ECG Compression Based on Successive
Differences

M. Gusev*t, M. Jovanov*, A. Shekerov*, G. Temelkov™
* Sts Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering
* Innovation Dooel, Skopje, North Macedonia
E-mail: {marjan.gushev, mile.jovanov} @finki.ukim.mk, andrej.shekerov@students.finki.ukim.mk,
goran.temelkov @innovation.com.mk

Abstract—This paper aims to reduce the amount of physi-
cal space the electrocardiogram data occupies and needs to be
transferred, designing an efficient algorithm that can run on
hardware commonly found in a medical device setting. The
algorithm needs to be compatible with real-time data transfer
and be fast and lossless. We introduce an algorithm inspired
by pulse code modulation in telecommunication theory based
on successive differences between neighboring electrocardio-
gram samples. The research hypothesis addressed in this
paper finds if the new algorithm can reduce the data size by a
meaningful amount and efficiently. Further on we tackle the
research questions to find the level of distortion, compression,
and processing speed of compression and decompression,
along with the analysis of benefits and disadvantages. We
reduced the storage space or bits to be transferred up to 46 %
reaching a compression ratio of 2.17 for an electrocardiogram
benchmark dataset of up to 100 Mbits.

Keywords—ECG, Sampling, Analog to digital conversion,
ADC, Compression, Consecutive differences

I. INTRODUCTION

Advances in wearable technologies enable small medi-
cal devices to measure an electrocardiogram (ECG) in real
time. The convenient sampling frequency to provide suffi-
cient and relevant data for medical experts and automated
Artificial Intelligence (AI) algorithms are in the range
between 125 and 500 Hz, although some professional
devices use sampling frequencies up to 1000 Hz, while
the bit resolution is in the range between 10 and 16 bits.

The problems associated with systems for data transfer
and real-time processing are classified in the Big Data
domain, since data comes in high velocity generating
large volumes. A simple calculation shows that such a
system produces from 10,800,000 samples or 108 Mbits
per day up to 86,400,000 samples or 1.38 Gbits per
day. Considering that date/time stamp maybe accompanied
to ECG data, the amount of data to be transferred and
processed is from 20 MB up to 180 MB per day.

CardioHPC [I] is a project to realize an experiment
for High Performance Computing (HPC) data processing
center for thousands of real-time ECG streams. Such a
system requires huge storage capacity and any savings
with lossless compression are beneficial and highly ap-
preciated. In addition, this method allows transferring of
a smaller number of bits of the end-user device (ECG
sensor) to the nearby smartphone or edge/dew device,
which consumes less energy and saves the battery life.

MIPRO 2023/DS-BE

The related application [2] is a software solution [3] to
detect arrhythmia or other dangerous heart conditions.

In this paper, we present an algorithm to compress
ECG data based on pulse code modulation concepts
from telecommunication theory encoding the differences
between successive ECG samples. The idea is to build
an algorithm that will efficiently store only successive
differences in a specific way without losing data.

The purpose of this algorithm is to help with the
transfer, storage, and real-time practical application of
ECG data since the amount of storage space that needs
to be allocated for even a day’s worth of data can be
overwhelming. With our algorithm, the storage space
required to store this data can be reduced by more than
half in some cases, and by 46% on average.

We realize an experimental method to find if the newly
developed algorithm can efficiently reduce the data size by
a meaningful amount. In addition, we aim at finding the
level of distortion, compression, and processing speed of
compression and decompression, along with the analysis
of benefits and disadvantages, specifying optimization as
the research question.

Related work is presented in Section II and methods in
Section III with explanation of the algorithm the experi-
ment and evaluation methodology. Implementation issues,
benefits and disadvantages, along with a comparison to
other tools are discussed in Section V. Finally, conclusions
are presented in Section VI.

II. RELATED WORK

The need for compressing ECG data has been around
for a long time. The earliest methods make use of linear
interpolation and Huffman encoding, and some more mod-
ern methods apply approaches such as neural networks,
wavelets, and compatibility with portable devices.

A. Overview

One of the earliest papers that tackled ECG data com-
pression are reported when tape-less ECG recorders were
starting to become feasible. Moody et al. [4] introduce
compression by reducing the amount of redundant infor-
mation which arise from a lack of statistical independence
between symbols. Another relevant topic discussed is
regarding “lossless” compression, where the accuracy of

413

the compression depends on the clinical interpretation;
a change in the data can range from insignificant to
extremely significant, depending on the context.

Singh et al. [5] review a few ECG data compres-
sion techniques, including direct, transform, parameter
extraction, 2D transformation, etc. The authors introduce
several evaluation parameters (compression ratio, percent
mean square, difference, etc.) to compare and evaluate the
different approaches. A key observation form their study
is that even though there are a lot of ECG compression
techniques, not so many are utilized in real monitoring
systems and telemedicine, mainly due to fear of recovery
from the distortions.

Another comprehensive review [0] presents various
ECG compression implementations, using similar evalua-
tion parameters. In addition, the authors analyze some ef-
fective algorithms (such as the wavelet transform method)
and conclude that, due to their complexity, they haven’t
been implemented in real-life scenarios.

An overview of ECG compression methods suitable for
specific scenarios is analyzed [7] from different evaluation
perspectives. They conclude that threshold-based algo-
rithms require low computational cost, transform-based
methods are good for scenarios with a lot of noise due
to their insensitiveness, etc.

A methodological review of different ECG data com-
pression techniques [8], is reported with implementation
of real-world data to evaluate the analyzed methods by
several evaluation metrics. An interesting conclusion is
that although simple direct methods achieve a smaller
compression ratio, due to their simplicity and ease of
implementation are most suitable for Internet of Things
(IoT) health-care applications.

ECG compression techniques for wireless ECG devices
have been analyzed in [9] with a focus on two direct data
compression methods: delta coding and Huffman coding,
as well as their variations. The experiments were checked
on a smaller proprietary dataset and selected MITDB
records achieving a compression ratio of 1.6. A combi-
nation of a second-order delta encoding and run-length
encoding (RLE) based data compression is proposed [10]
for ECG and PPG compression after quantizing using
optimal quantization level to achieve a lesser number of
representation bits.

Variable-length code was applied in developing an
electronic circuit [11] on determined four regions of an
ECG (initial region, QRS region, flat region and unrest
region) adaptively predicting (detecting) unique waveform
features, followed by a variable length code.

These methods differ from our approach which uses
delta coding and variable-length code on successive dif-
ferences.

B. Specialized techniques

An overview of a few known compression methods
[12] states the need and benefits of standardization in

414

terms of ECG compression evaluation methods. Due to
a lack of any standardized way to make comparisons
between different algorithms and manufacturer equipment,
the clinical engineering community have no way of direct
comparison of equipment and services.

There are several algorithms that utilize wavelets to
compress the data [13]-[16] and belong to the category
of transform methods, which are generally considered
to be very effective. Among a variety of wavelet types,
notably scalar wavelets and multiwavelets are generally
more optimal.

Specialized techniques are often utilized when design-
ing a new compression algorithm, and 2D transformation
[17] has been used to compress ECG data in an efficient
manner. Additionally, it attempts to highlight the current
and future issues regarding the development of suitable
ECG data compression techniques.

A more modern take on the problem - a compression
algorithm that is based both on wavelets and on neural
networks, and manages to achieve a very respectable com-
pression ratio using these techniques [18]. This algorithm
uses self-learning to gradually improve it’s accuracy and
reliability, and manages to achieve results that exceed other
wavelet-based methods.

One can use direct methods [19] with the goal of finding
an algorithm that is most suitable for telemedicine. The
algorithms presented in this paper need to be transferred
over a network reliably and efficiently, so they had addi-
tional requirements of security and the goal of a higher
network transfer rate.

Jacobi polynomials have also been used in an ECG
compression algorithm [20] to achieve interesting results
compared to wavelet compression methods. The results
of this algorithm could be greatly improved, since the
procedure shown here is subject to rounding errors that
pile up and eventually give modified results.

C. Special purpose

Development of ECG compression algorithms for
portable devices [21] and Bluetooth are two specialized
scenarios that require additional attention. These algo-
rithms are generally suitable for portable devices and
embedded systems with limited computing power. Some
of the more interesting pre-processing methods listed here
include filtering, down-sampling and peak-detection. An
analysis [22] is given of some existing methods to find
ones which are suitable to be used in an remote environ-
ment that uses Bluetooth to transfer the data. Important
properties of the algorithms are latency, error-tolerance
and power-consumption. Due to the limited processing
and transmission power of small devices, these algorithms
should not be very complex.

Lossless ECG data compression algorithms [23] are
preferable to lossy methods due to the importance of the
data that is being transmitted; medical regulatory board
worldwide advocate for lossless compression. Since a

MIPRO 2023/DS-BE

change in the original data may have grave consequences
on the well-being of patients, ECG compression algo-
rithms should aim to be lossless, or to at least have an
acceptable amount of distortion.

An evaluation of a few known ECG compression meth-
ods [24], based on a few parameters. The authors mention
the need for a standard way for comparing compression
algorithms, and give a brief overview and recommendation
on how to measure the performance on new methods.

III. METHODS

Further on, we present the new compression algorithm
and describe the experimental and evaluation methodol-

ogy.

A. Algorithm

The ECG data stream contains a series of integer
samples. Each ECG sample is compared to the preceding
sample to determine the successive difference. The succes-
sive difference represents only an increase or decrease of
an ECG sample from the previous sample. The sampling
frequency determines the magnitude of the differences,
and it determines the code for compression. The idea
is that the code will be chosen to represent the average
magnitude of the differences (or to encompass the most
of cases).

The new ECG compression based on successive dif-
ferences takes advantage of the fact that successive ECG
values are usually similar, so it is better to store the
difference between successive values instead of the values
themselves. Still an open question arises to detect the
efficient algorithm and the optimal number of bits to
allocate for each value. Determination of the optimal
number of bits to store the difference is not the only issue,
we need to find a method to deal when the difference is
bigger than the space we have allocated for it.

To find the optimal number of bits, we conduct an
experiment by specifying test cases with different number
of allocated bits and observe the achieved compression
ratio. The testing domain is in the range from 2 bits to 7
bits.

This concept is implementation of the differential pulse-
code modulation which encodes the differences between
successive samples into n-bit data streams used in telecom-
munications or in analog-to-digital conversion, where the
code modulation with 1-bit data stream is also known as
the Delta-sigma AY modulation. This or other forms of
pulse code modulations simply reject cases when succes-
sive difference is larger than the selected code, while in
our algorithm we implement a solution to cope with these
differences and do not lose any data in the compression.

The code to be selected is supposed to contain the
successive difference and also the sign considering that
the difference may be positive or negative. The minimal
code to be used is 2 bits, one is the sign and the other for
the difference. In a general case, the code of n bits will

MIPRO 2023/DS-BE

be able to store successive differences in the range from
—2(n=1) yp to 42—,

The method to decide how to deal with successive
differences is based on the no data loss concept, so we
develop an algorithm that uses a special code to write a
normal ECG sample instead of a successive difference.

The algorithm starts with a predefined zero value (the
mid point in the selected bit-resolution). Then, a repetitive
procedure analyzes the ECG values one by one in a
sequence, to calculate the difference between the values
of the current sample and the previous sample. If the
calculated difference is small enough to fit into the space
determined by the code, then it is stored with the sign and
absolute value. The cases when the calculated difference
is out of the range determined with a magnitude of (n—1)
bits, then a special code is stored, usually interpreted as
negative zero (-0), and then store the real ECG sample
instead of the successive difference.

B. Experiment

In our experiment, we use 48 ECG records from the
MITDB ECG benchmark dataset. This collection of 48
ECG records totals 46.8 MB for 650000 samples per
record each stored as a 12-bit sample. We have excluded
the four records for patients with paced beats, so our
dataset contains only 44 ECG records. Note that although
the original declaration of the MITDB is 12 bit analog-
to-digital conversion, still data are presented in 11-bit
resolution.

Besides conducting the first Experiment A on the orig-
inal dataset that uses the original sampling frequency of
360 Hz and bit resolution of 11 bits we have resampled the
ECG records from 360 to 125 Hz, and rescaled from 11 to
10 bits and conduct an Experiment B on a second smaller
dataset with a total of 13.5 MB. This resampling and
rescaling achieves a compression ratio of 3.456. Although
this method loses specific data features, still it is proven
[25], [26] to be efficient in detecting the main heartbeat
features and classifying different arrhythmia. Note that a
very small number of values in the MITDB were found
out of a 10-bit range, for specific signal inytervals of a
pysically active person, with a lot of noise and artefacts,
and these values were simply truncated.

The starting point in experiment A is the mid value
of 1023 (midpoint of 11-bit resolution) and for the Ex-
periment B the starting point is 511 (midpoint of 10-bit
resolution). Experiment A stores original data of 11 bits
after specifying a special code (-0) when the successive
difference is larger then the selected code (number of bits),
and Experiment B stores only 10 bits.

Test cases cover codes (number of bits) from 2 up to 7
bits. The testing environment that the algorithm is executed
and tested is a system running with g++ version 12.1.0,
Intel® Core™ i7-9750H processor, 16GB of RAM.

Additionally, to make sure that the compression is
correct, the algorithm does a self-check to decompress the

415

data and compare it to the initial input. This is also used
to measure decoding time.

C. Evaluation methodology

Additionally, this algorithm is lossless, meaning that
the data should remain identical to the original after
decompression. Due to this there is no need to measure the
distortion. Considering the nature of lossless algorithms,
the evaluation metrics [5] that compare different com-
pression methods based on the magnitude of errors, such
as Percent Mean Square Difference (PRD); Percent Root
Mean Square Difference Normalized (PRDN); Quality
Score (QS); Root Mean Square Error (RMS), etc. are not
applicable. Our compression algorithm does not generate
an error due to compression, these metrics are PRD=0,
PRDN=0, RMS=0 and QS5 — oc.

A valid evaluation measure is the compression ratio,
calculated as a ratio between the uncompressed size and
compressed size. In our experiments, we will measure the
the sizes of the benchmark dataset and compare to the
size of the compressed data. In addition, we will express
the reciprocal value of the compression ratio to reveal the
capacity of the reduced size.

Additionally, we measure the time the algorithm takes
in milliseconds for each test case and for each number
of bits. This time includes reading the data, compressing
the data, writing the data to a file, and then verifying
the compression by reading the compressed data from a
file and comparing it to the initial values we had for the
test case. In practice the verification could be excluded to
save on I/O and computing time, but here it is included
to make sure that the algorithm gives us correct values.
To make a real comparison this test is also executed with
uncompressed data (original dataset).

IV. RESULTS

Table I and Table II contain details on the number of
analyzed bits as a sum and average per record, results of
achieved capacity in percentage of the number of bits in
the uncompressed dataset, and the compression rate (total,
minimum, maximum, average and standard deviation) for
selected 44 records from MITDB without records with
paced beats. Table I refers to Experiment A for data
sampled on the original 360 Hz sampling frequency and
11-b resolution, while Table II to Experiment B for data
resampled to a 125 Hz sampling frequency and rescaled
to 10-bits.

The best compression rate is achieved for 4 bits re-
gardless the sampling frequency (applied for both experi-
ments), reaching a value of 2.17 and 1.87 for Experiments
A and B correspondingly.

Processing time (measured in milliseconds) is presented
in Table III. The fastest compression is again achieved
by using 4 bits, and the average time this per case
is 123.85ms, whereas without compression the data is
processed with an average of 108.96ms per case.

416

CR

30 ——125 Hz

25 360 Hz

2.0

15 //\\‘\,

1.0
0.5

0.0

1 2 3 4 5 6 7 Bits

Fig. 1: Measured compression ratio in the experiments
using data sampled at 360 Hz and 125 Hz

V. DISCUSSION

Even though the algorithm works similarly regardless
of the number of bits to allocate the space for succes-
sive differences, the compression achieved depends on
this number. We have found that using 4 bits for this
compression is the optimal number of bits in most cases.
There are a few exceptions where 3 bits or 5 bits are
better by a small margin, and even a case where using 6
bits is optimal, but the 4-bit compression has the lowest
overall average and lowest total sum across all our tests.
Additionally, the compression always performs better than
the non-compressed data, except for 2-bit compression,
which only falls behind on 4% of cases. The compression
does take extra time to compute, but on average the fastest
compression (depending on bits we use) is only 13.71
milliseconds behind the non-compressed data.

Many other methods of ECG compression use bit ma-
nipulation as part of their algorithm to help reduce the
size of the data. Here we have provided a simple yet
effective way to reduce the data in a lossless way. The
data generated from this method could then be further
compressed by some of the other methods instead of the
raw ECG data.

The benefits of using this algorithm over others is the
fact that our algorithm has no distortion; the original
signal can always be recovered, and quite efficiently too
as seen from the results section. The time it takes the
algorithm to compress and decompress the data only
slightly exceeds the time it takes for the raw data to be
processed. Additionally, the algorithm is very simple and
doesn’t require much processing power to run, being able
to be developed in a low-level language such as C, C++
or other similar languages.

Figure 1 presents the dependence of the achieved com-
pression ratio versus different code (number of selected
bits) in our algorithm.

Analysing the original 360 Hz sampling frequency
(Experiment A dataset) and the sampling frequency of 125
Hz for resampled data (Experiment B dataset) we confirm
the theoretical conclusion that the higher the sampling

MIPRO 2023/DS-BE

TABLE I: Achieved compression rates for 44 MITDB ECG records in Experiment A with data sampled on 360 Hz
with a 11-bit resolution.

Total bits Compression Rate (CR)

Method Sum Avg | Capacity || Total | MIN | MAX | AVG | STD
No C. 314600000 | 7150000

2 Bits 237733276 | 5403029 75.57% 1.32 1.07 1.70 1.34 | 0.15
3 Bits 164798403 | 3745418 52.38% 1.91 1.31 2.56 1.96 | 0.33
4 Bits 144762464 | 3290056 46.01% 2.17 1.80 2.46 2.19 | 0.17
5 Bits 160336044 | 3644001 50.97% 1.96 1.76 2.14 1.97 | 0.08
6 Bits 179489937 | 4079316 57.05% 1.75 1.60 1.83 1.75 | 0.05
7 Bits 202024306 | 4591461 64.22% 1.56 1.50 1.57 1.56 | 0.02

TABLE II: Achieved compression rates for 44 MITDB ECG records in Experiment B with

data resampled on

125 Hz with a 10-bit resolution.

Total bits Compression Rate (CR)

Method Sum Avg | Capacity || Total | MIN | MAX | AVG | STD
No C. 99305360 | 2256940

2 Bits 81843372 | 1860077 82.42% 1.21 | 0.97 1.55 1.23 | 0.13
3 Bits 60081008 | 1365477 60.50% 1.65 | 1.06 2.26 1.70 | 0.29
4 Bits 53088234 | 1206551 53.46% 1.87 | 1.31 2.14 1.89 | 0.20
5 Bits 57243710 | 1300993 57.64% 1.73 | 1.56 1.87 1.74 | 0.08
6 Bits 64025726 | 1455130 64.47% 1.55 | 143 1.66 1.55 | 0.05
7 Bits 71216762 | 1618563 71.71% 1.39 | 1.30 1.43 1.39 | 0.03

TABLE III: Processing time for compression of 44
MITDB ECG records in Experiment B with data
sampled on 125 Hz (measured in milliseconds)

Name Sum Avg
No comp. | 5230 | 108.96
2 Bits 6878 | 143.29
3 Bits 6428 | 133.92
4 Bits 5945 | 123.85
5 Bits 6093 | 126.94
6 Bits 6115 | 127.40
7 Bits 6380 | 132.92

frequency is, the smaller differences between neighbours
and the higher the compression rate is achieved.

The standard deviation calculated on different records
shows small deviations, not just in absolute, but also in
relative value, in the range from 2.0% (for 7 bits) - 17.6%
(for 3 bits) for Experiment B (dataset sampled on 125
Hz), and from 1.2% (for 7 bits) - 17.1% (for 3 bits)
for Experiment A (dataset sampled on 360 Hz). The best
compression achieved for a 4-bit code results in 10.5%
and 7.8% relative standard deviation correspondingly for
Experiments B and A.

Note that several published approaches, including sim-
ple successive difference and Huffman coding [9] or their
variations, or a combination of delta encoding and RLE
[10] are different from our approach. Merdjanovska et
al. [9] use successive differences followed by Huffman
coding as a very popular lossless coding allocating specific
codes to repeating data values. The authors do not expose
the applied code table and conclude that a combination
of Huffman and delta coding is worth exploring. In this
paper, we use a variant of variable-length coding based on
allocating a fixed code for the most frequent values (for
example, successive differences of 1, 0, and -1) and if the
successive difference is outside the values covered with
the code then the successive difference is stored. This is

MIPRO 2023/DS-BE

quite different from Huffman code, which builds a binary
tree for all the values. In our case, we do not build a
binary or other tree and use an m-bit code to store both
positive and negative numbers and the code associated to a
negative zero is the special code to represent the successive
difference.

Banerjee et al. [10] use successive differences of second
order (difference of differences) instead of our approach
using only first order differences. The authors apply quan-
tization to different numbers of bits and in our approach
we use conversion from 11 to 10 bits for the MITDB
example. Repetition of zeros (a sequence of several zeros)
is eliminated using the RLE, and in. our approach, we
use a completely different approach to variable-length
code. The proposed combination of second-order delta
encoding is limited by the space allocated to represent
the maximum absolute value (MAV) which was estimated
to be 6 bits, out of which one bit is for a sign, meaning
that the quantization was done to a smaller number of bits,
generating representation errors.

These approaches generate a modified (distorted) sig-
nal within the compression algorithm and thus produce
PRD > 0. Therefore, a direct comparison of our algo-
rithm to other algorithms is not possible since our algo-
rithm does not distort the signal (PRD=0). We use succes-
sive differences since their magnitude is much smaller than
the ECG value, and the histogram of their representation
follows a normal Gaussian distribution, such that our code
that maps successive differences to a variable number of
bits, allows compression with zero error (lossless data
compression) and still be read back symbol by symbol.

Some of the following features might be considered as
disadvantages:

o Misinterpretation of a code might generate a nonre-
coverable error, solvable by an integration of time

417

stamps within each new data chunk.
o Variable bandwidth is expected with such a code to
achieve higher compression against fixed bandwidth.
o The worst case scenario of sending noise with max-
imal alternating successive differences (not an ECG
signal) will result in CR < 1.

VI. CONCLUSION

There are many ways in which ECG data can be com-
pressed, and depending on the needs of the situation dif-
ferent algorithms have different strengths and weaknesses.
We introduced a new compression algorithm for ECG
measurements, based on pulse code modulation techniques
exploited in telecommunication theory, focusing on suc-
cessive differences between neighbouring ECG samples.
In addition to the conventional approach in the pulse code
modulation methods, we implement a new code that will
save the original value of the successive difference instead
of cutting the value to fit to the pulse code value. This
approach allows a suitable implementation and flexibility
without loosing in quality or distorting the data values that
represent the signal.

Besides requiring a simple implementation our algo-
rithm is effective and efficient (CR=1.6 and PRD=0)
suitable in any scenario where the ECG data needs to
be transferred or stored without any data loss. This is
especially important to save energy for end-user devices
and sensors which need to save energy and prolong battery
life. Our future work addresses the dependence of the
achieved compression rate with a wide range of different
sampling frequencies, evaluating not only the compression
achieved with our algorithm but also with reducing the
sampling frequency.

ACKNOWLEDGEMENT

The experiment “CardioHPC - Improving DL-based
Arrhythmia Classification Algorithm and Simulation
of Real-Time Heart Monitoring of Thousands of Pa-
tients” has received funding from the European High-
Performance Computing Joint Undertaking (JU) through
the FF4EuroHPC project under grant agreement No
951745. The JU receives support from the European
Union’s Horizon 2020 research and innovation program
and Germany, Italy, Slovenia, France, and Spain.

REFERENCES

[1] Innovation Dooel, “CardioHPC project “Real-time heart monitoring
of thousands of patients”,” online, 2023, as seen on 01.02.2023.
[Online]. Available: http://cardiohpc.innovation.com.mk/

[2] M. Guseyv, A. Stojmenski, and A. Guseva, “ECGalert: A heart attack
alerting system,” in ICT Innovations 2017: Data-Driven Innovation.
9th International Conference, ICT Innovations 2017, Skopje, Mace-
donia, September 18-23, 2017, Proceedings 9. Springer, 2017, pp.
27-36.

[3] E. Domazet and M. Gusev, “Improving the qrs detection for one-
channel ECG sensor,” Technology and Health Care, vol. 27, no. 6,
pp. 623-642, 2019.

[4] G. B. Moody, K. Soroushian, and R. G. Mark, “ECG data compres-
sion for tapeless ambulatory monitors,” Computers in Cardiology,
vol. 14, pp. 467-470, 1987.

418

(51

(6]

[7

—

(8]

9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. Singh, A. Kaur, and J. Singh, “A review of ECG data compres-
sion techniques,” International journal of computer applications,
vol. 116, no. 11, 2015.

S. B. Kale and D. H. Gawali, “Review of ECG compression
techniques and implementations,” in 2016 International Conference
on Global Trends in Signal Processing, Information Computing and
Communication (ICGTSPICC). IEEE, 2016, pp. 623-627.

S. O. Rajankar and S. N. Talbar, “An electrocardiogram signal com-
pression techniques: a comprehensive review,” Analog Integrated
Circuits and Signal Processing, vol. 98, no. 1, pp. 59-74, 2019.
C. K. Jha and M. H. Kolekar, “Electrocardiogram data compres-
sion techniques for cardiac healthcare systems: A methodological
review,” IRBM, 2021.

E. Merdjanovska, M. Mohorcic, M. Depolli, A. Rashkovska, and
T. Javornik, “Data compression for wireless ecg devices.” in
BIOSIGNALS, 2022, pp. 15-21.

S. Banerjee and G. K. Singh, “A new real-time lossless data
compression algorithm for ecg and ppg signals,” Biomedical Signal
Processing and Control, vol. 79, p. 104127, 2023.

K. Li, Y. Pan, F. Chen, K.-T. Cheng, and R. Huan, “Real-time
lossless ecg compression for low-power wearable medical devices
based on adaptive region prediction,” Electronics Letters, vol. 50,
no. 25, pp. 1904-1906, 2014.

S. M. Jalaleddine, C. G. Hutchens, R. D. Strattan, and W. A.
Coberly, “ECG data compression techniques-a unified approach,”
IEEE transactions on Biomedical Engineering, vol. 37, no. 4, pp.
329-343, 1990.

R. Besar, C. Eswaran, S. Sahib, and R. Simpson, “On the choice
of the wavelets for ECG data compression,” in 2000 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No. 00CH37100), vol. 6. 1EEE, 2000, pp. 3614—
3617.

M. S. Manikandan and S. Dandapat, “Wavelet-based electrocar-
diogram signal compression methods and their performances: A
prospective review,” Biomedical Signal Processing and Control,
vol. 14, pp. 73-107, 2014.

J. Chen, S. Itoh, and T. Hashimoto, “ECG data compression by
using wavelet transform,” IEICE TRANSACTIONS on Information
and Systems, vol. 76, no. 12, pp. 1454-1461, 1993.

N. V. Thakor, Y.-c. Sun, H. Rix, and P. Caminal, “Multiwave: a
wavelet-based ECG data compression algorithm,” IEICE TRANS-
ACTIONS on Information and Systems, vol. 76, no. 12, pp. 1462—
1469, 1993.

R. Kumar, A. Kumar, and G. K. Singh, “Electrocardiogram signal
compression based on 2d-transforms: A research overview,” Jour-
nal of Medical Imaging and Health Informatics, vol. 6, no. 2, pp.
285-296, 2016.

B. Zhang, J. Zhao, X. Chen, and J. Wu, “Ecg data compression us-
ing a neural network model based on multi-objective optimization,”
PloS one, vol. 12, no. 10, p. e0182500, 2017.

V. Kumar, S. C. Saxena, and V. Giri, “Direct data compression
of ECG signal for telemedicine,” International Journal of Systems
Science, vol. 37, no. 1, pp. 45-63, 2006.

D. Tchiotsop, D. Wolf, V. Louis-Dorr, and R. Husson, “ECG
data compression using jacobi polynomials,” IEEE engineering in
medicine and biology magazine, vol. 1, p. 1863, 2007.

D. C. Pandhe and H. Patil, “Review and enhancement of ecg data
compression and reconstruction method for portable devices,” in
2015 International Conference on Energy Systems and Applica-
tions. 1EEE, 2015, pp. 490-495.

B. Yu, L. Yang, and C.-C. Chong, “ECG monitoring over blue-
tooth: data compression and transmission,” in 2010 IEEE Wireless
Communication and Networking Conference. 1EEE, 2010, pp. 1-5.
A. Tiwari and T. H. Falk, “Lossless electrocardiogram signal
compression: A review of existing methods,” Biomedical Signal
Processing and Control, vol. 51, pp. 338-346, 2019.

A. Némcovi, R. SmiSek, L. MarSanova, L. Smital, and M. Vitek,
“A comparative analysis of methods for evaluation of ECG signal
quality after compression,” BioMed research international, vol.
2018, 2018.

E. Ajdaraga and M. Gusev, “Analysis of sampling frequency and
resolution in ECG signals,” in 2017 25th Telecommunication Forum
(TELFOR). IEEE, 2017, pp. 1-4.

M. Gusev and E. Domazet, “Optimizing the impact of resampling
on QRS detection,” in ICT Innovations 2018. Engineering and
Life Sciences: 10th International Conference, ICT Innovations
2018, Ohrid, Macedonia, September 17-19, 2018, Proceedings 10.
Springer, 2018, pp. 107-119.

MIPRO 2023/DS-BE

http://cardiohpc.innovation.com.mk/

