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Abstract - Continuous electronic fetal monitoring using 

cardiotocography (CTG) represents the standard of 

evaluating the health status of the fetus and the risk of the 

pregnancy, in developed countries. However, the CTG has 

many limitations: high false positive rates, cannot be used 

for long term monitoring, poor sensitivity, it offers just the 

fetal heart rate and its variability etc. In this context, the 

fetal electrocardiogram (fECG) signal is used to obtain 

additional diagnostic information. On the other hand, the 

standard in clinical practice for obtaining the fECG is 

invasive, can pose a risk for both mother and fetus, can only 

be used during birth (very limited time window). An 

alternative is the abdominal fECG, that is recorded using a 

matrix of electrodes placed on the maternal abdomen. This 

approach is noninvasive and can be used for long term 

monitoring. The main drawback is the small signal to noise 

ratio for the abdominal fECG. Thus, the challenge is to 

isolate the fECG signal from other types of noise that are 

recorded by the abdominal electrodes: the maternal 

electrocardiogram (mECG), the electromyogram (EMG), 

the electrohysterogram (EHG), power line interference 

(PLI) etc. In this paper the author proposes an algorithm 

based on artificial neural network approach to extract the 

fECG signal waveform from abdominal recorded signals 

(ADS). The performance evaluation of proposed approach is 

realized on a database with simulated abdominal signals. A 

comparison is introduced, with other approaches described 

in literature for fECG denoising from abdominal signals. 

Keywords–fetal monitoring; artificial intelligence, fetal 

electrocardiogram, abdominal recorded signals 

I. INTRODUCTION 

Electronic fetal monitoring (EFM) is a technique used 
to track the fetal heart rate (FHR) and uterine contractions 
during labor and delivery. The goal of EFM is to ensure 
the well-being of the fetus and identify any signs of 
distress that may require intervention to prevent harm to 
either the fetus or the mother. EFM has been widely used 
in obstetrics for several decades and is considered the 
standard of care for many high-risk pregnancies. 

There are two main types of EFM: external and 
internal. External EFM uses ultrasound and a 
tocodynamometer placed on the mother's abdomen to 
monitor the fetus heart rhythm and the contractions of the 
uterus. This is the most commonly used method and is 
non-invasive, making it a popular choice for low-risk 
pregnancies. Internal EFM, on the other hand, uses an 

electrode attached to the fetal scalp to measure the direct 
fetal electrocardiogram (fECG) signal that offers a more 
accurate FHR. This method is more invasive, as it requires 
the insertion of a fetal scalp electrode into the uterus, but it 
provides more accurate readings of the FHR and is usually 
reserved for high-risk pregnancies.  

The main drawback of external EFM technique are: it 
offers an average determined FHR, it cannot be used for 
long term monitoring, there is a high intra- and inter-
observer variability that sometimes leads to unnecessary 
C-section interventions. On the other hand, the internal 
EFM is invasive, can pose a risk for both mother and fetus 
and it is restricted to be used only in the short window of 
delivering (after the rupture of the membrane). 

An alternative technique that can tackle all the 
drawbacks of the current EFM approaches is to record the 
fECG signal via electrodes placed on the maternal 
abdomen. Hence, it is non-invasive, it offers not only the 
FHR but also the beat-to-beat morphological variations of 
the fECG signal, i.e., more diagnostic information, and it 
allows for continuous monitoring of the fetal health status 
during labor, which is important for detecting any changes 
in fetal well-being. 

However, the main drawback is the small signal to 
noise ratio (SNR) for the abdominal fECG. Thus, the 
challenge is to isolate the fECG signal from other types of 
noise that are recorded by the abdominal electrodes: the 
maternal electrocardiogram (mECG), the electromyogram 
(EMG), the electrohysterogram (EHG), power line 
interference (PLI) etc. 

There are many different approaches described in 
literature that try to extract the abdominal fECG: adaptive 
filtering [1], [2], wavelet analysis [3]–[5], blind source 
separation [6]–[8], empirical mode decomposition [9], 
[10], etc. 

With the development of artificial intelligence 
techniques, there are few researchers that considered 
machine and deep learning approaches for denoising the 
abdominal fECG. In [11] the authors propose a encoder – 
decoder framework based on deep convolutional network 
for removing different types of noise from abdominal 
recorded signals (ADS). Fotiadou et al introduce a multi-
channel deep convolutional encoder – decoder network 
that is able to learn how to obtain the best combination of 
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input channels in order to offer at the output, a clean 
multi-channel fECG signal [12]. 

In this paper, a multi-channel blind source separation 
method for extracting the fECG signal from abdominal 
recordings is introduced, which is based on deep-learning 
stacked-long short-term memory (LSTM) network. The 
model is evaluated on simulated abdominal signals. 

II. MATERIALS AND METHODS 

A. Problem Definition 

Each channel from a multi-channel abdominal 
recorded signals represents a mixture of different types of 
signals: fECG, mECG, EHG, EMG, PLI etc. Let x(t) be 
the set of multi-channel abdominal signals, then x(t) = 
{x1(t), x2(t), … xm(t)}T, where m is the number of 
abdominal recorded channels (the number of electrodes 
placed on the maternal abdomen). Let s(t) be the 
independent signal sources, then s(t) = {s1(t), s2(t), … 
sp(t)}T, where p is the number of independent source 
signals (e.g. fECG, mECG, PLI, EMG etc). The recorded 
mixture of signal sources on different locations on the 
maternal abdomen can be expressed as: 

x(t) = As(t)   (1) 

where A is the mixing matrix, A = [ai,j]∈ ℝ m x p. 
Hence, an abdominal channel recorded by the ith electrode 
is x1(t) = ai,1s1(t) + ai,2s2(t) + … ai,psp(t).The aim is to 
obtain the estimated sources, s*(t) = {s*

1(t), s*
2(t), … 

s*
p(t)}T,by separating the set of abdominal signals, through 

the determination of an, so called, unmixing matrix, B = 
[bi,j] p x m: 

s* (t) = Bx(t)   (2) 

If m>p then the system of equations is 
overdetermined and a linear approach can be used for 
determining the unmixing matrix. Usually, other types 
of noise can be easily removed from the abdominal signals 
in the preprocessing step, thus one can assume that the 
abdominal signal is a mixture of mECG and fECG. In this 
case, at least two abdominal channels are required. 

In this paper an artificial intelligence approach, based 
on stacked – LSTM network, is used to estimate the 
source signals. Hence, the multi-dimensional mapping of 
the mixing matrix in the neural network is obtained by 
training the weight coefficients, as opposed to the classic 
blind source separation method, which generates the 
mixing matrix by iterative calculation. 

B. Proposed Method 

Figure 1 depicts the components that compose the 
proposed Stacked-LSTM network structure: an encoding 
component, a separation component, and a decoding 
component. The mixed signal's features are represented in 
the encoding phase. To determine the source signal mask, 
the separation component is trained using a stacked LSTM 
block, and the source signal waveform is restored using 
the decoding component. 

The encoding feature representation of the abdominal 
signals as input is extracted using 1-D convolution layer.  

 
 

Linear encoding is used to encode mixed signals for 
further processing. The abdominal signal is processed 
using 512 convolution kernels to create a multi-
dimensional coding feature that serves as input for the 
separation network. 

Next, the source signal mask is generated using the 

separation component of the proposed Stacked-LSTM 

network. The separation phase involves determining the 

mask for each source signal, which is achieved through 

training the network. The mask obtained for each source 

signal corresponds to the mixing matrix A in (1). The 

separation component has the following steps:  

• Group normalization is performed, i.e. the 

channels are grouped and the variance and mean 

are computed for each group. The 1-D 

convolution layer is used to extract the features. 

• The extracted feature sequence is used as input 

for the stack Union-LSTM that consists of six 

LSTM blocks. 

• Next, the parametric rectified linear unit 

(PReLU) activation function is used in order to 

prevent the he vanishing gradient problem. The 

Tanh() and Sigmoid() activation function are 

used for obtaining the multi-dimensional 

characteristics of the mixed source signal and, 

respectively the mask information of the two 

source signals. 

• The time domain mask obtained in the previous 

step is multiplied with the encoding feature 

representation of the mixed signal in order to 

obtain the feature encoding of the source signals. 

 

Figure 1. The proposed separation structure based on the Stacked-

LSTM network 
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The final 1-D deconvolutional layer is used to decode 

the source signals and obtain a time-domain waveform.  

The performance index used to evaluate the 

separation process is the scale-invariant source-to-noise 

ratio (SI-SNR) (a higher SI-SNR determines a lower 

separation error). Normalization is used prior to the 

calculation of the SI-SNR, to maintain the same scale. 

SI-SNR =  −10 log
‖𝑠𝑡𝑎𝑟𝑔𝑒𝑡‖

2

‖𝑠∗−𝑠𝑡𝑎𝑟𝑔𝑒𝑡‖
2   (3) 

𝑠𝑡𝑎𝑟𝑔𝑒𝑡 =  
〈𝑠∗,𝑠〉𝑠

‖𝑠‖2   (4) 

Equation (3) represents the loss function used during 

the training of the network with the gradient descent 

method.  

C. Dataset 

The mECG and fECG are generated using an 

electrocardiogram generator described in [13], ECGSYN. 

It creates a synthetic ECG signal with customizable 

parameters such as, number of beats, sampling frequency, 

mean heart rate, waveform morphology, low frequency 

(LF) / high frequency (HF) ratio, standard deviation of the 

RR interval. By utilizing a model that involves three 

linked ordinary differential equations, ECGSYN can 

generate an ECG signal that mimics many features of a 

human ECG, such as respiratory sinus arrhythmia, beat-to-

beat variations in morphology and timing, R-peak 

amplitude modulation, and QT dependence on heart rate 

[13]. 

The model creates a path in a 3D state-space with 

coordinates (x, y, z). The ECG's quasi-periodic nature is 

represented by the trajectory's motion around a limit cycle 

with a radius of one in the (x, y) plane. Each complete 

revolution of this circle represents one heartbeat or one 

RR interval. The trajectory's movement in the z direction 

mimics the interbeat variability in the ECG signal. The P, 

Q, R, S, and T waves of the ECG, are determined by 

events linked to negative and positive attractors / repellers 

in the z direction [13]. 

Three differential equations are used to describe the 

dynamical motion: 

𝑥̇ = 𝛼𝑥 − 𝜔𝑦 

𝑦̇ = 𝛼𝑦 − 𝜔𝑥 

𝑧̇ = − ∑ 𝑎𝑖Δ𝜃𝑖𝑒𝑥𝑝 (−
Δθi

2

2𝑏𝑖
2)𝑖∈{𝑃,𝑄,𝑅,𝑆𝑇} − (𝑧 − 𝑧0) (5) 

where 𝛼 = 1 − √𝑥2 + 𝑦2 , Δ𝜃𝑖 = (𝜃 − 𝜃𝑖) 𝑚𝑜𝑑 2𝜋  , 

𝜃 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥)  and 𝜔  is the angular velocity of the 

trajectory around the limit cycle. 

With the help of the signal generator described, the 

mECG and fECG signals are obtained with specific 

characteristics for adult and fetal heart, respectively. Thus, 

the RR intervals in the fECG signal are chosen to be as 

least double of the ones in the mECG signals, since 

usually, the normal FHR is much higher (almost double) 

than the maternal HR. The two signals are sampled at 

1kHz, with a length of 20000 samples and are mixed 

together with different SNRs ( 5 - 20 dB with the step of 

2.5 dB). The mixed dataset has 140.000 samples. 

III. RESULTS 

The flowchart that describes the approach used in the 

paper is depicted in Figure 1  

An example of a fECG and mECG signals generated 

with the ECGSYN generator are presented in Figure 3 and 

Figure 4, respectively. The mixture between the two 

signals, that form the synthetic abdominal signal, can be 

observed in Figure 5. The parameter configuration of the 

proposed method is as following: encoder filter number - 

512, frame length – 16, kernel size – 3, 1D block channel 

number – 512, 1D block number - 8, repeat number – 3. 

Five-fold cross-validation was used in all experiments. 

The performance of the model introduced in this paper 
is compared with the performance of the Independent 
Component Analysis (ICA) and Non-negative Matrix 
Factorization (NFM) as blind source separation (BSS) 
reference methods. The TABLE 1 presents the results 
obtained with the stacked-LSTM model and the ICA and 
NFM methods. 

The experimental results show that the Stacked-LSTM 
method has the best performance, with a loss value of – 
20.03 dB in average and it is significantly better than the 
traditional BSS methods. 

 

Figure 2 The flowchart of the proposed approach 

 

Figure 3. Synthetic fECG generated with ECGSYN 
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Figure 4. Synthetic mECG generated with ECGSYN 

 

Figure 5. The synthetic abdominal signal as a mixture of the 

synthetic fECG and mECG signals 

TABLE 1 LOSS OF THE COMPARED METHODS (dB) 

Mixture Stacked-LSTM ICA NFM 

ADS 5 dB -29.4 1.07 4.22 

ADS 7.5 dB -25.61 1.56 4.68 

ADS 10 dB -22.92 2.92 5.14 

ADS 12.5 dB -20.37 3.21 5.72 

ADS 15 dB -18.21 3.83 6.23 

ADS 17.5 dB -13.53 4.60 7.67 

ADS 20 dB −10.19 5.07 9.95 

 

The proposed method is a BSS approach and in 
consequences is compared with classical BSS methods. 
However, when compared at a glance with approaches 
that use CNN for ADS denoising, the results obtained are 
comparable and, in some cases, exceed the ones obtained 
in [11], [12]. Nevertheless, one should interpret this 
comparison with extreme care because it is not a fair 
comparison due to the different databases that were used 
in the studies. 

IV. CONCLUSIONS 

The paper introduces a novel Stacked-LSTM-based 
deep learning model that can address the issue of multi-
channel blind source separation in the case of abdominal 
recorded signals. The proposed model can effectively 
separate and restore the mixed signals, the mECG and the 
fECG, into their respective source signals by learning 
relevant information. The experiments demonstrate that 

the proposed model has excellent performance. One of the 
limitation of the introduced approach is that the model 
needs to be validated also on real abdominal signals. 
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