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Abstract—The increasing presence of robots and other
autonomous systems in everyday environments, such as
households, workplaces, schools and hospitals, requires their
safe cohabitation and collaboration with humans. Accurate
and reliable human intention recognition that fosters safe and
efficient human-robot collaboration is thus a crucial compo-
nent of these autonomous systems, especially if attainable
from relatively cheap and widely available sensors such as
RGB-D cameras. In this paper, we propose a hand-crafted
model of human intention when reaching for one of multiple
objects present on the table in front of a person. By coupling
our hand-crafted model with a method for human skeleton
tracking from RGB-D images, we devise a computationally
efficient human intention recognition method suitable for
collaborative pick-and-place scenarios. We experimentally
verify our method in real-world scenarios of a person
reaching for one of two, three and four objects placed on
a table. We complement the paper with an open-source
implementation of our human intention recognition method.

Keywords—intention recognition, rgb-d, collaborative envi-
ronments, action prediction, human-robot collaboration

I. INTRODUCTION

As robots become more advanced and integrated into
human-centric environments such as households, offices,
schools and hospitals, there is a growing need for them
to effectively collaborate and interact with humans, which
presents new challenges in terms of system efficiency and
human safety. Unlike robots, whose behavior can be fully
controlled, human behavior is inherently unpredictable.
Consider, for example, a person setting the dining table.
While the task is well-defined, the order of subtask ex-
ecution will clearly differ between people, especially if
there are unforeseen changes in the environment. If the
same task is carried out by a robot in collaboration with
a person, it is of paramount importance for the robot to
be aware of uncertainties and nuances of human behavior
in order to ensure human safety and comfort. Human
intention recognition thus presents one of the biggest
challenges in collaborative robotics and has been an active
area of research in recent years.

Intention recognition in the early stage of human actions
can facilitate a variety of tasks in different scenarios, such
as helping people overcome physical impediments [1],
ensuring safety of human participants in traffic situa-
tions [2]–[4], enabling robots to purposefully partake in the
manufacturing assembly process [5], or helping distinguish
between healthy and unhealthy movement patterns in
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clinical settings [6]. The need for efficient human intention
recognition is accentuated in collaborative environments
where humans and robots simultaneously try to achieve
a given task, especially in object-picking where a person
and robot arm may often be in relative proximity. For such
scenarios, a multimodal approach to intention recognition
problem was presented in [7], where intention prediction
is based on fusion of skeletal tracking measurements of a
person’s hand and pupil position measurements. Besides
an RGB-D sensor used for obtaining skeletal data, addi-
tional piece of wearable equipment was needed for pupil
tracking, reducing practicality of the proposed system.

Many researches have yielded successful results in
intention recognition tasks using learning approaches [8],
[9], where neural networks are often used as time series
forecasters based on spatio-temporal movement patterns.
Using kinematic data that includes motion and task-
specific forces, a neural network was trained in [10]
to approximate the function that represents dynamics of
human movement and then predicts future human motions.
Therein, intention refers to how the human hand will move
next. A recurrent neural network (RNN) was trained in
[11] to provide a prediction of future human movements
given its history. Additionally, the RNN was then used
for identifying the most probable goal of the predicted
trajectory. In [12], the authors presented two methods for
intention recognition that relied on RNNs, where the first
method used person’s hand trajectory as input, while the
second method was trained on RGB-D videos. While both
approaches showcased good performance when tested in
an industrial setting, the high price and complex setup
of motion tracking systems makes RGB-D sensor-based
method more convenient and effective to use. A convo-
lutional neural network (CNN) was proposed in [13] to
recognize intention in each of the N captured images by
learning subtle patterns in spatial features and accumu-
lating those individual predictions over a time interval to
produce the final prediction. Although spatial information
in still images could be sufficient for action recognition,
it might not be enough to distinguish subtle variations in
motions which are a key aspect of intention recognition.
To incorporate temporal aspect of motion, the authors in
[14] proposed a CNN in a two-stream architecture which
uses optical flow along with RGB data in an intention
prediction task. A long short-term memory (LSTM) net-
work combined with a CNN was used in [15] to predict
reaching intention from gaze cues. In [16], [17], the
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authors proposed using an ensemble of LSTMs for action
prediction in collaborative environments, showcasing a
degree of generalization to changes in the environment.
While all of the mentioned methods achieve good per-
formance in human intention recognition in collaborative
environments, they require substantial amount of training
data and hardware resources for the training process itself.

In this paper, we propose a lightweight human intention
recognition method that uses RGB-D camera input. By
relying on relatively cheap and widely available RGB-D
sensors, as well as focusing on the ease of implementation,
the proposed method is suitable for fast implementation
and deployment on a variety of autonomous systems.
Specifically, we craft a simple model of human intention
when reaching for one of multiple objects present on the
table in front of a person. Input data is processed in
few simple steps using a limited amount of previously
computed and stored values which makes the method
computationally efficient. The proposed method considers
distances between possible goal objects and key points of
the tracked human skeleton, which are obtained from an
existing method for RGB-D human skeleton tracking. The
proposed method is suitable for collaborative pick-and-
place tasks, and we experimentally verify its performance
in real-world scenarios of a person reaching for one of two,
three and four objects placed on a table. We complement
the paper with an open-source implementation of our
human intention recognition method1.

II. HUMAN INTENTION RECOGNITION METHOD

Throughout this paper, we consider a collaborative
application where a human and a robot manipulate ob-
jects placed at known locations at the same table. In
such scenarios, a person will typically move towards an
intended goal, rather than in a random manner. There-
fore, we need a human intention recognition method to
determine a person’s intended goal in order for the robot
to choose its tasks appropriately, diminishing the risk of
violating human safety and comfort. In this section we
propose an easy-to-implement, computationally-efficient
human intention recognition method that is suitable for
the aforementioned scenario. We present each component
of our method, including the definition of our weighted
distance (Sec. II-A) and intention probability (Sec. II-B)
functions, followed by the description of the utilized slid-
ing window technique (Sec. II-C). Finally, our algorithm
is summarized in Sec. II-D.

A. Weighted distance function

Consider a scenario where a person is grasping an object
present on the table with their right hand. When a person
begins their movement from a standing or sitting anatom-
ical position, they start to reach with their hand towards
the object. As the reaching motion continues, the distance
between the target object and the person’s hand becomes
smaller and smaller. When the object is reached, that
distance becomes zero. Moreover, the distance between
target object and some of the other key points of the human

1https://github.com/maricjelena/intention-prediction

skeleton, such as the right arm elbow or torso, becomes
smaller with time.

We use this observation as the foundation of our inten-
tion recognition method. If there are multiple objects on
the table, the distance between human skeleton keypoints
and the preferred object at a certain time instant before
grasping becomes smaller than the distance from every
other object. Therefore, to be able to detect that the person
is approaching the location of a certain goal g, we propose
a general weighted distance function

d(g) =
J∑

j=1

wjdgj (1)

where dgj denotes the three-dimensional Euclidean dis-
tance between a goal location g and a given human
skeleton joint j (out of J tracked skeleton joints), while
wj represents the weighting factor indicating relative im-

portance of the given joint j, with wj ≥ 0,
J∑

j=1

wj = 1.

While the proposed distance function is general in a
sense that it can be used with any sensor that can provide
skeleton detection, in this paper we employed a particular
implementation of skeleton tracking from RGB-D sensor
data. For data acquisition we used the widely available
Xbox One Kinect sensor, that was initially intended for
videogaming purposes, but quickly gained popularity in
research applications due to its depth sensing ability and
financial affordability. Since Kinect is a natural interaction
device which can be accessed by open source APIs pro-
vided by OpenNI (Open Natural Interaction) framework,
we used PrimeSense NiTE middleware which includes
modules for OpenNI providing gesture recognition and
skeleton tracking.

The mentioned skeleton tracking module provides po-
sition information for 15 different skeleton key points,
namely hand, elbow and shoulder points for both arms,
hip, knee and foot points for both legs, as well as head,
neck and torso points. While this implies that J = 15,
in our implementation of (1) we focus on the right hand,
right elbow and torso information. We handcraft weights
wj in a way that right hand position information has
the most influence on the total weighted distance. This
corresponds to the aforementioned property of the distance
between hand position and the desired object becoming
zero when the object is grasped. The elbow and torso
position information serve as a correction component in
cases when the tracked human hand position provided by
the used OpenNI framework is particularly inaccurate. We
also assume that goal locations are invariable and known
in advance, although they could be determined by using
an open-source 3D object detection framework, e.g., [18].

B. Intention probability

When the weighted distance function in (1) is calculated
for each possible goal location, we are in some cases
able to simply infer the intended goal. For example, if
we have three goals and one of them has comparatively
much smaller weighted distance value than the other two
possible goals, we may conclude that it is the intended
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goal. Taking the argument of the minimum of the weighted
distance function will provide reliable intention recogni-
tion in the aforementioned case that often happens when
the person is already very close to the goal location.
However, if the weighted distance is reasonably high from
each possible goal, for example in the standing anatomical
position, we might be unable to infer or be very uncertain
about the intended goal. Taking the argument of the
minimum in such situations may lead to clearly incorrect
human intention estimates.

For the aforementioned reasons, we want to have a
notion of uncertainty about our intention estimate and thus
we utilize the softmax function to provide a probabilistic
interpretation of the calculated weighted distances for each
goal. A probability of each potential goal gi (from a set
of G possible goals) is given as

p(g = gi) =
e−βd(gi)∑G

n=1 e
−βd(gn)

, (2)

where d(gi) is the weighted distance function given in
(1), while β is a parameter for tuning the behavior of the
softmax function, dependent on the specific requirements
of a given task. With larger values of β, the function given
in (2) has higher sensitivity. If we choose relatively large
value of β, the probability of the predicted goal will always
be close to 1, providing overconfident estimates. On the
other hand, if chosen β is too small, it will output values
close to 0.5 for the predicted goal, providing no confidence
in the estimate. For the particular object reaching problem
considered in this paper, we empirically concluded that
β = 40 provides good estimates.

C. Sliding window

The only source of information we rely upon for inten-
tion recognition is skeleton tracking from RGB-D images,
which is prone to providing noisy detections, e.g., due to
self-occlusion. Unreliable input can significantly degrade
estimation performance of the proposed intention estima-
tion method. To mitigate the negative impact of wrong
detections, we incorporate the sliding window technique
in the estimation process to produce the final prediction
formulated as the weighted moving average

p̃i =

F∑
f=1

wfpi,f

F∑
f=1

wf

(3)

where pi,f is the prediction probability of the goal gi in the
frame f , wf is the weighting factor in the given frame f ,
and F is the number of frames considered in the weighting
group. Parameters wf and F (i.e., sliding window size) are
manually tuned to work well for the observed motion.

Generally, applying the moving average with time-series
data smooths out short-term fluctuations. In the context
of this work, noticeable and sudden changes in tracked
position do not occur naturally, because it is not physically
possible for people to significantly change position of any
joint in short period of time such as 0.03 s. However, this
kind of deviation is not rare in skeleton detection. The

purpose of the sliding window technique is to smooth
out detection errors by predicting the intention using
weighted contributions of the last F predictions, including
the current one. Earlier predictions contribute less than
the newer ones to better represent the time connection of
the tracked position changes during the motion. For the
particular problem considered in this paper, we empirically
chose F = 7 which provided good balance between
stability and fast prediction times in our experiments.

D. Algorithm summary
Given the skeletal pose of a human in a frame f , we first

compute the weighted distance function given in (1) for
each goal location gi based on the current measurement
of the considered joint positions. We then calculate the
probabilities for each goal gi following (2). Afterwards,
the sliding window is recursively applied using (3) to get
the final probability distribution at the current time instant.
If there are not enough previous frames when estimating
the intention in the current frame f , i.e., f < F , then the
predictor takes f frames into account with the adjusted
weight of each frame. The object location with the highest
associated probability is considered to be the estimated
intended goal.

III. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of our
method on data we collected in our laboratory. We start by
explaining our dataset collection process and the obtained
data in Sec. III-A. Then we present the results of the con-
ducted performance analysis for scenarios with differing
levels of prediction difficulties determined by the number
of objects and their spatial arrangement. We first utilize
the proposed intention prediction method in a two-object
scenario (Sec. III-B) to verify the applicability of the pro-
posed method in a fairly simple intention discrimination
task. Experimentation area is then expanded by adding
more objects (Sec. III-C), since the intention prediction
method can be of great use in a real-life application based
on recognizing the intended goal among many others. This
also gives us an opportunity to induce possible problems
that rarely occur in the basic two-object scenario and to
show how they are handled with the proposed method.
Lastly, in Sec. III-D we observe the effect of the sliding
window technique on the stability of the proposed method
when detection errors occur.

A. Dataset collection
We recorded 3D coordinates of a person’s skeleton

position while the person was reaching for objects placed
on a table at least 9 cm apart. The number of those objects
K ∈ {2, 3, 4} and their locations are known for each sce-
nario in advance and are depicted in Fig. 1. Each recorded
sequence includes data acquired during multiple reaching
movements. The duration of each reaching motion is in
range of 1.5− 2 s, starting from the neutral body posture
and ending in object reaching, after which the person
returns to the neutral position or continues to reach for an
another object directly from the location of the previously
reached object. Sequences are labeled with timestamps of
moments when an object is reached.
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(a) (b)

Fig. 1: Scene with: (a) 3 and (b) 4 objects

B. Toy problem: Two object scenario

The method was first tested in the basic case of two ob-
jects being located with maximum distance apart (Fig. 2).
As shown in Fig. 3, intention is correctly predicted for
each reaching motion with a high probability of the
intended object throughout the whole sequence. This is
a somewhat simple decision because of the arrangement
of objects. They are positioned such that approaching one
object increases the distance to the other one which means
that individual direction of probability change can point
directly to the estimate of the method.

Fig. 2: Scene with two objects located with a maximum distance

C. Multi-object scenario

In this section we examine the prediction performance
in scenarios featuring two, three and four possible goal
objects. A comparison of prediction performance for three
different combinations of tracked human skeleton joints
being used in probability computation is given in Table I.
For the right hand and right elbow combination, we used
wj = 0.8 for the hand and wj = 0.2 for the elbow. For
the right hand, right elbow and torso combination, we used
wj = 0.8 for the hand, and wj = 0.1 for both the elbow
and the torso. The table of prediction results shows average
time left between the time instant of intention recognition
and a manually determined time instant of reaching the
goal location. This time is calculated by averaging results
for chosen reaching motions in the observed sequence.
Sequence selection criteria are explained in the following
paragraph.

A given time instant is considered to be the prediction
time instant if: i) the probability p̃i of the goal gi is
greater than 0.5 in scenarios containing 2 objects and
greater than 0.4 in scenarios containing 3 or 4 objects

Fig. 3: Probabilities of objects from sequence shown Fig. 2 being
reached. Note: moments when the goal objects are reached are
marked with ’x’ coloured with the ground truth object’s color.

TABLE I: Average time left between the moment when
intention is recognised and the reaching moment. Note:
higher value represents better performance.

Reference skeleton joints Number of objects
2 3 4

right hand 0.7559 0.6472 0.4789
right hand + right elbow 0.7219 0.6029 0.4152

right hand + right elbow + torso 0.7570 0.6279 0.4727

(Fig. 4); and ii) probability p̃i of the goal gi being reached
is constantly greater than other objects’ probabilities until
(at least) the moment of reaching. There are cases when
the initial position of a person suggests that a certain
object is being reached, i.e., the initial probability of
an object is higher than the defined threshold (Fig. 4a).
Reaching that particular object is ignored in the analysis
because the results do not reflect methods true prediction
ability. The unevenness of initial probabilities could be
alleviated with predefined location of a person such that
the body position is truly neutral. Reaching motions which
continue from the previous goal location were also not
taken into account here due to significant differences in
duration in comparison to trajectories starting from a
neutral position which made them unsuitable for direct
comparison. Note that the probability threshold of 0.4 was
empirically determined as a suitable value for scenarios
with three and four objects due to task complexity increase
with the increase in the number of objects. An example of
introducing complexity in an estimation task is a situation
when approaching intended object results in comparable
distance decrease for other objects as well.

The results from Table I show that the proposed method
can provide reliable human intention recognition up to
0.75 s before reaching the desired object. Expectedly, the
increased number of objects leads to decreased perfor-
mance in average time left to correct intention recognition.
These results also indicate that different joint combinations
lead to similar results in the general case, implying that the
intention could be determined by tracking only the hand
joint, which is true for the chosen sequences. However,
it is clear that the prediction performance declines when
the detection does not correspond with the true position
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(a)

(b)

Fig. 4: Scenarios containing (a) 3 and (b) 4 goal locations marked
with initial probabilities

TABLE II: Average time left between the moment inten-
tion is recognised and the reaching moment in a scenario
with 3 objects where input data suffers from detection
errors.

Reference skeleton joints ∆t
right hand 0.5830

right hand + right elbow 0.5327
right hand + right elbow + torso 0.5940

of a person, as is often the case for hand joint. Taking the
elbow and torso measurements into account can enhance
output stability when hand detection significantly changes
due to unreliable tracking or possible occlusions. To
support this claim, we chose another sequence, depicted
in Fig. 5, to show how the suggested sets of joints affect
the final prediction. The average time left before correct
intention recognition for the pertaining sequence is shown
in Table II and suggests that the utilization of different
tracked body joints may improve performance when input
data suffers from detection errors.

D. Sliding window impact

We conducted additional performance analysis to show
the importance of using sliding window. For that purpose,
a sequence containing detection errors in multiple frames
within one sliding window was chosen. Our analysis
showed that, when using the sliding window, intention pre-
diction method has the ability to resist negative influence
of few false detection inputs, as showcased in Table III.
The visual representation of prediction changes before and
after the application of the sliding window technique is
shown in Fig. 6. If skeleton detection was consistently

TABLE III: Probabilities when reaching for object i = 1
in 8 consecutive frames from Fig. 5 depending on the use
of sliding window. Number of possible goal locations is
3, i.e., i ∈ {0, 1, 2} seen from left to right. Predictions
which differ from the ground truth are marked red.

time instant t no sliding window sliding window
i max(pi) i max(p̃i)

tk 1 0.8431 1 0.5184
tk+1 1 0.9188 1 0.5528
tk+2 0 0.7632 1 0.4371
tk+3 1 0.9508 1 0.5752
tk+4 1 0.9526 1 0.5999
tk+5 1 0.7210 1 0.5734
tk+6 0 0.8137 1 0.4790
tk+7 0 0.7510 1 0.4763

bad, then the prediction would have also underperformed
since we rely solely on these measurements. The overall
performance of the proposed method depends greatly on
the provided input which can be unreliable since a single
Kinect is used for obtaining the data. Introducing one
or more additional RGB-D cameras would offer better
scene coverage, hence improving the fused measurement
accuracy.

IV. CONCLUSION

In this paper, we proposed a simple skeletal data-based
model for recognizing intention in human actions when
reaching for one of multiple objects present on the table
in front of a person. By coupling our hand-crafted model
with a method for human skeleton tracking from RGB-
D images, we devised an intention recognition method
suitable for collaborative pick-and-place scenarios. We
experimentally verified the performance of the proposed
method in real-world scenarios of a person reaching for
one of two, three and four objects placed on a table.
The proposed method can also be adapted for usage in
different scenarios by picking a subset of skeleton joints
with weights adjusted accordingly to the nature of the task.
The obtained results support the decision of considering
multiple joints in the distance function along with the slid-
ing window technique for smoothing the prediction curve,
both ensuring the stability of prediction method to some
extent. If objects were placed in a straight line between
the human and the farthest object, ambiguity of movement
path would lead to method becoming greedy and declaring
the location of the nearest object as the intended one;
therefore, the proposed method is not suitable for every
arrangement of objects.

In future work, it would be interesting to implement a
robot controller for a human-robot collaborative assembly
task to evaluate the performance of presented method in
an real-life industrial environment.
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