
ROS Framework for Distributed Control of
Networks of Dynamical Systems

M. Rossi∗, A. Jokić†
∗ sees.ai, United Kingdom

† Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia
mrossi@sees.ai, andrej.jokic@fsb.hr

Abstract—In this paper we present a software package de-
veloped to accommodate flexible and efficient modelling and
simulation of networks of dynamical systems with distributed
control structures. The package is implemented within the
Robot Operating System (ROS), which is becoming a stan-
dard software implementation tool in robotics, mechatronics
and wider. The developed package is characterized with the
following features: implementation of distributed controllers
with both off-line predefined control laws in closed form
and with on-line iterative solving of an optimisation problem
(distributed model predictive control); modular structure
which allows the user to easily modify the subsystems in
the network, as well as the number of subsystems; allows
for straightforward implementation of controllers onto real
physical systems.

Keywords—control systems, dynamical networks, robot op-
erating system, distributed control

I. INTRODUCTION

With the recent advances in communication and infor-
mation technologies, and the development of new gen-
erations of sensors and actuators, a whole new set of
systems started to emerge, which were unfeasible only
years ago [1]. Some examples of such systems are: the
so-called smart structures, composed of large amounts
of sensors and actuators mounted on structural elements
with the purpose of vibration dumping [2] or fluid flow
control [3]; adaptive optics [4]; smart electrical power
grids [5]; platoons of vehicles on automated motorways
[6]; or large groups of ground mobile robots, unmanned
aerial vehicles, or autonomous underwater vehicles, that
collaborate towards a common goal [7], [8], [9]. The
common characteristic of those systems is that they are
composed of a relatively large number of spatially dis-
tributed dynamical subsystems, which interact with each
other trough physical interconnections and/or communica-
tion links. Such systems are called networks of dynamical
systems, or, shorter, dynamical networks.

The main focus of today’s research in this area is the
development of methods for control algorithm synthesis
[1]. In most cases the challenge is not the design of subsys-
tems, which can be very reliable when operating individu-
ally, but instead the design of local control laws, possibly
in combination with distributed coordination schemes, for
achieving common objectives at the network level. At
the moment there is still no well understood, mature and
widely applicable theory that offers scalable, robust, and
reliable solutions to real-life network control problems.

The research is currently still scattered, as problems of
this nature are being explored also in biology, economics,
sociology, game industry, etc. [10].

This paper contributes to the field by introducing a
software framework that can be used for development,
simulation, and real-life implementation of control algo-
rithm for networks of dynamical systems. The framework
allows modelling networks in the Python language, while
the framework itself runs within the Robot Operating
System (ROS).

The framework, called Dinsdale, is available as
free software, under the General Public Licence, at
https://github.com/mross-22/dinsdale.

II. CLASSIFICATION OF DYNAMICAL
NETWORKS

To have a better understanding of the complexity of the
field of distributed and decentralised control, and therefore
to recognise the potential of the framework presented in
this paper, it is useful to be familiar with the different
types of networks present in control systems today.

A. Control structures

In the past decade, it has been acknowledged that fully
centralised control structures are not capable to cope with
the complexity of large spatially distributed systems. A
centralised control structure is one in which one central
control unit collects all the measurements and sends
commands to all actuators. Such structures can guarantee
globally optimal results of the controlled network, and
their design is a mature field with a very well developed
underlying theory. It has been proved that many practical
problems with this structure can be formulated in terms
of convex optimisation problems, and therefore efficiently
solved [11]. However, some of their main limitations are
that they are not scalable, not robust to failures, and are
often practically impossible to implement.

The opposite of centralised structures are decentralised
ones. In this case every subsystem is controlled by a
local controller, and there is no collaboration between
local controllers. Their main advantage is that no long
distance communication is required, which makes them
theoretically ideal for practical implementation. They also
have some significant disadvantages, like the possibility to
offer only suboptimal solutions which could possibly be

MIPRO 2023/DS-BE 387



far from the global optimum, resulting in very inefficient
behaviour. Using this structure the control synthesis is
a non-convex problem, and there are no constructive
algorithms for solving it [11].

The structure which has been recognised as often the
most suitable for control of such large systems is the
distributed structure. In such structure, each subsystem
is controlled by a local controller which, apart from
operating with locally available measurements, cooperates
with a usually small set of neighbouring controllers. The
controller communication network topology is in most
cases required to be the same as the plant interaction
network topology, but there could be exceptions.

B. Subsystem connection typology

The subsystems of a dynamical network can be phys-
ically coupled or decoupled. The former means that they
directly affect each other’s dynamics. Such systems range
from inverted pendulums interconnected with springs, to
complex electrical power grids, or the Internet.

If the systems are not physically coupled, it means
that their interaction is through information exchange or
measurements. They are connected by common goals or
constraints, rather than physical links. Some examples are
multirobot systems, vehicles platooning on motorways,
and sensor networks.

C. Subsystem connection topology

Each subsystem has a certain set of neighbours, with
which it interacts. This set can be either constant or change
over time. In the former case the network topology is said
to be static, while in the latter dynamic.

An example of subsystems that interact in a dynamic
network topology are mobile robots which have a limited
interaction range, due to limitations of sensing or commu-
nication equipment. This means that the set of each robot’s
neighbours is a function of their relative positions, which
change over time.

D. Subsystem typology

The subsystems connected in a network can be all of
the same type, or of different kinds. If the network is
composed of identical systems, it is called homogeneous.
Examples of such systems can be sensor networks or
swarms of robots, given that all agents are of the same
type. An interesting subset of such networks are spa-
tially invariant networked systems, in which not only the
subsystems are all equal, but also the dynamics of the
system does not change moving along any spatial axis.
An example are large segmented telescopes [12].

Networks composed of more than one type of subsys-
tems are said to be heterogeneous. This is the case in the
majority of applications, like electrical power grids, com-
munication networks, or teams of different autonomous
vehicles.

E. Control laws

The last important classification that is important to
describe in this chapter is the difference of how the control
laws of subsystems are being computed. The first possibil-
ity is that the controllers are predefined, which means that
the control laws are computed offline, before operation.
The second possibility is online solving of optimisation
problems. In this case, each controller is computing its
control output by solving an optimisation problem for
every sampling period. This requires the controllers to
iteratively exchange information between them inside one
sampling period.

III. PROBLEM DEFINITION

Control of dynamical networks is a rapidly developing
area of research, where most of the effort is put towards
the development of a unified underlying theory. How-
ever, a universal software framework for development,
simulation, testing, and practical implementation of such
control algorithms is still missing. For this reason the
transition from a general simulation to implementation on
real systems requires big efforts and time investments.
For example, it can be the case that people working on
the theoretical development lack the programming skills
required to implement complex distributed systems on spe-
cific hardware. Furthermore, even when having excellent
programming skills and knowledge of embedded systems,
this transition often requires a significant amount of time,
having to reformulate the control algorithms in a form
suitable for the particular system, and having to deal with
communication protocols and limitations.

This has been the main motivation behind the work
presented in this paper. The goal was to explore the
possibilities of creating a software framework that will
allow development of distributed and decentralised control
laws for both simulated and real networks of dynamical
systems, minimising or completely removing the transition
from one to the other. The framework should be fully
flexible to accommodate all the possible characteristics of
dynamical networks.

A similar goal has already been achieved in robotics, by
the Robot Operating System (ROS). The problem there
was that a lot of robot control algorithms were being
developed, but most of the time they were impossible to
reuse across various systems and to connect with other
existing software. Therefore, a lot of effort had to be put
in the implementation process, often ending up rewriting
existing software due to lack of portability. This is where
ROS has contributed by offering a thin middleware which
acts as a universal platform for software development,
without being invasive (the software does not have to be
designed specifically to work with ROS).

Since ROS already offers a standard systems to make
different software communicate, and since there already
exists a large amount of software packages for it, from
hardware drivers to high level functionality, it has been

388 MIPRO 2023/DS-BE



decided to use it as the base for developing the dynamical
network control framework.

IV. ROBOT OPERATING SYSTEM

This is a very brief overview of the main concepts
of ROS. A more detailed introduction, with focus on
distributed system development, can be found in [13].
More in-dept information on ROS, as well as tutorials,
can be found online, on the ROS website [14], and in
books, like [15].

ROS is a framework primarily intended for development
of robot software. It is a collection of tools, libraries, and
conventions that aim to simplify the task of creating com-
plex and robust robot behavior across a variety of robotic
platforms [16]. ROS is free software, licensed under the
permissive BSD licence. It was created, and, from 2007
to 2013, developed, and maintained mostly by Willow
Garage, a research laboratory and technological incubator
which produces hardware and free software for service
robotics [17]. Since 2013 the project has been transfered
to the Open Source Robotics Foundation (OSRF) [18], a
non-profit organization born as a Willow Garage spin-off.

It is important to note that ROS is not a replacement for
a computer operating system, but a middleware between
the robot hardware and the control algorithms. From the
robotics point of view however, it offers all the services
and abstractions expected from an operating system, which
explains its name. Some of the key services are hard-
ware abstraction, low level device control, implementation
of commonly used functions, process management, and
package management. It also provides tools and libraries
for obtaining, building, writing and running code across
multiple computers [14]. At the moment, ROS runs on
top of UNIX-like operating systems, with the best support
on the Ubuntu GNU/Linux distribution and its derivatives.

Software in ROS is distributed in packages and stacks
of packages. A package is simply a directory with a
certain structure, which can contain executables, libraries,
configuration files, or anything else.

At runtime, ROS manages the software inside what is
called the ROS Computational Graph, which is basically
a network of processes that can communicate with each
other. The main concepts are: Nodes, Master, Parameter
Server, Messages, Topics, Services, Bags.

The programs (processes) that are being executed are
called nodes, while the edges of the graph are the inter-
actions between them. The topology of the graph can be
dynamical: the graph can be fully modified at runtime.

The main program (server) which allows the interaction
between nodes, because it contains all the names and
addresses, is called Master. The Parameter Server is a part
of the Master which serves as a place for storing publicly
available data in a centralised location. It is not very fast,
so it is not used for runtime communication, but rather for
storing some universal parameters.

There are two methods for communication between
nodes: the asynchronous publishing of messages to topics,
and the synchronous communication through services. A
node can send a message by publishing it to a given topic.
The topic is a name to identify the message. A node that
is interested in a certain kind of data will subscribe to
the appropriate topic. There is no limit to the number of
publishers and subscribers for a topic. Services are used
in cases when request/reply communication is required. A
node can offer a service under a specific name, to which
any other node can send a request and wait for the reply.

The last fundamental concept that is important to un-
derstand are bags. Bags are files used for storage and
reproduction of logged data. They offer a convenient way
to store all kind of data during execution, which is very
valuable for development and testing. The data from a
bag file can be reproduced in the order it was collected,
which allows for example testing different algorithms on
the same data set.

V. THE DINSDALE FRAMEWORK

This section offers an overview of the Dinsdale package
for the Robot Operating System (ROS), a complete frame-
work to solve the problems presented in this paper. It gives
the possibility to implement control algorithms which can
equally work on both simulated and real networks of
systems, without the need to modify the code. Its flexibility
also allows both the controllers and the plants to be inter-
connected in any desired way, allowing implementation of
all control structures from sec:control.

An additional characteristic is that networks of dynam-
ical systems (controllers and simulated plants) are fully
contained inside Python packages, completely independent
from both Dinsdale and ROS. This allows separate de-
velopment and testing, and encourages reuse of system
models for any other purpose. The core of the Dinsdale
framework itself is a ROS wrapper around those Python
packages, which takes care of the execution, coordination,
communication, and data logging, and which gives a
standard interface for integration with other ROS software.

Python’s popularity within the scientific community is
increasing very rapidly, often at the expense of propri-
etary scientific computing software, making it the obvious
choice for the end user side (system modelling). Python
is, however, not only being used for implementation of
dynamical networks, but the entire framework has been
written in it. Its beauty and flexibility enabled the devel-
opment of a powerful core functionality, while simultane-
ously keeping it relatively simple for users to understand,
modify or extend.

ROS has been chosen as the underlying framework
because it is rapidly becomingh the de facto standard in the
robotics community for implementing control structures.
This offers the possibility to integrate control algorithm
developed in Dinsdale with other ROS packages, e.g. the
ones for low-level control, localisation and mapping, or
various virtual reality visualisation software. It is also

MIPRO 2023/DS-BE 389



possible to use standard ROS tools (e.g. rostopic,
rosbag, or rqt) to inspect the dynamical network, or
to store and reproduce data.

The Dinsdale package is free software, with all of
its components released under the GNU General Pub-
lic Licence (GPL) version 3, as published by the Free
Software Foundation. Dinsdale is hosted on GitHub, at
https://github.com/mross-22/dinsdale.

A. Package structure

Fig. 1: Dinsdale directory tree

The Dinsdale package is a directory containing all the
source code and data files required to run dynamical
networks inside a ROS computational graph. The minimal
structure of Dinsdale is illustrated in Fig. 1. All the source
files can be divided in three categories:

• System description −→ ./src
• Logged data −→ ./bags
• ROS wrapper −→ everything else

The Python package containing the entire definition
of the dynamical network that is being simulated is
./src/dinsdale_system. Inside it, the user defines
the dynamics, control laws, and topology of the network.
./src can contain more than one system, but only the one
in the ./src/dinsdale_system package is executed.
This allows to store multiple systems, and choose the one
to use by simply renaming its directory.

Each time a simulation is set up, a directory containing
the current date and time in its name is created inside
./bags. In that subdirectory all the data logged during
the simulation will be stored, inside ROS .bag files. The

user does not necessarily need to access or manipulate
those files, as Dinsdale has a script which allows data
analysis directly in Python.

Fig. 2 gives a somewhat simplified overview of the
Dinsdale architecture, which is the topic of the rest of
this chapter.

Fig. 2: Dinsdale directory tree

B. System definition

The dynamical network is defined in a Python pack-
age called dinsdale_system, located inside the src
directory of the main Dinsdale package (see Fig. 1).

1) Plants: Each plant in the network is defined by a
Plant class. This class is located inside plant.py, and
its structure is shown in Fig. 2. It is necessary to define
as many classes, each in its own file, as the number of
different types of plants in the network.

Table I explains what the attributes of the class are. All,
except for n and T, are of the numpy.matrix type. They
need always to have the shape of column vectors, but their
length is not limited.

As shown in Fig. 2, the Plant class has three methods:

• __init__(n, x0, T) – The initialisation of a
Plant instance. It initialises all the attributes, and
executes the initialisation code set by the user. This
method is called only once, at the beginning of the
execution.

• iterate_state() – The user here sets the equa-
tions for the update of the plant’s states x and output

TABLE I: Plant attributes

Plant
x plant states
u input from controller
y output for controller
w input from other plants
v output for other plants
n ordinal number of the node
T sample time

390 MIPRO 2023/DS-BE



for other plants v. This method is executed when new
inputs from the controller are received.

• update_output() – This method is executed
when the new set of input from neighbouring plants w
is received, and its purpose is to contain the equation
for updating the output for the controller y.

2) Controllers: Each controller in the network is de-
fined by a Controller class. Following the same
logic applied to plants, the class for a controller is
inside a controller.py file. In case of multiple
different types of controllers, there will be multiple
files, called controller.py, controller_1.py,
controller_2.py, etc.

TABLE II: Controller attributes

Controller
y input from plant
u output for plant
q input from other controllers
p output for other controllers
s iterative input from other controllers
r iterative output for other controllers
finished iterative communication finished
n ordinal number of the node
T sample time

Fig. II explains what the attributes of the Controller
class are. Except for n, T, and finished, the rest are of
the numpy.matrix type. They need always to have the
shape of column vectors, but their length is not limited.

As shown in Fig. 2, the Controller class has three
methods:

• __init__(n, T) – The initialisation of a
Controller instance. It initialises all the attributes,
and executes the initialisation code set by the user.
This method is called only once, at the beginning of
the execution.

• iterate_state() – The user here sets the equa-
tions for the update of the controller’s outputs, both
for the plant and for neighbouring controllers (u and
p). This method is executed when new data from the
plant (y) is received.

• iterate_optimisation() – This method is ex-
ecuted after iterate_state() if the controllers
communicate iteratively within one simulation step.
This method is usually used when the control law is
computed by collaboratively solving an optimisation
problem on-line. If this is the case, the vectors used
for iterative communication are r and s. In each sim-
ulation step this method is called until finished is
set to True. In the next iteration it will automatically
be reset to False.

3) Plants interaction topology: The topology of the
plants interaction network can be static or dynamic. When
it is static, nothing has to be done. In case it is dy-
namic, the user has to determine the law according to
which the topology is changing. This is done in the
PlantsTopology class (shown in Fig. 2), inside the
plants_topology.py file (note that there can be only
one such file for a network).

The class PlantsTopology initialises:

• A – The adjacency matrix of the plants interaction
network (a square (n × n) matrix, where n is the
number of plants).

• nodes – The number of plants.
• w – The output from each plant (a list of n elements,

each being a one dimensional numpy.array).
• communication – A list of neighbours of each

plant (a list of n lists). It gets populated during
the initilaisation by looping through the adjacency
matrix. Once the neighbours of each plant are found,
in each simulation step the plant will receive their
outputs.

The method update_topology() is empty by de-
fault, and this is where the user can define the laws
according to which the topology is changing, in case it
is dynamic. The laws could use the data sent by plants,
or be functions of time. Another possible application of
the update_topology() method, apart from having a
dynamic topology, is multiplying the values exchanged by
plants with some weights, which can also change over
time. Whatever its usage may be, the objective in this
method is to update the list communication with lists
of neighbours of each plant in every time step.

4) Parameters: Inside ./input_parameters there
are seven items to be set to fully define the dynamical
network:

• A_controllers.txt – The adjacency matrix of
the controller communication network. The file can
be empty if the controllers do not communicate.

• A_plants.txt – The adjacency matrix of the plant
communication network. Even if the plants do not
interact, it has to be of size (n× n), where n is the
number of plants, but filled with zeros.

• controllers_iterative.txt – Determines
whether the controllers communicate iteratively in-
side one time step (1 if they do, 0 or empty other-
wise).

• plants_topology.txt – 0 if the plants topology
is static, 1 if dynamic.

• system_types.txt – Describes the type of con-
troller and plant for each subsystem. It is a matrix of
size (n × 2), where n is the number of subsystems.
The first column corresponds to controllers, the sec-
ond to plants.

• T.txt – A (3 × 1) vector, the elements of which
correspond to the sampling period (used for discreti-
sation of the system dynamics), the real duration of
a simulation time step, and the final time of the
simulation, all given in seconds.

• x0.txt – Contains the initial conditions for each
plant. It is an (n×m) matrix, where n is the number
of plants and m the number of states of a plant (in
case of heterogeneous systems, the plant with the
largest dimension of the state space determines this
number).

MIPRO 2023/DS-BE 391



5) Tools: The additional package ./tools contains
useful tools which are not part of the dynamical network.
Two modules can be find inside it:

• read_matrix.py – This is the function all other
modules use for reading matrices from files. It is
placed here to make it available also for the user, in
case he or she wants to load some additional matrices.

• result_analysis.py – This module is where
all data from a simulation is made available to the
user for analysis of any kind.

The result_analysis.py file contains the
ResultAnalysis class, shown in Fig. 2. In its
initialisation method, the class initialises a dictionary
called data. This dictionary gets filled by a core
Dinsdale class with data stored during a simulation. The
keys of the dictionary correspond to names of controller
and plant attributes. The value of a key is a list of a list
of all values of the specific attribute of every node in the
network. In the method analyse() the user is free to
manipulate this data in any way, e.g. plotting it.

C. Runtime

The dinsdale_system package is a pure Python
package, which contains the description of a dynamic
network. To generate as many instances of its classes as re-
quired by the network specification, initialise their values,
transform them in ROS nodes, set up the communication
networks, and coordinate the execution, there is a wrapper
around it. This wrapper is the core Dinsdale functionality.
Fig. 2 shows how every class in dinsdale_system is
being use by Dinsdale.

Fig. 3: Execution flow

At runtime, Dinsdale sets up as many ROS nodes
as defined by the user, and connects them accordingly
in a ROS computational graph. After all nodes are
set up in a ROS graph and the simulation time is
started, Dinsdale starts simulating the network using the

classes defined in dinsdale_system. Fig. 3 shows
the order in which the methods are being called inside
one time step, when simulating a network of two sys-
tems. The dashed arrows represent optional communi-
cation between controllers (single and iterative). When
the controllers are not communicating iteratively, the
method Controller.iterate_optimisation()
is not called at all. The letters near the arrows represent
the name of the attribute that is being sent.

D. Replacing simulated plants with real systems

One of the main motivations for the development of
the Dinsdale package was to make the transition from
simulation to implementation as simple as possible. This
was kept in mind during the entire design process, which
can be seen for example in the structure of controller
nodes, which have all their input and output topics set
within their namespaces. This makes them agnostic about
who is publishing their inputs and who is using their
outputs. Not only this gives the possibility to replace
the simulated plants with real systems, but also to use
Dinsdale together with the big variety of existing ROS
packages, e.g. for simultaneous localisation and mapping,
visualisation, image processing, etc.

As ROS is gaining popularity, more and more hardware
drivers are available as ROS packages. At the same time,
small single-board ARM computers are rapidly being
adopted as cheap and efficient control units for a huge
variety of systems. Since those computers are able to
run GNU/Linux distributions, and therefore ROS, these
facts makes it very convenient to use Dinsdale generated
controllers for control of real networks of systems.

VI. CONCLUSION AND FUTURE
DEVELOPMENTS

This paper presented the motivation and explored the
possibilities of creating a universal framework for devel-
opment of networks of dynamical systems. It introduced
a new framework, which fully satisfies the requirements,
derived by the needs of today’s research community.
With the testing conducted so far, it has been shown
that the Dinsdale framework offers a solid and reliable
infrastructure for research and development of dynamical
networks. Although the benefits from using such a frame-
work are theoretically clear, they still have to be proven in
practice. Feedback from other research groups would be
immensely valuable for determining the direction of the
future development of this software.

Generally speaking, the need for such framework ex-
ists, and considering its foundations are the increasingly
popular ROS and Python, its adoption could be very
convenient. It will certainly remain available and continue
being maintained and developed, at least in the foreseeable
future.

Dinsdale is hosted on GitHub, at
https://github.com/mross-22/dinsdale.

392 MIPRO 2023/DS-BE



REFERENCES

[1] R. Murray, K. Astrom, S. Boyd, R. Brockett, and G. Stein, “Future
directions in control in an information-rich world,” Control Systems,
IEEE, vol. 23, no. 2, pp. 20–33, Apr 2003.

[2] A. Preumont, Vibration Control of Active Structures: An
Introduction, ser. Solid Mechanics and Its Applications.
Springer, 2011. [Online]. Available: http://books.google.hr/books?
id=MUQUQyB4bEUC

[3] P. Koumoutsakos and I. Mezic, Control of Fluid Flow,
ser. Lecture Notes in Control and Information Sciences.
Springer, 2006. [Online]. Available: http://books.google.hr/books?
id=7T2lrA-YVCwC

[4] R. Duffner, The Adaptive Optics Revolution: A History. University
of New Mexico Press, 2009. [Online]. Available: http://books.
google.hr/books?id=6nJ9PQAACAAJ

[5] J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, and A. Yokoyama,
Smart Grid: Technology and Applications. Wiley, 2012. [Online].
Available: http://books.google.hr/books?id=AmpSxODiF7sC

[6] H. S. Witsenhausen, “A counterexample in stochastic
optimum control,” SIAM Journal on Control, vol. 6,
no. 1, pp. 131–147, 1968. [Online]. Available: http:
//scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=
SJCODC000006000001000131000001\&idtype=cvips\&gifs=yes

[7] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Al-
gorithms and theory,” IEEE Transactions on Automatic Control,
vol. 51, pp. 401–420, 2006.

[8] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Mul-
tiagent Networks, ser. Princeton Series in Applied Mathematics.
Princeton University Press, 2010.

[9] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009, http://coordinationbook.info.

[10] G. Antonelli, “Interconnected dynamic systems: An overview on
distributed control,” Control Systems, IEEE, vol. 33, no. 1, pp. 76–
88, 2013.

[11] M. Rotkowitz and S. Lall, “A characterization of convex problems
in decentralized control,” Automatic Control, IEEE Transactions
on, vol. 51, no. 2, pp. 274–286, Feb 2006.

[12] S. Jiang, P. Voulgaris, L. Holloway, and L. Thompson, “Distributed
control of large segmented telescopes,” in American Control Con-
ference, 2006, June 2006, pp. 6 pp.–.

[13] M. Rossi, “ROS u distribuiranom upravljanju dinamičkim sus-
tavima,” University of Zagreb, Tech. Rep., 2014.

[14] ROS, “Documentation,” http://wiki.ros.org/.
[15] J. M. O’Kane, A Gentle Introduction to ROS.

Independently published, Oct. 2013, available at
http://www.cse.sc.edu/ jokane/agitr/.

[16] ROS, “About ROS,” http://www.ros.org/about-ros/.
[17] Willow Garage, “About Us,” http://www.willowgarage.com/

pages/about-us.
[18] OSRF, “ROS @ OSRF,” http://osrfoundation.org/blog/

ros-at-osrf.html.

MIPRO 2023/DS-BE 393




