
Reconstruction of short genomic sequences with
graph convolutional networks

Lovro Vrček∗†, Xavier Bresson‡, Thomas Laurent§, Martin Schmitz†‡, Mile Šikić∗†
∗ Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

† Genome Institue of Singapore, A*STAR
‡ National University of Singapore
§ Loyola Marymount University

lovro.vrcek@fer.hr, mile.sikic@fer.hr

Abstract—Genome reconstruction, without prior knowl-
edge about the sequence we are reconstructing, is performed
with tools called de novo genome assemblers. These tools
rely on numerous heuristics and usually provide a frag-
mented reconstruction, even for sequences shorter than the
entire genomes or chromosomes. One of the most common
approaches to de novo assembly, called Overlap-Layout-
Consensus, constructs a graph from short overlapping frag-
ments, which heuristics then simplify and find a path
through. In this work, we explore how graph neural networks
(GNNs) can assist with this task, and show that the GNN-
based Layout phase can reconstruct longer sequences than
naive search algorithms or heuristics deployed in de novo
assemblers, with no significant difference in compute time
on sequences up to 10 Mbp in length.

Keywords—genome assembly, graph neural networks

I. INTRODUCTION

Fast and accurate de novo genome assembly is one
of the most difficult problems in bioinformatics and it
remains unsolved to this day. It focuses on reconstructing
the original genomic sequence from a sample of shorter
overlapping fragments, called reads, without any prior
knowledge about the original sequence. The first major
achievement of de novo genome assembly happened in
the early 2000s when the Human Genome Project was
finished, an effort that took over a decade and cost billions
of dollars [1]. The reported results of the project were
that 99% of the genome had been reconstructed with
less than 400 gaps. Unfortunately, that was not entirely
correct, as only the euchromatic portion of the genome was
considered while the heterochromatin was left out. When
the heterochromatin regions—which include centromeres,
telomeres, and tandem gene arrays—are also taken into
account, the final result is that more than 5% of the entire
genome was either missing or incorrect.

Since then, the sequencing technologies have improved
significantly in many ways, but most notably in terms
of the lengths and accuracies of the reads they produce.
At the forefront of the latest sequencing technologies are
the HiFi reads developed by PacBio [2] and the ultra-
long reads by Oxford Nanopore Technologies [3], both of
which were crucial for the most recent breakthrough in the
field of de novo genome assembly—full reconstruction of
the entire human genome, with no regions left unsolved
[4]. Nevertheless, this was enabled not only by the latest

sequencing technologies, but also by a tremendous effort
of numerous researchers and bioinformaticians who used
various de novo assembly tools and manually inspected
large genomic regions.

One of the more common approaches to de novo
genome assembly, which was also the one used in the re-
cent reconstruction of the human genome, is the Overlap-
Layout-Consensus (OLC) paradigm. In the Overlap phase,
the reads in the sample are mapped onto each other in an
all-versus-all manner in order to find overlaps between
them. All reads that are entirely contained in other reads
are removed from further processing. From the rest of
the overlapped reads, an assembly graph is built—a graph
in which nodes represent reads and edges represent the
suffix-prefix overlaps between the reads. In the Layout
phase, the assembly graph is simplified in order to find a
path through it that would reconstruct the original genome.
Finally, in the Consensus phase, all the reads are aligned
to the reference in order to clean the assembly sequence
of errors that happened during the rest of the process.

In the ideal scenario, the Layout phase would be for-
mulated as finding a Hamiltonian path over the assembly
graph—visit every node in the graph exactly once. How-
ever, due to imperfect read qualities, sequencing artifacts,
and repetitive genomic regions, finding a Hamiltonian
path is usually not possible and an unknown number of
nodes and edges has to be removed. Because of this,
instead of finding a path through the graph directly,
modern assemblers rely on heuristics to simplify the entire
graph, by iteratively removing nodes and edges deemed
unnecessary, such as removing transitive edges, trimming
tips, and popping bubbles [5], [6]. Frequently, however,
assembly graphs are highly complex, and even this is not a
straightforward task, as some regions cannot be simplified
by the current heuristics. One such region can be seen
in Figure 1 on the left, where the blue nodes are those
that should be traversed for the ideal assembly, while
the orange nodes should be avoided. For lack of a better
method, these complex regions are cut out of the graph,
and we are left with multiple fragments of the original
genome instead of the continuous sequence. To this day,
the problem of fragmentation continues to plague all the
existing assemblers.

MIPRO 2023/DS-BE 437



The central part of reconstructing the full human
genome was untangling these complex regions in the
assembly graph instead of cutting them. This approach
required an abundance of data, various tools, and a detailed
manual inspection of certain regions and individual reads.
Reproducing such efforts on new genomes seems infeasi-
ble, and thus fast and accurate de novo genome assembly
remains elusive.

In this work, we propose a novel approach to de
novo genome assembly, one based on deep learning and
finding a path through the graph instead of relying on
handcrafted heuristics to simplify the graph. We train
a non-autoregressive model based on gated graph con-
volutional network (GatedGCN) introduced by [7] that
takes an assembly graph and outputs a score for each
edge. These scores can then be used to guide a search
algorithm over the graph, producing a path that represents
the reconstructed genome. Our idea is illustrated in Figure
1 on the right—a depiction of the graph traversal done
during the training, where in each step we calculate the
probabilities for traversing each neighbor of the current
node. For this, we create a synthetic dataset of reads
from the real human genomic data, and generate assembly
graphs prior to any simplification steps in order to avoid
any errors such simplifications might produce. We believe
this approach could reduce the fragmentation of the re-
constructed genomes, especially in the entangled regions.

Lately, graph neural networks (GNNs) have been ap-
plied to a variety of biological problems, ranging from
drug design [9] and protein interactions [10], to predicting
anticancer foods [11]. However, to the best of our knowl-
edge, the only work based on geometric deep learning
that addresses de novo genome assembly is [12], which
only simulates the deterministic simplification algorithms
in the Layout phase, instead of tackling the tangled re-
gions themselves. Moreover, the graphs used in [12] were
completely synthetic, not generated from the biological
sequences. Here, we go a step further by starting with the
complete human genome and focusing on one of the main
problems in genome assembly.

The rest of the paper is composed as follows: In Section
II we describe the dataset preparation, in Section III we
describe the architecture of the used model, in Section
IV we state the performed experiments, and in Section V
we discuss the results. Finally, Section VI concludes this
paper.

II. DATASET

Generating the dataset can roughly be separated into
three tasks. First, we simulate the genomic data from the
human genome. Second, we adapt an existing tool for de
novo genome assembly, Raven [6], to build an assembly
graph for each set of reads. Finally, we implement an
algorithm that leverages the information stored during
the read-simulation phase and finds a ground-truth path
through an assembly graph. We use these paths as the
supervision signal during the training phase.

A. Simulating reads

To simulate the reads, we start with the recently recon-
structed human genome called CHM13 [4], which consists
of one chromosome from each of 23 pairs of human
chromosomes. In the assembly process, each chromosome
would ideally be represented by a single component of
the large disconnected graph of the entire human genome,
but in a realistic case, several chromosomes could be
connected into a single component. Starting from a simpler
scenario, we isolated one chromosome and split it into
shorter "mini-references", each 2 million base pairs (bp)
long.

During the sequencing process of the real samples, all
information about the ordering of the reads and their
position on the genome is lost. This is the main reason
why we are not using sequenced human data, but simulate
our own by sampling the reads from the mini-references.
Thus, we are able to store the positional information for
each read, which allows us to construct the ground-truth
path for training.

The reads are simulated by mimicking the sequencing
process. The mini-reference is sampled in a manner that
each base of the mini-reference is covered approximately
20 times, which represents the number of times genomes
are copied and fragmented prior to sequencing (sequencing
depth). The lengths of the reads are sampled from a
normal distribution with a mean value of 20,000 and a
standard deviation of 1,500. These values were determined
empirically so that the simulated reads would resemble
the real PacBio HiFi reads. In contrast to sequencers,
we introduce no errors to the simulated data to facilitate.
Considering that the average accuracies of the real PacBio
reads are usually over 99% and that there are tools that
perform error correction of reads [13], we believe that this
gives a decent approximation of the real data.

B. Generating graphs

Once the reads are simulated, we can construct the
graphs. For this purpose, we use an adapted version of
Raven, an assembler that follows the OLC paradigm and
can output the assembly graphs at different stages of the
Layout phase [6]. Additionally, we required Raven to keep
only the perfect overlaps between the reads. Therefore,
unless two reads have a suffix and a prefix which are
matching in all the bases, they will not be connected with
an edge in the assembly graph.

At the end of the Overlap phase, the assembly graph
is constructed. We output the generated graph at the start
of the Layout phase, prior to any simplification algorithm
applied, in order to avoid errors that can occur during the
simplification steps. The end result of this entire process
is 50 graphs, each containing around 3,500 nodes and
50,000 edges. Considering that the reads are perfect and
the similarity score of each overlap is 1.0, we only rely
on overlap lengths as edge features and use no node
features (or rather, we specify the feature of each node
to be 1). A possible approach would be to encode the

438 MIPRO 2023/DS-BE



Fig. 1: Left: An assembly graph of one part of chromosome 11, containing the repetitive region. Blue nodes should
be traversed, while the orange ones should be avoided. Figure generated with Graphia [8]. Right: Three steps of

traversing the graph during the training where, in each step, the probabilities are computed for traversing all nodes
neighboring the current node.

genomic sequences with a 1D-CNN and use the read-
sequence encodings as node features and overlap-sequence
encodings as additional edge features, but we leave that for
future work. Therefore, in order to train on the generated
graphs, the last thing needed is the supervision signal—a
ground-truth path for each graph.

C. Ground-truth paths

A ground-truth path is a path in the assembly graph that
produces the longest length of the reconstructed genome.
For this, we utilize the positional information that was
stored for each read during the sampling process and
implement an algorithm resembling depth-first search,
with an additional preference for successor nodes that are
closer to the current node on the mini-reference. Neighbors
that don’t share a position on the mini-reference with
the current node are avoided. Although the reads and the
overlaps in the created graphs are both perfect, connections
between the distant genomic regions can still exist. The
main culprits for this are repetitive regions, regularly
found in telomeres, centromeres, and highly duplicated
ribosomal RNA genes.

In a way, this algorithm can be described as an exhaus-
tive search with an oracle. Even though the oracle—the
reads’ positions on the mini-reference—guarantees that the
reconstructed genome will be optimal, we noticed cases
when the length of the reconstruction was less than that
of the original mini-reference. There are two reasons for
this. First, during the Overlap phase, all the reads are
trimmed, which slightly reduces them in length. Since
the ends of the mini-reference are covered only by the

ends of the reads, trimming the reads necessarily leads to
a loss of information. Second, and the more interesting
case, happens due to an error during the Overlap phase
resulting in a fragmented assembly graph. This occurs
even though the sampled reads can cover the entire mini-
reference (apart from a few bases on either end). We
believe this happens due to a combination of repetitive
regions and the discarding of reads completely contained
inside the other reads. However, more analysis is needed
to make a definite claim.

Notice that here we find just a single path through the
graph, whereas in reality, multiple paths could lead to the
optimal solution. This is particularly true in the case of
diploid and polyploid genomes, but even in the case of
haploid genomes, such as CHM13, there are transitive
edges that do not influence the final assembly traversed.
However, for the sake of an easier problem statement, we
focus only on the best neighbor for each node.

III. MODEL ARCHITECTURE

The proposed model for obtaining the probability scores
is non-autoregressive and can be split into three parts—
encoder, processor, and decoder.

A. Encoder

A layer that transforms node features xi ∈ Rdv and edge
features zij ∈ Rde into the d-dimensional node and edge
representations. As stated in Section II, we use xi = 1.0

MIPRO 2023/DS-BE 439



and zij = len(i → j), thus making dv = de = 1. Encoder
for both node and edge features is a single linear layer:

h0
i = W1xi + b1 ∈ Rd, (1)

e0ij = W2zij + b2 ∈ Rd, (2)

where h0
i is the initial node representation of the node

i, e0ij is the initial representation of the edge i → j, and
W1 ∈ Rd×dv ,W2 ∈ Rd×de , b1, b2 ∈ Rd are learnable
parameters.

B. Processor

The main part of the network consists of multiple GNN
layers. For this task, we modify the GatedGCN [7] by
including the edge representations and a dense attention
map ηij for the edge gates, as proposed in [14], [15].

The motivation for using this layer comes mainly from
its performance on the Traveling Salesman Problem (TSP)
[15]. Since the problem of finding the optimal walk on
the assembly graph is similar to that of TSP, it makes
sense to reuse the architecture. In addition, it was shown
that the GatedGCN outperforms many other models in
several tasks [16], which gives us further reason to use
this architecture.

Let now node i be the node whose representation we
want to update, and let its representation after a layer l be
hl
i. Also, let all the neighbors of node i be denoted with j.

Then, in the layer l+1, the node and edge representations
will be:

hl+1
i =hl

i +ReLU

(
BN

(
Alhl

i +
∑

j∈N(i)

ηl+1
ij ⊙Blhl

j

))
,

where all A,B ∈ Rd×d are learnable parameters, ReLU
stands for rectified linear unit, BN for batch normalization,
and ⊙ for Hadamard product. The edge gates are defined
as:

ηlij =
σ
(
elij

)
∑

j′∈N(i) σ
(
elij′

)
+ ϵ

∈ Rd
+ (3)

where σ is the sigmoid function, and ϵ is a small value
in order to avoid division by zero.

C. Decoder

A multi-layer perceptron (MLP) decodes the obtained
representations into the probability scores. Probability
score pij for traversing an edge i → j is computed from
node representation of nodes i and j, as well as edge
representations of the edge i → j, all after the final
GatedGCN layer L:

pik = MLP(hL
i ∥ hL

k ∥ eLij), (4)

where (· ∥ ·) is the concatenation operator.

IV. EXPERIMENTS

A. Training

Processing of a graph during one training epoch is done
iteratively. In a single iteration, the graph is fed to the
model providing us with scores for all the edges. We
start the traversal from the starting node of the ground-
truth path and take w steps, where w is a hyperparameter
and we refer to it as the walk length. In each step, the
best successor is predicted from their probability scores,
while the correct next node is obtained from the ground-
truth path. The cross-entropy loss is computed over the
current node’s successors, followed by teacher forcing
where we choose the successor given by the ground-truth
as the next node. This is repeated for w steps, after which
the computed losses are averaged, the backpropagation is
performed, and the next iteration starts, continuing from
the last visited node. This is repeated until the end of
the ground-truth walk. It is important to notice that, while
computing the loss, the number of candidates in each step
can vary, as the number of successors also varies.

The training was performed on a dataset consisting
of 50 graphs with a 30/10/10 train/validation/test split.
Each graph had about 3,500 nodes and 50,000 edges, all
of them generated from 2 Mbp mini-references coming
from chromosome 11. We used Adam optimizer [17],
with the initial learning rate of 10−4. We also decay the
learning rate multiplying by with 0.9 in case there was
no improvement in the validation loss for 5 epochs. The
evaluation metric used during training to keep track of
the learning process was the accuracy of predicting the
best next neighbor, which we also refer to as the local
reconstruction metric. The entire training was done on a
single Nvidia A100 GPU.

Predicting the best successor is the only metric used
during the training, since it is easy to calculate the
corresponding loss and accuracy. In a way, the better
the model follows the ground-truth, the better it should
reconstruct the entire sequence. However, there are some
situations where choosing the incorrect node makes no
difference (e.g., transitive edges such as i → k, when
there also exist i → j and j → k), as well as situations
where choosing the correct node is crucial (e.g., dead-end
nodes). Therefore, even though used for training, this is
not the best metric for genome assembly in general. Still,
we expect a certain transferability between the local and
the global task, and this approach simplifies the training
significantly. In addition, we also perform teacher forcing
during the validation and testing—even though the model
makes a mistake, we will put it back on the right path for
the sake of easier evaluation of the training process.

B. Inference

At inference, the predictions are not performed iter-
atively, but all in one go—we feed the graph to the
model and find a path with the greedy algorithm following
the probability scores. The greedy algorithm runs until it

440 MIPRO 2023/DS-BE



reaches a node without outgoing edges or all of the node’s
successors have already been visited. Since there is no
good option for choosing the starting node, we run the
greedy search from all the nodes that have in-degree zero
and choose the longest walk. At inference, we cannot eval-
uate the performance by the accuracy of choosing the best
next neighbor, since there is no ground-truth. Moreover,
de novo genome assemblers usually work in a completely
different way, so this would make the comparison against
them impossible. Therefore, we evaluate our model on two
other tasks—length of the reconstruction and the execution
time:

a) Reconstructed sequence length.: We measure the
reconstructed length as the percentage of the original mini-
reference length from which the reads were sampled. This
metric is robust to errors while choosing transitive edges,
but harshly punishes choosing dead-end nodes and wrong
paths in general. Ideally, the length ratio would be 1, but
it is expected that it will be slightly less due to the way
the reads are simulated and processed prior to the Layout
phase (e.g., trimming of reads mentioned in Section II-C).

b) Execution time.: One of the main pitfalls for
many assemblers is their execution time. We evaluate the
time needed for the model to process the graph and the
search algorithm to find the best path through it. All the
experiments related to execution time were performed on
a single Intel Xeon E5-2698 v4 CPU.

We benchmark our model on the mentioned tasks
against three other approaches. First, the naive approach
where the scores are calculated as normalized overlap
lengths. This approach comes down to running a greedy
algorithm over the overlap lengths, and thus we refer to
it as the greedy in the next section. The second approach
is the one used for obtaining the ground-truth paths as
explained in Section II-C, the exhaustive search with
oracle. Finally, we also compare the developed model
against an existing assembler Raven, which was used to
generate the assembly graphs in Section II-B.

V. RESULTS

The results reported here were obtained by the best-
performing model, which had 4 GatedGCN layers, latent
dimension 32, and the walk length was 10. The MLP
classifier consisted of a single layer. During training this
model achieved a 99.90% accuracy on the test set and
upon deeper inspection, we noticed that the errors mostly
consisted of traversing transitive edges.

Table I shows the evaluation results of our model
(GNN) benchmarked against greedy approach, Raven, and
exhaustive search with oracle (ES∗). For the reported
lengths, first the percentage of the reconstruction was
calculated for each graph, after which all the percentages
were averaged. With the aim to test how our model scales
to larger graphs, and thus larger genomes, we trained it
on graphs generated from 2 Mbp mini-references, and
evaluate on graphs generated from 2, 5, and 10 Mbp
mini-references. The number of nodes and edges scaled

roughly linearly with the length of the mini-reference.
For the evaluation on graphs generated from 2 Mbp mini-
reference, we reuse the graphs from the test set, coming
from chromosome 11. Additionally, we cut chromosome
10 into 5 Mbp mini-references and chromosome 12 into
10 Mbp mini-references. There was no particular reason
for choosing the chromosomes 10, 11, and 12. All three
chromosomes are of similar complexity, so the extracted
mini-references should also be similar, with length being
the main difference between them.

a) GNN vs ES∗.: The developed GNN-based method
doesn’t manage to reconstruct the genomes as well as
the exhaustive search, but does not fall far behind either.
The difference comes from the cases where our model got
stuck in a dead-end node, similarly to what happened to
the greedy algorithm.

b) GNN vs Greedy.: We notice that our model con-
sistently outperforms the greedy algorithm in terms of
reconstructed length. This means that the model managed
to leverage the graph topology in order to avoid some
pitfalls where the greedy algorithm got stuck, such as
dead-end nodes. The greedy algorithm is slightly faster
than our model, which comes as no surprise. Interestingly,
the difference in execution times is relatively small, mainly
because the neural network we used is also relatively
small, and so are the graphs, so a single forward pass
through it can be efficiently done on a single CPU.

c) GNN vs Raven.: We notice that Raven slightly
outperforms the GNN model on the two larger datasets,
but on the 2 Mbp dataset falls behind even the greedy
approach. After a more thorough analysis, we noticed that
Raven underperformed on only one graph, while on all the
other graphs in that dataset, it was as good as the GNN.
The graph on which Raven failed came from a highly
repetitive region, and since Raven tries to simplify the
graph by removing nodes and edges, it ends up cutting the
graph into numerous fragments, the longest one being only
around 15% of the original mini-reference. GNN managed
to correctly find a path through that graph. This is a critical
result, as the repetitive regions are the main reason why the
assemblers fail to accurately reconstruct genomes. At the
same time, Raven is faster than the GNN, which is partially
due to more efficient implementation of the algorithms
performed. However, with differences being only up to a
few seconds, this is insignificant given that the bottleneck
of the de novo assembly is usually the Overlap phase.

Overall, we show that the model performs well con-
sistently over graphs of different sizes and even different
chromosomes, both in terms of accuracy and speed. Yet,
human chromosomes are up to 250 Mbp long, so a definite
conclusion on how it would perform in such a setting
cannot be made.

VI. CONCLUSION

In this work, we introduce a novel approach to solving
de novo genome assembly based on graph neural networks
and finding a path through the assembly graph. We created

MIPRO 2023/DS-BE 441



TABLE I: Comparison of GNN, naive approach, Raven, and exhaustive search.

Method 2 Mbp 5 Mbp 10 Mbp
length [%] time [s] length [%] time [s] length [%] time [s]

ES∗ 99.79± 0.16 2.5± 0.1 95.82± 14.67 7.5± 1.1 95.93± 13.94 23.0± 5.0
Greedy 93.50± 17.88 0.2± 0.0 90.21± 24.01 0.7± 0.1 82.11± 33.14 1.4± 0.6
Raven 90.85± 26.74 0.216± 0.002 93.68± 17.25 0.54± 0.01 95.92± 13.96 1.09± 0.01
GNN 99.20± 1.86 0.5± 0.1 93.51± 18.31 1.4± 0.3 95.73± 13.90 3.0± 0.4

a dataset of assembly graphs based on reads sampled
from human genomic data on which the developed model
was trained and evaluated. The model was also evaluated
against a naive greedy approach, an exhaustive search
using the positional information of reads, and an exist-
ing genome assembler Raven [6]. It was shown that it
consistently outperforms the greedy approach in terms of
reconstructed length, and is usually on-par with Raven
while having no significant computational overhead. More
interestingly, it was shown that the model outperformed
Raven when given a highly complex graph from a repeti-
tive region.

These results are particularly promising to solve chal-
lenging regions more accurately than the existing as-
semblers can. Future work will investigate the proposed
technique on sequenced instead of generated data, with
the ultimate aim of using it as a tool for untangling the
assembly graphs to reduce fragmentation. We believe that
combining path-finding techniques with deep learning will
play a major role in improving de novo genome assembly.

ACKNOWLEDGMENT

Lovro Vrček has been supported by "Young Re-
searchers" Career Development Program DOK-2018-01-
3373, ARAP scholarship awarded by A*STAR, and core
funding of Genome Institute of Singapore, A*STAR.
Xavier Bresson has been supported by NRF Fellow-
ship NRFF2017-10 and NUS-R-252-000-B97-133. Mar-
tin Schmitz has been supported by SINGA scholar-
ship awarded by A*STAR. Mile Šikić has been sup-
ported in part by the European Union through the
European Regional Development Fund under the grant
KK.01.1.1.01.0009 (DATACROSS), by the Croatian Sci-
ence Foundation under the project Single genome and
metagenome assembly (IP-2018-01-5886), and by the core
funding of Genome Institute of Singapore, A*STAR.

REFERENCES

[1] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody,
J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al.,
“Initial sequencing and analysis of the human genome,” 2001.

[2] A. M. Wenger, P. Peluso, W. J. Rowell, P.-C. Chang, R. J. Hall,
G. T. Concepcion, J. Ebler, A. Fungtammasan, A. Kolesnikov, N. D.
Olson et al., “Accurate circular consensus long-read sequencing
improves variant detection and assembly of a human genome,”
Nature biotechnology, vol. 37, no. 10, pp. 1155–1162, 2019.

[3] M. Jain, S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A.
Sasani, J. R. Tyson, A. D. Beggs, A. T. Dilthey, I. T. Fiddes
et al., “Nanopore sequencing and assembly of a human genome
with ultra-long reads,” Nature biotechnology, vol. 36, no. 4, pp.
338–345, 2018.

[4] S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze,
A. Mikheenko, M. R. Vollger, N. Altemose, L. Uralsky,
A. Gershman, S. Aganezov, S. J. Hoyt, M. Diekhans, G. A.
Logsdon, M. Alonge, S. E. Antonarakis, M. Borchers, G. G.
Bouffard, S. Y. Brooks, G. V. Caldas, H. Cheng, C.-S. Chin,
W. Chow, L. G. de Lima, P. C. Dishuck, R. Durbin, T. Dvorkina,
I. T. Fiddes, G. Formenti, R. S. Fulton, A. Fungtammasan,
E. Garrison, P. G. Grady, T. A. Graves-Lindsay, I. M. Hall,
N. F. Hansen, G. A. Hartley, M. Haukness, K. Howe, M. W.
Hunkapiller, C. Jain, M. Jain, E. D. Jarvis, P. Kerpedjiev,
M. Kirsche, M. Kolmogorov, J. Korlach, M. Kremitzki, H. Li,
V. V. Maduro, T. Marschall, A. M. McCartney, J. McDaniel, D. E.
Miller, J. C. Mullikin, E. W. Myers, N. D. Olson, B. Paten,
P. Peluso, P. A. Pevzner, D. Porubsky, T. Potapova, E. I. Rogaev,
J. A. Rosenfeld, S. L. Salzberg, V. A. Schneider, F. J. Sedlazeck,
K. Shafin, C. J. Shew, A. Shumate, Y. Sims, A. F. A. Smit, D. C.
Soto, I. Sović, J. M. Storer, A. Streets, B. A. Sullivan, F. Thibaud-
Nissen, J. Torrance, J. Wagner, B. P. Walenz, A. Wenger, J. M. D.
Wood, C. Xiao, S. M. Yan, A. C. Young, S. Zarate, U. Surti,
R. C. McCoy, M. Y. Dennis, I. A. Alexandrov, J. L. Gerton,
R. J. O’Neill, W. Timp, J. M. Zook, M. C. Schatz, E. E. Eichler,
K. H. Miga, and A. M. Phillippy, “The complete sequence of
a human genome,” bioRxiv, 2021. [Online]. Available: https:
//www.biorxiv.org/content/early/2021/05/27/2021.05.26.445798

[5] H. Li, “Minimap and miniasm: fast mapping and de novo assembly
for noisy long sequences,” Bioinformatics, vol. 32, no. 14, pp.
2103–2110, 2016.

[6] R. Vaser and M. Šikić, “Time-and memory-efficient genome as-
sembly with raven,” Nature Computational Science, vol. 1, no. 5,
pp. 332–336, 2021.

[7] X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv
preprint arXiv:1711.07553, 2017.

[8] T. Freeman, S. Horsewell, A. Patir, J. Harling-Lee, T. Regan, B. B.
Shih, J. Prendergast, D. A. Hume, and T. Angus, “Graphia: A
platform for the graph-based visualisation and analysis of complex
data,” bioRxiv, 2020.

[9] J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz,
N. M. Donghia, C. R. MacNair, S. French, L. A. Carfrae, Z. Bloom-
Ackermann et al., “A deep learning approach to antibiotic discov-
ery,” Cell, vol. 180, no. 4, pp. 688–702, 2020.

[10] P. Gainza, F. Sverrisson, F. Monti, E. Rodola, D. Boscaini, M. Bron-
stein, and B. Correia, “Deciphering interaction fingerprints from
protein molecular surfaces using geometric deep learning,” Nature
Methods, vol. 17, no. 2, pp. 184–192, 2020.

[11] G. Gonzalez, S. Gong, I. Laponogov, M. Bronstein, and
K. Veselkov, “Predicting anticancer hyperfoods with graph con-
volutional networks,” Human Genomics, vol. 15, no. 1, pp. 1–12,
2021.

[12] L. Vrček, P. Veličković, and M. Šikić, “A step towards neural
genome assembly,” arXiv preprint arXiv:2011.05013, 2020.

[13] H. Cheng, G. T. Concepcion, X. Feng, H. Zhang, and H. Li,
“Haplotype-resolved de novo assembly using phased assembly
graphs with hifiasm,” Nature Methods, vol. 18, no. 2, pp. 170–175,
2021.

[14] X. Bresson and T. Laurent, “A two-step graph convolutional de-
coder for molecule generation,” arXiv preprint arXiv:1906.03412,
2019.

442 MIPRO 2023/DS-BE



[15] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph con-
volutional network technique for the travelling salesman problem,”
arXiv preprint arXiv:1906.01227, 2019.

[16] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bres-

son, “Benchmarking graph neural networks,” arXiv preprint
arXiv:2003.00982, 2020.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

MIPRO 2023/DS-BE 443




