6.90 3.16 0.30 12.94
S67 23m14s 41m25s 13m02s 13m47s 22m10s 6.90 3.27 0.30 12.65
S68 26m26s 45m20s 14m01s 9m26s 26m02s 6.90 3.20 0.30 13.57
S69 32m23s 56m01s 17m56s 11m47s 32m29s 6.91 3.50 0.30 16.16
S70 25m00s 48m40s 14m09s 12m37s 30m39s 6.90 3.40 0.30 13.71

TABLE II: Running times and memory usage of all tools in our pipeline recorded for each Drosophila sample.
Samtools have been omitted from the memory consumption due to using less than 2 MB of memory.

Fly Cell Atlas. In our experiments, we have analyzed and
discussed potential benefits of computing the coverage of
novel AS events across the chromosomes, split novel AS
events and their supporting reads by the type of AS, and
briefly commented the running times and memory usage
of the each part of our pipeline.

We acknowledge several new directions we could take
in our future work. Working directly with binary alignment
files without converting them into plain text, thus omitting
samtools, could significantly speed up the process of build-
ing a catalog. Expanding the experiments to encompass
the entire Fly Cell Atlas or even scRNASeq datasets
of other species could result in potentially interesting
and important biological findings. Finally, the inclusion
of novel intron retention events could prove useful for
downstream analysis.
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