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Abstract—Analog to digital conversion of electrocardio-
grams depends on the sampling frequency influencing the
determination of a proper heartbeat location and precision
of further digital processing. We set a research question to
find the optimal number of interpolation points to reduce
the mistakes in the similarity check of heartbeats and
classify ventricular beats. In addition, another research
question aims at finding the optimal number of interpolation
points applying Bézier interpolation to reveal the optimal
performance/cost ratio. Final research question is to find the
sampling frequency that will reveal optimal performance in
classification of ventricular beats. The experiments evaluate
all neighbouring pairs of heartbeats from the standard
benchmark MIT-BIH arrhythmia dataset resampled to a
125 Hz sampling frequency. The results show that even one
more interpolation point, which corresponds to a sampling
frequency of 250 Hz, will increase the performance versus the
original 360 Hz sampling frequency. At the same time, the
optimal is interpolation with additional five or seven points
corresponding to 750 Hz, and 1000 Hz respectively. We found
that a threshold value of 34 reveals the optimal performance
to conclude a change between ventricular heartbeats and oth-
ers, even in a 10-bit precision of the analog-digital conversion.
The processing time and performance/cost-benefit analysis
show that one interpolation point is the most beneficial.

Keywords—Interpolation, ECG, upsampling

I. INTRODUCTION

Detection of ventricular beats and arrhythmia disorders
motivates researchers to develop new effective and effi-
cient algorithms. The best available tool in their effort is to
analyze the measured electrical heart activity represented
by an electrocardiogram (ECG). Most of the approaches
for automated detection are based on pattern matching and
signal processing algorithms, or developed machine learn-
ing (ML) models. However, all these approaches depend
on the quality to represent the ECG in the digital form,
especially considering the requirement for efficient transfer
and storage of data. On one side, efficiency requires a
smaller amount of data to be transferred and processed,
and on the other side, detection precision requires more
data. The analog-to-digital conversion (ADC) unit is re-
sponsible to create samples with a specific size determined
by the bit resolution. Samples are created on a predefined
time interval according to the sampling frequency.

Each heartbeat can be determined by the R-peak in the
ECG (the extreme in the QRS complex representing a
heartbeat in the ECG), and the sampling frequency affects
its real-time stamp (location). Most research analyzed the
impact of the sampling frequency on the detection of

the R peaks, compression techniques for ECG signals, or
calculation of Heart Rate Variability (HRV) focusing on
reconstructing the missing data within ECG sampling. In
our recent paper [1], we address the problem of classifying
a heartbeat type by performing a similarity check on two
heartbeats. After correcting the proper time location with
Bézier interpolation [2], we perform the similarity check
of neighbouring heartbeats and evaluate the performance
versus different threshold values to distinguish between
a class of ventricular (V) and class (NonV) of other
heartbeat types. A ventricular beat is usually determined
by a wider width of the QRS complex, meaning that the
heart has not followed the normal heartbeat activation
procedure. In this paper, we continue this research aiming
at finding the optimal sampling frequency and perform
efficient transfer from the end-user devices (sensor and
smartphone or other IoT device) allowing effective algo-
rithms. We address two research questions: to 1) find the
threshold value that reveals optimal performance, and 2)
find the number of points for applying Bézier interpolation
which reveal the best performance/cost ratio. We conduct
experiments with two methods for Bézier interpolation:
Method I as a standard construction of a four control points
Cubic curve [3]; and Method II as a modified construction
using a centripetal Catmull-Rom curve [4], [5].

The benchmark ECG dataset is the MIT-BIH ECG
benchmark with 30-minute ECG measurements of 44
patients (excluding four measurements for patients with
paced rhythm out of 48 available in the dataset). The
original measurements are sampled at a 360 Hz sampling
frequency (assumed as default), and in our experiments,
the measurements were downsampled to a 125 Hz sam-
pling frequency, which generates 2.88 fewer data to be
transferred. The test cases included the construction of
Bézier curves by adding 1, 3, 5, 7, and 15 extra samples
between a pair of two analyzed samples, which corre-
sponds to a sampling frequency of 250 Hz, 500 Hz,
750 Hz, 1000 Hz, and 2000 Hz. Finally, each test case
is evaluated according to achieved sensitivity, positive
predictive value, and F1 score to detect a V beat, avoiding
accuracy due to the imbalance of the V class.

II. RELATED WORK

This research can potentially reveal the lowest sampling
frequency and bit resolution the ADC unit should use for
a sufficient performance of detecting the features in the
ECG signal. The conclusions in the analyzed literature
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for QRS detection show that sampling frequencies below
100 Hz will result in decreased performance [7], with a
large number of wrong QRS detections for sampling fre-
quencies below 200 Hz [8], while [9] concludes negligible
performance discrepancies for sampling frequencies above
125 Hz having 120 Hz as a cut-off for sufficient perfor-
mance. Recommendations suggest sampling frequencies of
128 Hz [7], or between 250 - 500 Hz [8].

Analyzing the bit resolution, researchers have concluded
that 8-bit resolution is unacceptable, satisfactory results are
obtained over 10 bits, and 12 bits are recommended ADC
value [10].

The impact of the sampling frequency on heart rate
variability has been reported by several research papers
[11]–[15]. Our earlier paper [1] contains a review of
related work on the use of Bézier interpolation to improve
ECG interpretation, the recovery of ECG missing parts
with techniques tested on audio signals [16], or denoising
techniques [17], developing a model of an ECG heartbeat
[18], or analyzing ECG morphological features [19], [20],
concluding that this method was not used to check the
similarity of two heartbeats and reveal a tool to detect V
versus NonV heartbeats.

III. METHODS

Since the ECG is sampled at a particular sampling
frequency, we do not know if the real R peak will be
represented by the samples. Therefore, we aim at finding
the real location of the R peak, and we need to search in
the region between two points found to be extreme values.
The main idea to apply this procedure is to transfer as little
data as possible without losing precision performance and
generate a digital presentation for a smooth curve and find
a much better location of the time stamp.

Experiments are performed on MIT BIH Arrhythmia
ECG database (MITDB) [21] resampled to a sampling
frequency of 125Hz and 10-bit resolution using the Mode-
Median-Bucket downsampling method [6]. Each file of
ECG samples is accompanied by an annotation file spec-
ifying the sample with a heartbeat. Heartbeats were an-
notated by two independent experts and a third one was
engaged in the case of discrepancy. A heartbeat with wider
QRS is classified as a V beat if it is annotated as a V
(ventricular), E (escape), or F (fusion of ventricular and
normal beat) type. All other beat types are classified as
NonV class. The problem of detecting a wider QRS in the
ECG is a complex task since the baseline fluctuates and
detection of Q and S points may not be accurate, knowing
that the ECG is usually measured on a real human where
the muscle noise corrupts the ECG signal. This is why we
apply the similarity check to find how much two heartbeats
differ.

Fig. 1a) illustrates the difference between digital pre-
sentations sampled at different sampling frequencies (120
and 360 Hz), and Fig. 1b) shows differences in the digital
presentations that depend on the location of the sample

a) different sampling freq. b) different start offsets

Fig. 1: QRS digital presentation: a) blue line sampled at
120 Hz and red line sampled at 360 Hz; b) both lines

sampled at 120 Hz with different sample starts.

a) misaligned b) aligned to the R peak

Fig. 2: Similarity check of the same heartbeat sampled at
120 Hz with different sample starts - alignment

according to the improper location of the R peak.

start. In both cases of the lower sampling frequency, the
R peak can not be properly determined.

Similarity check between two heartbeats (blue and red
lines in Fig. 2) is evaluated by a sum of Euclidean
distances between corresponding samples in the digital
representations (black lines in Fig. 2). In the case of a
lower sampling frequency, the R peak will not be located
on a proper location and a similarity check will generate
large values even if the same heartbeat is checked with a
different sampling start point.

In this paper, Bézier interpolation was applied to gen-
erate more samples to keep the ECG line smooth and
determine the proper location of the R peak.

A. Method I

The first interpolation method follows the standard
Cubic Bézier curve construction using four control points
(P1, P2, P3 and P4, such that P2 and P3 do not have to
be on the curve itself). Each segment Si is defined by its
starting point pi and its ending point pi+1. The segment Si
can be constructed using a Cubic Bézier curve, such that
P1 = pi and P4 = pi+1. The final graph is constructed by
merging all of the segments together. However, the control
points P2 and P3 remain to be found for each segment.

In our method, we use the algorithm [3] that starts
with the Cubic Bézier curve B(t) equation (1), where t
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represents how far B(t) is from pi to pi+1.

B(t) =(1− t)3 · P1 + 3t(1− t)2 · P2

+ 3t2(1− t) · P3 + t3 · P4

(1)

Each segment Si is constructed using a Cubic Bézier
curve, such that P1 = pi, P2 = ai, P3 = bi and P4 =
pi+1, as represented in (2).

Si(t) = (1− t)3 · pi + 3t(1− t)2 · ai
+3t2(1− t) · bi + t3 · pi+1, 0 ≤ i < 20

(2)

The transition between segment Si and Si+1 is smooth
around the point pi+1, meaning that the first and second
derivatives of Si and Si+1 have to be equal in point pi+1.
(3) is obtained assuming that the segment Si is in point
pi+1 for t = 1, while the segment Si+1 is in the same
point for t = 0.

S′i(t = 1) = S′i+1(t = 0), i = 0, 1, . . . , 19

S′′i (t = 1) = S′′i+1(t = 0), i = 0, 1, . . . , 19
(3)

To find all missing control points (ai and bi) for all n
segments, we need a system of 2n linear equations. How-
ever, only 2(n − 1) can be obtained from (3). Therefore,
the following (arbitrary) boundary conditions are imposed:

S′′0 (t = 0) = 0

S′′n−1(t = 1) = 0
(4)

(5) and (6) respectively present the first and second
derivative of (2).

S′(t) =3[−(1− t)2 · pi + (1− 3t)(1− t) · ai
+ t(2− 3t) · bi + t2 · pi+1]

(5)

S′′(t) =6[(1− t) · pi + (3t− 2) · ai
+ (1− 3t) · bi + t · pi+1]

(6)

(7) and (8) are constructed substituting (5) and (6) in
(3) and (4).

ai+1 + bi = 2 · pi+1

ai + 2ai+1 = 2bi + bi+1

p0 − 2a0 + b0 = 0

an−1 − 2bn−1 + pn = 0

(7)


ai+1 + bi = 2 · pi+1, i = 0, 1, . . . , n− 1

ai + 2ai+1 = 2bi + bi+1, i = 0, 1, . . . , n− 1

p0 − 2a0 + b0 = 0

an−1 − 2bn− 1 + pn = 0

(8)

The matrix form of the system is given in (9) for easier
computation.

2 1 0 0 0 · · · 0
1 4 1 0 0 · · · 0
0 1 4 1 0 · · · 0
...

. . . . . . . . . . . . . . . 0
0 · · · 0 1 4 1 0
0 · · · 0 0 1 4 1
0 · · · 0 0 0 2 7


×



a0
a1
a2
...
a17
a18
a19



=



P0 + 2 · P1

2(2 · P1 + P2)
2(2 · P2 + P3)

...
2(2 · P17 + P18)
2(2 · P18 + P19)
8 · P19 + P20



(9)

All ai control points are obtained by solving (9), and
all missing bi points can easily be calculated by (10).{

bi + 2 · pi+1 − ai+1, i = 0, 1, . . . , 18

b19 = a19+p20
2

(10)

B. Method II

The second interpolation method is a modified Cubic
Bézier curve construction, which converts a centripetal
Catmull-Rom curve [5] to a Cubic Bézier form. It uses
4 consecutive points on the ECG graph (P0, P1, P2, P3)
to construct the curve between the points P1 and P2 by
generating two additional control points T1 and T2.

To process a given heartbeat we start by extracting 23
points (pi, i ∈ [0, 22]), which consist of: the peak (p11),
10 points before the peak (pi, i ∈ [1, 10]), 10 points after
the peak (pi, i ∈ [12, 21]) and 2 points before and after
the heartbeat (p0 and p22). Similarly to the first method,
the heartbeat is divided into 20 segments (Si, i ∈ [1, 20]),
where Si is the segment from point pi to point pi+1. The
two additional points (p0 and p22), are only used to assist
in the generation of segments S1 and S20.

Interpolation of a given segment Si starts off by select-
ing the 4 consecutive points (P0, P1, P2, P3) needed for the
generation of the curve running from pi to pi+1. The points
used for the generation of the segment Si are assigned in
the following way: P0 = pi−1, P1 = pi, P2 = pi+1 and
P3 = pi+2. Following the assignment of the points, we
must generate the required control points T1 and T2. In
this paper, we use a fascinating proposal for the creation
of these points given by Cem Yuksel, Scott Schaefer and
John Keyser in [5] and additionally implemented by [4],
based on (11), where the four points (P0, P1, P2, P3) are
the previously assigned points and the values d1, d2, d3 are
described such that di = |Pi − Pi+1|α =

√
|Pi − Pi+1|,
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and α = 1
2 due to the Catmull-Rom curve being cen-

tripetal.

T1 =
d21P2 − d22P0 + (2d21 + 3d1d2 + d22)P1

3d1(d1 + d2)

T2 =
d23P1 − d22P3 + (2d23 + 3d3d2 + d22)P2

3d3(d3 + d2)

(11)

Following the generation of the control points T1 and
T2, we will use the points {P1, T1, T2, P2} in a Cubic
Bézier curve equation, denoted by B(t) (for t ∈ [0, 1]),
given in (12) to generate the interpolated points for a given
segment Si.

B(t) = (1− t)3 · P1 + 3t(1− t)2 · T1
+3t2(1− t) · T2 + t3 · P2

(12)

C. Experiment testbed

A threshold value for the calculation of the similarity
check is used to detect whether a beat belongs to the same
class as the previous one. We test each pair of successive
neighbouring heartbeats in MITDB and calculate the sim-
ilarity coefficient as a sum of Euclidean distances between
corresponding 21 samples around the R peak.

The following experiments are specified according to
the applied method:

• R360 - raw original ECG benchmark data sampled at
360 Hz,

• R125 - data resampled at a sampling frequency of
125 Hz, and

• B1,B3,B5,B7,B15 - data sampled at 125 Hz adding 1,
3, 5, 7, and 15 points applying Bézier interpolation.

Both methods of Bézier interpolation are tested.

D. Evaluation method

The MITDB ECG benchmark contains 100733 heart-
beats with a large imbalance of the V beats versus NonV
class. We evaluate relevant statistical measures: sensitivity
(SEN) as a ratio of correctly detected out of all V beats,
positive predictive value (PPV) as a portion of correctly
detected out of all V detections, specificity (SPC) as a ratio
between correctly detected NonV beats out of all NonV
beats, and negative predictive value (NPV) as a portion of
correctly detected NonV beats out of all NonV detections.
However, due to the class imbalance, we focus on F1 score
as a relevant performance measure.

An improvement factor (expressed in %) is calculated
as a ratio between the achieved performance of applied
Bézier interpolation method and the benchmark with data
sampled at 360 Hz and resampled at 125 Hz. The per-
formance/cost ratio aims at finding the experiment that
revealed the highest performance versus cost. Also, we
calculate the gain as a ratio between the increased per-
formance (improvement factor) and increased cost, both
expressed in %. If the GAIN is more than 1, then the
experiment results with higher performance versus the
cost.

TABLE I: Average execution times for Bézier
interpolation to process 21 samples around R peak.

Exp. Method I Method II
B1 1.41 ms 0.25 ms
B3 2.23 ms 0.32 ms
B5 2.92 ms 0.39 ms
B7 3.66 ms 0.46 ms

B15 6.62 ms 0.75 ms

TABLE II: Similarity check performance (in %) for
optimal threshold values Thr applying Bézier curves.

Method I Thr SEN SPC PPV NPV F1
360 - 89.21 96.87 82.24 98.22 85.58
125 - 87.29 96.70 81.15 97.91 84.11
B1 34.0 89.50 96.87 82.30 98.27 85.75
B3 34.0 89.74 96.95 82.71 98.31 86.08
B5 34.0 89.35 97.06 83.19 98.25 86.16
B7 33.0 88.84 97.17 83.61 98.17 86.15

B15 33.0 89.38 97.06 83.19 98.25 86.18
Method II Thr SEN SPC PPV NPV F1

360 - 89.21 96.86 82.22 98.22 85.58
125 - 87.29 96.70 81.13 97.91 84.10
B1 34.0 89.45 96.87 82.31 98.26 85.73
B3 34.0 89.56 96.96 82.75 98.28 86.02
B5 34.5 89.17 97.08 83.22 98.22 86.09
B7 34.5 89.20 97.07 83.18 98.22 86.09

B15 34.5 89.22 97.07 83.22 98.23 86.12

IV. EVALUATION OF RESULTS

We conducted seven experiments of calculating the sim-
ilarity check of successive neighbouring heartbeats. Bézier
interpolation was applied in the last five experiments with
both Method I and Method II.

Table I presents the average execution times for in-
terpolating 1, 3, 5, 7 and 15 points for each detected
heartbeat in the analyzed dataset. Optimal threshold values
and corresponding performance results are presented in
Table II.

In our earlier paper we concluded that both methods
revealed almost equal performance (Table II) although
Method II was much faster than Method I (Table I). In
this paper, we focus on optimization and determine the
threshold value which differentiates the similarity check
coefficient if the beat has changed the class was found to
be approximately 34 with slight differences for different
experiments.

Fig. 3 presents details on optimal threshold values
and the corresponding performance measures. Adding
one point for Bézier interpolation (experiment B1), the
threshold value of 34 yields the maximum F1 score of
85.7%. The results for different values of interpolated
points per section are very similar. When interpolating
three, five or seven points per section (Experiments B3
and B5 and B7), the maximum value for the F1 score was
slightly increased to 86%, with the ideal threshold being
34 in both cases.

Additionally, Experiment B1 Method I results (Fig. 4)
present the performance measures SEN, SPC, PPV, NPV

406 MIPRO 2023/DS-BE



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

Performance

Thr

 SEN  SPC  PPV  NPV  F1

Fig. 3: Performance (in %) versus threshold values for
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Fig. 4: Comparing optimal threshold values and
corresponding F1 Scores of both Bézier interpolation

methods

and F1. The lower threshold is the higher values of SEN
and lower values of PPV, and the opposite, as threshold
values get higher, SEN decreases and PPV increases. The
optimal value is obtained for Thr = 34. The same trends
and behaviour are observed for performance measure
values in other experiments with both methods of Bézier
interpolation.

Table III presents the improvement factor in % compar-
ing the achieved F1 score versus the original benchmark
(with a sampling frequency of 360 Hz), and also versus
data obtained with downsampling to 2.88 times lower
frequency (125 Hz). As expected, downsampling showed a
decrease in performance by a factor of -1.73. However, we
found that even adding one point with Bézier interpolation
(experiment B1) achieves a slightly better performance
(0.2%). This is a very interesting result, meaning that
instead of transferring almost three times more data, we
apply rather simple calculations and obtain better perfor-
mance, which is a good lead toward ECG compression
techniques.

Table IV presents the performance/cost ratio, revealing
the optimal to be B1 experiment (adding one point) with
method II (we get the highest performance for the smallest
cost).

TABLE III: Improvement factor (in %) for similarity
check with optimal threshold value when applying

Bézier interpolation (Methods I and II)

IF versus 360 IF versus 125
Exp. Method I Method II Method I Method II
360 / / 1.76 1.76
125 -1.73 -1.73 / /
B1 0.20 0.18 1.96 1.94
B3 0.58 0.52 2.35 2.29
B5 0.67 0.60 2.44 2.37
B7 0.66 0.60 2.43 2.36
B15 0.69 0.63 2.46 2.40

TABLE IV: Performance/cost ratio for similarity check
with optimal threshold value when applying Bézier

interpolation (Methods I and II)

Exp. Method I Method II
B1 0.608 3.429
B3 0.386 2.688
B5 0.295 2.208
B7 0.235 1.871

B15 0.130 1.148

Adding more points with Bézier interpolation (experi-
ments B3, B5, B7 or B15) achieves better performance,
and the performance trend saturates after three added
points. Table V presents the increased F1 score values
(expressed in %) and also increased cost (measured as
an average response time for calculations applying the
corresponding Bézier interpolation method).

We observe that GAIN of 0.64 is a very small value
to increase the number of interpolated points from one
to three, and this value is even smaller for a larger
number of points. This suggests that adding even one point
with Bézier interpolation will increase the performance,
with the highest performance/cost ratio, and the higher
performance achieved with more points is small and is
not cost-effective.

The recommendations of the American Heart Associa-
tion’ [22] suggest that the minimum sampling frequency
for a digital ECG recording should be 500 Hz.

However, high sampling rates imply increased network
throughput and processing requirements demanding com-
puters with larger memories and faster processors. The
results from the presented experiments show that a lower
sampling rate would retain adequate information for ECG
representation without introducing significant errors in the
results.

Pizzuti et al. [11] conclude that a sampling frequency
of 500 Hz gives redundant information and recommend
250 Hz without loss of statistical accuracy for ECG
measurements. Kwon et al. [15] show that down-sampling
to 500 or 250 Hz resulted in excellent concordance, while
down-sampling to 100 Hz produced acceptable results
for time-domain HRV analysis, but not for frequency-
domain analysis, and down-sampling to 50 Hz proved to
be unacceptable. The overall conclusion that a 250-Hz
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TABLE V: GAIN versus B1 for similarity check with
optimal threshold value when applying Bézier

interpolation (Methods I and II)

Method I Method II
Exp. inc F1 inc cost GAIN inc F1 inc cost GAIN
B3 20.06 58.16 0.35 17.87 28.00 0.64
B5 24.74 107.09 0.23 22.34 56.00 0.40
B7 23.99 159.57 0.15 21.88 84.00 0.26
B15 25.93 369.50 0.07 23.92 200.00 0.12

sampling frequency is acceptable for HRV analysis is also
confirmed by our approach.

Pizzuti et al. [11] show a significant decrease in dif-
ferences among the amplitude measurements between a
sampling rate of 500 Hz and 125 Hz. down to 65% for
the detection of the S or 83% for the detection of R in the
QRS wave.

V. CONCLUSION

We have conducted experiments to determine the op-
timal threshold value for similarity check and detection
(classification) of ventricular beats versus normal beats
when applying Bézier interpolation. The results confirmed
that a threshold value of 34 is the optimal value. Our
experiments confirmed that the best performance/cost ratio
is obtained by adding one more interpolation point. An
ECG digital representation sampled at 125 Hz reveals
sufficient information, and adding one more point (upsam-
pling to 250 Hz) with Bézier interpolation reveals optimal
performance.

Downsampling from 360 Hz to 125 Hz has decreased
the similarity check performance by 1.73%. Interestingly
adding one sample by Bézier interpolation, on downsam-
pled data from 360 Hz to 125 Hz improves the similarity
check by 0.2%, that is, it finds R peak more precise than
the original 360 Hz sampled data. We can conclude it is
good to realize sampling at a lower frequency (such as
125 Hz), transfer a smaller amount of data, add only one
point to obtain a smooth curve with Bézier interpolation
and then process data.

Although the highest improvement is revealed for
adding 15 samples (corresponding to a sampling frequency
of 2000 Hz), we observe a saturated performance increase
after adding three more samples, which can be concluded
that after sampling the ECG with a sampling frequency of
more than 500 Hz will not be beneficial.

This research can potentially ensure that 125 Hz is the
lowest sampling frequency and the 10-bit bit resolution of
the ADC unit should provide sufficient performance for
detecting the features in the ECG signal. The added value
is running Bézier interpolation and adding one more point
for upsampling that will reveal increased performance in
detecting specific features in the ECG, such as classifica-
tion of ventricular beats.
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recovering of ecg signals in e-health applications,” in 2007 29th An-
nual International Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 31–34, IEEE, 2007.

[17] S. M. M. Islam, M. S. Farid, and M. A. Kiber, “Denoising ecg
signal using adaptive filter algorithms and cubic spline interpolation
for regaining missing data points of ecg in telecardiology system,”
International Journal of Enhanced Research in Science, Technology
and Engineering, vol. 4, no. 12, 2015.

[18] R. Soontornvorn, H. Fujioka, V. Chutchavong, and K. Janchi-
trapongvej, “Modeling ecg waveform using optimal smoothing
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