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Abstract – Since its introduction in 2015, U-net has 

become state-of-the-art neural network architecture for 

biomedical image segmentation. Although many 

modifications have been proposed, few novel concepts were 

introduced. Recently, some significant breakthroughs have 

been achieved by introducing attention or, more specifically, 

Transformers. Many attempts to incorporate self-attention 

mechanisms into solving computer vision tasks resulted in 

Vision Transformer (ViT). As ViT has some downsides 

compared to convolutional neural networks (CNNs), neural 

networks which merge advantages from both concepts 

prevail, especially in small data regimes we often face in 

medicine. U-net architecture still outperforms ViT models 

as their high accuracy relies on massive data. This paper 

investigates how attention added in U-net architecture 

affects results. We evaluate the outcomes on a publicly 

available dataset which consists of 1136 retinal optical 

coherence tomography (OCT) images from 24 patients 

suffering from neovascular age-related macular 

degeneration (nAMD). Also, we compare results to 

previously published results, and it could be noted that the 

Attention-based U-net model achieves higher Dice scores by 

a significant margin. The code is publicly available. 
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I. INTRODUCTION 

Optical coherence tomography (OCT) allows non-
invasive 3D imaging where high-resolution images 
provide information about the retinal structure. 
Consequently, OCT imaging found an essential role in 
ophthalmology. Morphological features that can be seen 
and measured from OCT tomograms, such as the 
thickness of individual retinal layers, shapes, spatial 
distributions, and optical properties of various lesions and 
blood vessels, can serve as identifiers in the diagnosis of 
retinal diseases [1]. Some of the most often diseases 
diagnosed by OCT imaging are diabetic retinopathy (DR), 
age-related macular degeneration (AMD), retinal vein 
occlusion (RVO), central serous retinopathy (CSR), and 
glaucoma.  

There is increased demand for automatic segmentation 
due to a lack of ophthalmologists and an increased 
prevalence of patients suffering from retinal diseases 
(primarily because of population ageing and the diabetes 
epidemic). However, detailed inspection of 3D volumes is 
time-consuming, prone to errors, and mostly impossible 
within a typical clinical setup. Also, there is no consensus 
between different ophthalmological opinions. On the other 

hand, tremendous advances in computer vision have been 
made, but we still lack a reliable model for automatic 
segmentation. Deep learning models are still too brittle 
and unable to generalize well on unseen data, which 
makes automatic segmentation an open and vital research 
field.  

Since introducing AlexNet architecture, which 
achieves breakthrough results on an ImageNet benchmark 
[2], convolutional neural networks (CNNs) have become 
state-of-the-art architectures for computer vision tasks. 
Architectures that followed (e.g., VGG [3], GoogleNet 
[4], ResNet [5], Inception v3 [6], MobileNet [7], and 
EfficientNet [8]) have had more layers and parameters. 
However, there were minor enhancements – convolutions 
were still the predominant paradigm in computer vision. 
Mostly, concepts introduced in the following years were 
various regularization techniques and overcoming 
problems like overfitting due to an enormous number of 
parameters. 

 In a highly cited paper, "Attention is all you need," 
Vaswani et al. introduced the Transformers. Primarily 
Transformers were used for natural language processing 
(NLP), and mostly they gained popularity due to the latest 
large language models (LLM) applications. Next, 
Dosovitskiy et al. introduced a Vision transformer (ViT) 
[9]. Unlike convolutional networks, Transformers lack 
inductive bias like locality and translational equivariance. 
Furthermore, Transformers work with image patches, and 
similarly, like in multi-layer perceptron (MLP), all patches 
attend to all others, making the ViT model enormously 
computationally costly. Finally, the authors highlighted 
the remaining challenges, such as solving segmentation 
and detection tasks with Transformers. Although 
Transformers became highly popular, they were 
appropriate for tasks with accessible large amounts of data 
and immense computing power. Soon after, there were 
many proposals on how to merge the advantages of self-
attention architectures and convolutional neural networks. 

In the case of medical image segmentation, 
introducing U-net architecture [10] made a significant 
breakthrough. Furthermore, encoder-decoder architecture 
with skip connections enables concurrent capturing of 
localization and context. Many modifications to the U-net 
architecture were proposed [11]–[14]. Nevertheless, U-
net-based architectures remain predominant in biomedical 
image segmentation, mainly due to the small data regime 
we often face in biomedical fields.  

This paper is mainly inspired by Attention U-net [15]. 
We made all modifications to make it applicable to the 
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OCT dataset we use for evaluation. Also, we made a 
comparison to standard U-net architecture and state-of-
the-art architectures like U-net++ architecture (a nested U-
net architecture for medical image segmentation) [16] and 
U-net-like architecture [17] to see how adding attention 
affects results.  

In summary, the main contributions of this work are as 
follows: 

• Proposing an attention-based model for joint 
segmenting layers and fluids in OCT retinal images. 

• Evaluating the model on the publicly available AROI 
dataset of 1136 B-scans from patients with 
neovascular AMD. 

• Comparing obtained outcomes with previous results 
on the benchmark dataset and improving 
segmentation results by a significant margin. 

The rest of this paper we organize as follows. First, 
section 2 mentions relevant related work using attention in 
ophthalmology. Then, in section 3, we describe the 
database we use for evaluation purposes and give a 
detailed description of the model we use. Next, in section 
4, we provide results and discuss them in the following 
section; in the last section, we conclude by presenting the 
limitations of our work and possible future research 
directions.  

II. RELATED WORK 

Wang et al. [18] proposed a Multi-scale Transformer 
Global Attention Network (MsTGANet) for drusen 
segmentation on the Kermany dataset [19]. The Kermany 
dataset is the largest and most popular publicly available 
dataset for classifying OCT images into four classes: 
choroidal neovascularization (CNV), diabetic macular 
edema (DME), drusen, and images from healthy persons. 
Jiang et al. [20] used a Vision Transformer to classify 
images on the publicly available DUKE dataset [21]. As a 
result, images are classified into three classes: patients 
suffering from AMD, DME, and healthy persons. Cao et 
al. [22] proposed a regression method based on 
Transformer that performs segmentation of seven layers in 
OCT images from the publicly available DUKE DME 
dataset [23]. 

Playout et al. [24] presented Vision Transformer for 
image classification: the paper mainly focuses on 
classification and mechanisms for generating interpretable 
predictions via attribution maps. They also perform the 
segmentation of fluids in images from the AROI dataset. 
It is hard to compare results with other papers that used 
images from the AROI dataset as they only segment fluids 
and do not distinguish different types of fluids. 
Nevertheless, they show that segmentation with Vision 
Transformer outperforms classical CNN models.  

A few papers [25]–[29] combine attention with CNNs. 
However, it is out of the scope of this paper to give an 
extensive survey of all published papers. Instead, we 
would like to refer the reader to the review study from 
Khan et al. [30]. 

III. MATERIALS AND METHODS 

A. AROI dataset 

To evaluate the proposed model and compare results 
with CNNs without attention, we use the publicly 
available AROI dataset [31]. Macular SD-OCT volumes 
were recorded with the Zeiss Cirrus HD OCT 4000 
device: each OCT volume comprises 128 B-scans with a 
1024 x 512 pixels resolution. There are annotated 1136 
OCT B-scans from 24 patients suffering from late 
neovascular AMD. An ophthalmologist did all 
annotations. There are annotations for four boundaries 
between the layers: internal limiting membrane – ILM, 
retinal pigment epithelium (RPE), the boundary between 
the inner plexiform layer and inner nuclear layer 
(IPL/INL), and Bruch's membrane (BM). Also, fluids are 
annotated: pigment epithelial detachment (PED), 
subretinal fluid (SRF), and intraretinal fluid (IRF). Images 
are prepared for semantic segmentation with eight classes 
(Figure 1). 

Data collection adhered to the tenets of the Declaration 
of Helsinki and the standards of Good Scientific Practice 
of Sestre milosrdnice University Hospital Center (Zagreb, 
Croatia). All patients signed informed consent, and the 
data were anonymized. The Ethics Committee of the 
Sestre milosrdnice University Hospital Center approved 
the presented study.  

We opt for this dataset as it is publicly available, and 
annotations are provided for both layers and fluids. Also, 
results for human variability are given. Furthermore, 
images of patients suffering from neovascular AMD (in 
some cases simultaneously from geographic atrophy) are 
highly challenging for segmentation due to severe 
pathological changes. Commercial software for automatic 
segmentation associated with OCT devices usually works 
well for healthy persons but with significant errors in 
pathological cases. 

 

 

Figure 1. Example of an image from the AROI dataset [31]. 
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Figure 2. a) Proposed network architecture: unlike in standard U-net architecture, there is an Attention Gate instead of a direct skip connection.  

b) Attention Gate in which signal X from skip connection and a gating signal G from the next lowest layer of the network is merged. 

B. Proposed network architecture 

A paper from Oktay et al. [15] primarily inspires the 
architecture we use, in which they introduce the attention 
mechanism for pancreas segmentation. Standard U-net 
consists of an encoder, decoder, and skip connections. 
Each block in the encoder consists of convolutions, 
activation function (ReLU), and Batch normalization [32]. 
In addition, there is max-pooling between two blocks, 
which reduces the image size by half. Similarly, in the 
decoder, there is upsampling, which doubles the size of 
the image. Finally, skip connections combine information 
from the encoder with more spatial information and the 
decoder with more locally relevant features. The downside 
of standard U-net architecture is that there are plenty of 
filters from initial layers without much information.  

Attention added to U-net architecture is a way to 
highlight relevant activations during the training, and in 
that way, it should lead to better generalization. There are 

two types of attention:  hard and soft attention. Hard 
attention usually highlights relevant features by cropping. 
Therefore, it is not differentiable and cannot be used with 
backpropagation. Contrary, with soft attention, the 
relevant parts of images get larger weights and vice versa. 
It is differentiable, and therefore it can be used with 
backpropagation. With training, attention is increasingly 
focused on regions of interest (ROI).  

We use soft attention to keep all advantages of 
backpropagation, or more precisely, soft attention is added 
to skip connections to restrain activations from irrelevant 
regions. Inputs to the Attention Gate are signals G and X, 
as shown in Figure 2. G is the gating signal. It comes from 
the deeper part of the network and has better feature 
representations. On the other hand, X is a signal from a 
skip connection. As it comes from the previous layer, it 
has better spatial information than G. Attention Gate 
combines X and G. We use stride equals two for X to 
reduce the image size to be able to sum both signals. By 
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summing them, aligned weights get larger and unaligned 
weights are suppressed. After the ReLU activation 
function, weights range from zero to infinity, so they 
should be constrained with the sigmoid function, which 
brings them back between zero and one. Then, 
upsampling is done to get the original size of X. Finally, X 
and weights are multiplied element-wise; in that way, 
vector X is rescaled based on relevance.  

C. Training the model 

We have used the same parameters for training as the 
previously published paper [33] to enable better 
comparison: the categorical cross-entropy loss was used 
to train the model, the batch size was set to 4, and the 
AdaBound optimizer [34] was used. Images were resized 
to 512x256 pixels (i.e., half of the original size). Early 
stopping was used to prevent overfitting. Also, data 
augmentation was applied (horizontal flipping and 
rotating in a small range of angles [-8º, 8º]). As the 
previously published paper recommended, we used K-
fold cross-validation with K equals 6.  

The model was trained on Google Colab [35] with a 
GPU. The model was implemented in Python, using the 
Keras library with the TensorFlow backend.  

IV. RESULTS 

We use a Dice score as an evaluation metric as it is 
the most common evaluation metric for semantic 
segmentation. In Table 1 are reported Dice scores (mean 
and standard deviation) for each class and the inter- and 
intra-observer errors. Also, the prediction errors from 
published results [33] are reported for the standard U-net 
model, U-net-like model, and U-net++ model. U-net-like 
model [17] has encoder-decoder architecture and is 
enhanced so that each block in the encoder and decoder 
has residual blocks inspired by ResNet [5], but it lacks 
skip connections. U-net++ architecture (a nested U-net 
architecture for medical image segmentation) [16] is 
inspired by DenseNet architecture [36]. Therefore, dense 
blocks and convolution layers exist between the encoder 
and decoder instead of direct skip connections. 

It could be noted that the Dice scores for Attention-
based U-net are higher in the case of all three fluids. 
Also, the Dice scores are higher for the area between the 
IPL/INL (inner plexiform layer and inner nuclear layer) 

and RPE (retinal pigment epithelium) and the area 
between RPE and BM (Bruch's membrane). Significantly, 
segmentations of IRF and SRF are diagnostically most 
important, and Dice scores are much improved for those 
classes. The Dice scores for segmenting IRF achieved by 
the standard U-net model and the Attention-based U-net 
model are 0.480 (±0.252) and 0.563 (±0.146), 
respectively. Similarly, the Dice scores for segmenting 
SRF achieved by the standard U-net model and the 
Attention-based U-net model are 0.513 (±0.294) and 
0.600 (±0.276), respectively.  

Figure 3 shows images in case of no severe 
pathological changes, in case of moderate pathological 
changes, and a case of extreme pathological changes. In 
the first case, it could be observed that an Attention-based 
U-net is the only model which detects SRF. Other models 
cannot determine SRF when it occupies a small region. In 
the second case, it could be noticed that Attention-based 
U-net segmentation prediction is better than predictions 
from all other models. Better segmentation prediction is 
even more visible in the third case of extreme 
pathological changes (all three fluids are present).  

V. DISCUSSION 

From the overall results, it could be observed that 
Dice scores are still lower for any model predictions than 
for inter-observer variability. However, it is questionable 
how appropriate this comparison is as ophthalmologists 
never perform manual segmentation as part of clinical 
practice. Also, there is no consensus among the 
ophthalmologist on which segmentation accuracy we 
need. Probably it depends on the segmentation purpose, 
whether it is just detecting some pathological changes or 
a case where fluid volume is guidance for therapy.  

Also, it could be seen that higher Dice scores are 
accomplished with standard U-net for highly represented 
classes and are background from a diagnostical point of 
view (e.g., the area under BM and the area above ILM). 
Conversely, lower Dice scores achieved with Attention-
based U-net for these classes result from paying more 
attention to regions of higher interest (e.g., IRF, SRF, 
PED, RPE-BM, IPL/INL-RPE). As mentioned in 
previous work [33], a considerable class imbalance makes 
segmentation extremely challenging, and adding an 
attention mechanism has improved model performance.  

TABLE I.  THE DICE SCORE (MEAN AND STANDARD DEVIATION) IN THE INTER-OBSERVER CASE, THE INTRA-OBSERVER CASE, FOR THE 

STANDARD U-NET MODEL, THE U-NET-LIKE MODEL, THE U-NET++ MODEL, AND THE ATTENTION-BASED U-NET MODEL. 

 Above 

ILM 
ILM -

IPL/INL 
IPL/INL - 

RPE RPE - BM Under 

BM PED SRF IRF 

Inter-

observer [33] 
0.982 

(0.072) 
0.950 

(0.111) 
0.948 

(0.112) 
0.699 

(0.129) 
0.989 

(0.114) 
0.860 

(0.301) 
0.876 

(0.366) 
0.735 

(0.280) 
Intra-

observer [33] 
0.998 

(0.003) 
0.973 

(0.008) 
0.970 

(0.117) 
0.778 

(0.092) 
0.998 

(0.001) 
0.912 

(0.242) 
0.924 

(0.331) 
0.844 

(0.140) 
Standard  

U-net [33] 

0.995 

(0.011) 

0.950 

(0.028) 

0.923 

(0.083) 

0.669 

(0.129) 

0.988 

(0.016) 

0.638 

(0.173) 

0.513 

(0.294) 

0.480 

(0.252) 

U-net-like 
[33] 

0.995 
(0.004) 

0.899 
(0.040) 

0.890 
(0.066) 

0.476 
(0.132) 

0.988 
(0.014) 

0.533 
(0.139) 

0.365 
(0.291) 

0.040 
(0.061) 

U-net++ [33] 
0.992 

(0.011) 

0.944 

(0.032) 

0.924 

(0.064) 

0.641 

(0.133) 

0.986 

(0.017) 

0.622 

(0.159) 

0.465 

(0.297) 

0.432 

(0.265) 

Attention-

based U-net 

0.991 

(0.021) 

0.945 

(0.032) 

0.932 

(0.051) 

0.682 

(0.126) 

0.985 

(0.021) 

0.674 

(0.147) 

0.600 

(0.276) 

0.563 

(0.146) 
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Figure 3. From left to right: raw image, mask (ground truth), predictions from the standard U-net model, U-net-like model, U-net++ model, and 

Attention-based U-net model. First raw: a case of minor pathological changes (only SRF is present). Second raw: a case of moderate pathological 
changes (SRF and PED are present). Third raw: a case of severe pathological changes (all fluids are present). All images are cropped to ROI. 

 

 
By careful inspection of segmentation predictions, it 

could be spotted that some of the errors present in models 
without attention remain and probably could not be 
solved with attention mechanisms. It could be surmised 
that dominant errors are consequences of a lack of 
understanding of the retinal structure and pathological 
traits and hence could not be solved only based on 
attention mechanisms.  

VI. CONCLUSION 

This paper proposes a novel model for the automatic 
segmentation of biomarkers in retinal OCT images, 
which combines the attention mechanism with a 
convolutional neural network. By evaluating results on 
the publicly available dataset, it could be inferred that the 
attention mechanisms lead to improved segmentation 
predictions. Notably, errors due to class imbalance are 
decreased and lead to better fluid segmentation, which is 
of prime importance.  

Although images in the AROI dataset are highly 
challenging for segmenting due to extreme pathological 
deviations in retinal structure, it remains to examine how 
attention mechanisms improve generalization on unseen 
images. The lack of extrapolation to unseen data is a 
significant deficiency of deep learning. The medical field 
is even more critical due to the small data regime.  

This research shows that despite significant progress 
in the field, we still lack some fundamental concepts to 
overcome shortcomings. Moreover, even combining the 
most advanced methods, segmentation predictions are 
still deficient in some cases of severe pathological 
alterations. Nevertheless, in our opinion, much progress 
can be made by active learning and by introducing OCT 
devices with accompanying automatic segmentation 

models in clinical practice to help ophthalmologists 
partially and simultaneously enhance model performance 
via active learning.  

DATA AND CODE AVAILABILITY  

The AROI dataset is publicly available [31]. 

Code is available on GitHub: 
https://github.com/mmelinscak/OCT-images-segmentation 
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