
OpenMP offloading and OpenACC programming
model approach for object-oriented plasma

device algorithms
Ezhilmathi Krishnasamy∗, Ivona Vasileska†, Leon Kos†, Pascal Bouvry∗,

∗ University of Luxembourg/PCOG, Belval, Luxembourg
† University of Ljubljana/LECAD, Ljubljana, Slovenia

ezhilmathi.krishnasamy@uni.lu, ivona.vasileska@lecad.fs.uni-lj.si, leon.kos@lecad.fs.uni-lj.si, pascal.bouvry@uni.lu

Abstract—Plasma physics is becoming more important
due to its applications in clean energy production (using
fusion technology) and other fields, such as chemical and
material science. Even recently, Lawrence Livermore Na-
tional Laboratory (LLNL) has demonstrated the capability
of producing more energy through fusion compared to laser
energy. Therefore, in the future, we might need to do more
computational simulations for further understanding and
explore the advancement in plasma physics. Furthermore,
this could be possible with the help of supercomputers. In
this work, we parallelise a one-dimensional object-oriented
plasma device algorithm, Object Oriented Plasma Device 1d
(oopd1), on a multicore CPU and GPU. We use the OpenMP
programming model for the CPU version, and for the GPU,
we use OpenMP offloading and OpenACC offloading. All
of these approaches are compared to each other. Thus, it
provides further suitable programming models with parallel
capabilities for the existing oopd1 to explore the available
parallel architectures.

Keywords—GPU, OpenACC, OpenMP Offloading, Plasma
Physics

I. INTRODUCTION

Plasma simulation is the computational modelling of
the interaction of charged particles with electric and mag-
netic fields. The plasma may exhibit complex nonlinear
behaviour, and the fields and particles may interact with
time-dependent boundary conditions. Fluid codes model
the plasma using moments of a distribution function at
discrete grid points. In contrast, particle-in-cell (PIC)
codes to model the plasma using discrete particles, each
representing many charged particles. The particle-in-cell
Monte Carlo (PIC-MC) method is a self-consistent kinetic
approach capable of predicting the electron and ion en-
ergy distribution function (EEDF and IEDF), respectively.
Essentially, the PIC simulation employs thousands of
simulated particles, known as superparticles, to represent
a significantly larger number of real particles (1014 - 1018

m−3). In a PIC simulation, the motion of each particle is
simulated, and macro-quantities (such as particle density,
particle flux, current density, etc.) are calculated from
the position and velocity of these particles. The macro
force acting on the particles is calculated from the field
equations.

The object oriented plasma device 1d (oopd1) is a one-
dimensional object-oriented PIC program that pushes par-
ticle positions and velocity to advance. The main idea of

Fig. 1: Plasma one-diode system.

using particles is to represent space collocation, which is
much computationally cheaper than the Vlasov/Boltzmann
methods [1]. Furthermore, at the same time, Vlasov/Boltz-
mann represents six-dimensional space and enables arbi-
trary plasma systems, similar to magnetohydrodynamic
methods. It contains a model for planar geometry and
includes models for cylindrical and spherical geometries.
The oopd1 also allows for different weights of simulation
particles and relativistic treatment of electrons. The object-
oriented methodology is used for plasma simulations in a
physical device with field-emitted electrons in the presence
of ion current in a one-dimensional diode. The configu-
ration for a one-dimensional bounded plasma system is
shown in Fig. 1.

The algorithm of the oopd1 is common with the other
PIC codes [2]–[4]. It contains a particle mover, which up-
dates the position and velocities of the simulated particles
according to the famous Newton’s laws of motion, and a
field solver, which calculates the fields inside the simulated
spatial region at some grid points.

A. Contribution

For the oopd1 code, we have implemented the following
approaches:

• OpenMP implementation that uses the available
threads in the CPU

• OpenMP offloading directives targeting GPU
• OpenACC directive programming model for GPU

enabled parallelisation on GPU
• Performance analysis comparison between all of

these implementations
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B. previous study

As the oopd1 is based on the PIC code, many studies
have been conducted to parallelise similar code on the
CPU and GPU [5]–[7]. Moreover, the simplified version
of the oopd1 is called SIMPIC, which is also well studied
with various parallel implementation approaches [2]–[4].
However, oopd1 involves complex physics and many op-
tions to simulate, such as argon, hydrogen, oxygen and
chlorine. As far as we know, no study has been explored
on parallel implementation of the oopd1 code on GPU.

II. PARALLEL PROGRAMMING

Parallel programming exists to achieve parallel com-
putation on parallel computers. Parallel architecture ex-
ists in the form of distributed memory, shared memory
and hybrid memory (compute node is connected with
accelerators, e.g., Graphics Processing Unit (GPU) and
Field Programmable Gate Array (FPGA)). For the past
few decades, parallel programming exists, notably Mes-
sage Passing Interface (MPI) and Open Multi-Processing
(OpenMP) programming models. For example, MPI is for
parallelisation on distributed memory, and OpenMP is for
parallelisation on shared memory parallel architecture.

In particular, MPI and OpenMP have version standards
which are being updated regularly; the initial MPI standard
was created in 1992 [8]. Similarly, the OpenMP version
standard was set in 1997 for the FORTRAN language [9];
since then, OpenMP standards have been regularly up-
dated, and it supports C/C++ as well. But recently, many
parallel programming models have been emerging, e.g.,
Compute Unified Device Architecture (CUDA), Heteroge-
neous Interface for Portability (HIP), and Open Computing
Language (OpenCL). These are being used for explicitly
targeting the accelerators, such as GPUs and FPGAs.

As the MPI and OpenMP have existed for many
decades, most scientific applications have been written
using those programming models. However, to make use
of the new parallel heterogeneous architecture (compute
nodes with accelerators), scientific codes or programmers
have to adapt to vendor-specific (e.g., CUDA and HIP) or
low-level programming (OpenCL) to target these parallel
heterogeneous architectures.

Although these vendor-specific or low-level program-
ming languages might be employed to port the existing
code to accelerators, it might need more effort in terms
of time spent on implementing and understanding these
programming languages. In order to avoid those obstacles,
one could use OpenACC and OpenMP offloading. Both of
this OpenACC and OpenMP offloading are very easy to
implement with minor changes in the existing code and
are directive-based programming languages. This is what
we address in this work.

III. TESTING PLATFORM

Presently supercomputers have achieved exascale com-
puting with the help of heterogeneous architecture, e.g.,

Fig. 2: IBM: Power9 (CPU) with Nvidia Volta
V100;source [13].
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Fig. 3: Nvidia: Volta V100 GPU with 84 streaming
multiprocessors.

Frontier [10] has AMD CPU and GPU. Similarly, most
supercomputers worldwide have accelerators connected to
compute nodes (CPU) such as Nvidia GPU, Intel GPU and
FPGA. This work considers IBM POWER9 AC922 at 3.1
GHz with Nvidia Volta V100 GPU. Each compute node
has 2 CPU sockets, which have in total of 32 cores. Each
core can have up to 4 threads, bringing a total of 128 [11].
Although both OpenACC and OpenMP offloading can be
executed on AMD and Nvidia GPU, we consider only
Nvidia GPU here.

Figure 2 shows the technical hardware configuration of
IBM POWER AC922 with Nvidia GPU compute node.
The important perspective of this architecture is that two
GPUs are connected to each CPU socket, thus providing
a bandwidth of up to 150 GB/s between CPU and GPU.
Furthermore, Figure 3 shows the Nvidia Volta architecture
GPU that has 6 GPU Processing Cluster (GPC), and each
GPC has 14 Streaming Multiprocessors (SMs) with a total
of 80 SMs [12]. Nvidia V100 has 2688 double precision
cores running at a maximum speed of 1530 MHz [12].

IV. IMPLEMENTATION

This section focuses on the parallel implementations
of using OpenMP, OpenACC and OpenMP offloading
simulation for argon gas in oopd1.
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A. OpenMP

We have introduced the OpenMP directives wherever it
is needed. We have identified the parallelisation blocks,
where there is no data dependency and data race. This
ensures the correctness of the solution and parallelisa-
tion in oopd1. We have also introduced private and
shared to identify the variables and avoid computational
errors. Listing 1 shows the simple syntax of the OpenMP
implementation that we have used in the oopd1 code. We
have used the GNU compiler for the compilation.

Listing 1: OpenMP.
# pragma omp p a r a l l e l f o r
f o r ( i n t i =0 ; i <N; i ++)

{
/ / c o m p u t a t i o n
}

B. OpenACC

OpenACC is very similar to OpenMP, which is based
on the directive programming model. Where adding the
directive clauses above the loops will parallelise the
loop. Furthermore, OpenACC has three concepts; they
are incremental (original or existing code can be main-
tained), single source (some code can be executed on
different architecture), and low learning curve (easy to
learn). Listing 2 shows the pseudo-code implementation
and its output, where we can see that the loop is already
parallelised with 128 GPU threads. An acc will instruct
the compiler to execute the code block on the device, and
parallel will instruct the code block to be executed
in parallel on the device. Since the code has 1000 lines
and more than 100 files, we opted to use the unified
memory option in OpenACC. This option will take care
of the memory transfer wherever it is necessary. Even if
we do it with explicit memory allocation, we would not
expect to get a large difference in performance. There-
fore, we have enabled the unified memory option flag
-ta=tesla:managed during the compilation.

Listing 2: OpenACC.
# pragma acc p a r a l l e l l oo p
f o r ( i n t i =0 ; i <N; i ++)

{
/ / c o m p u t a t i o n
}

/*** c o m p i l a t i o n o u t p u t *** /
F i e l d s : : F i e l d s ( S p a t i a l R e g i o n * ) :

81 , G e n e r a t i n g NVIDIA GPU code
83 , # pragma acc l oop gang , v e c t o r ( 1 2 8 )
/ * b l o c k I d x . x t h r e a d I d x . x * /

OpenACC is supported by both commercial and open-
source compilers, such as HPE, Nvidia HPC SDK, GNU,
and OpenARC. However, we chose the Nvidia HPC
SDK compiler, and moreover, this is the only option we
got from the testing HPC platform. For compilation, we
used flags as follows nvc++ -fast -Minfo=accel
-ta=tesla:managed -acc.

C. OpenMP offloading

The OpenMP API standard started to support the
OpenMP offloading from 4.0, and thereafter the standard
included more advanced features to support the GPU [14].
Although OpenMP offloading is supported by many com-
pilers, such as AMD, GNU, HPE, IBM, and Intel, we use
the Nvidia HPC SDK compiler in this work [15]. Here
in OpenMP offloading, target will execute the code on
the device, teams will create teams of thread blocks, and
finally, distribute parallel will create a number
of threads to be executed in parallel on each thread blocks.
Listing 3 shows the pseudocode example used in the oopd1
code and the compilation output of how the device code
block is parallelised using the default thread block.

Listing 3: OpenMP offloading.
# pragma omp t a r g e t teams d i s t r i b u t e p a r a l l e l f o r
f o r ( i n t i =0 ; i <N; i ++)

{
/ / c o m p u t a t i o n
}

/*** c o m p i l a t i o n o u t p u t *** /
F i e l d s : : F i e l d s ( S p a t i a l R e g i o n * ) :
# pragma omp t a r g e t teams d i s t r i b u t e p a r a l l e l f o r

82 , G e n e r a t i n g " nvkerne l__ZN6Fie ldsC1EP13
S pa t i a l R e g i o n_ F 1 L 8 2 _ 2 " GPU k e r n e l
85 , Loop p a r a l l e l i z e d a c r o s s teams and
t h r e a d s ( 1 2 8 ) , s c h e d u l e ( s t a t i c )

We used the Nvidia HPC SDK compiler for compilation:
nvc++ -fast -mp=gpu -gpu=managed
-Minfo=mp,accel.

V. CODE OPTIMISATION

We have chosen the default thread blocks for both
OpenACC and OpenMP directive clauses; however, as a
programmer, we can also choose to set the threads blocks
in OpenACC and OpenMP to get maximum performance.
Table I shows how the CUDA terminologies thread
blocks, threads, and warps are interpreted in Ope-
nACC (for both kernels and parallel) and OpenMP
offloading. OpenACC offers two options for creating a
parallel code block, using kernels and parallel;
however, we have used parallel (explicit and creates
just one device kernel) for the entire oopd1 code [16]. Ac-
cording to OpenACC, kernels is safer (implicit and also
creates more device kernels) to use when a programmer
does not know much about data dependency [16], [17].
However, since we knew the data flow in oopd1, we have
used parallel.

Listing 4 shows how the loop can be optimised to use
more thread blocks within the parallel code block. As can
be seen in Listing 2, we do not know exactly how many
gangs will be created, and for each and every gang, we
will have up to 128 threads; this can be seen in Figure 4.
However, on the Nvidia device, threads in the thread
blocks are executed as warp, and each warp will have
up to 32 threads. Each thread block can be executed on
the GPU on the SMs; therefore, the equivalent amount of
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TABLE I: OpenACC and OpenMP offloading loop
mapping in terms of CUDA terminologies [19], [20].

CUDA
Terminologies

OpenACC
Kernels

OpenACC
Parallel

OpenMP
Offloading

Thread
Blocks gang num_gangs teams

Threads vector vector_length parallel
Warps worker num_workers simd

SMs with threads block will have maximum performance.
But this is only possible when we know the problem
size; otherwise, it is better to let the compiler choose the
default thread blocks for a specific problem. Furthermore,
GPU architecture is based on Single Instruction Multiple
Threads (SIMT) which execute the threads based on the
Single Instruction Multiple Data (SIMD), and it uses a set
of 32 threads (warp) [18]. So, warps of 32 threads will
be in a queue depending on the SMs resource available.
Figure 5 shows these phenomena, where each thread block
has just 32 threads and will be executed as one warp on
the SM.

Similarly, we have done it in OpenMP offloading as
well; that is, setting the thread blocks and the number
of threads on each thread block. Listing 5 shows the
num_teams and thread_limit; however, we do not see
this as a compiler output similar to OpenACC; perhaps
using the GNU compiler might give more information
for compilation output. We can also see the visualisation
phenomena in Figure 5, where threads are grouped as
warps and will be executed one by one. Moreover, Nvidia
Volta V100 GPU has 32 double-precision floating-point
cores (FP64).

Listing 4: OpenACC optimisation.
# pragma acc p a r a l l e l l oo p
num_gangs ( 3 2 ) v e c t o r _ l e n g t h ( 3 2 )
f o r ( i n t i =0 ; i <N; i ++)

{
/ / c o m p u t a t i o n
}

/*** c o m p i l a t i o n o u t p u t *** /
F i e l d s : : F i e l d s ( S p a t i a l R e g i o n * ) :

12 , G e n e r a t i n g NVIDIA GPU code
17 , # pragma acc l oop gang ( 3 2 ) , v e c t o r ( 3 2 )
/ * b l o c k I d x . x t h r e a d I d x . x * /

Listing 5: OpenMP offloading optimisation.
# pragma omp t a r g e t teams num_teams ( 3 2 )
d i s t r i b u t e p a r a l l e l f o r t h r e a d _ l i m i t ( 3 2 )
f o r ( i n t i =0 ; i <N; i ++)

{
/ / c o m p u t a t i o n
}

/*** c o m p i l a t i o n o u t p u t *** /
F i e l d s : : F i e l d s ( S p a t i a l R e g i o n * ) :

82 , #omp t a r g e t teams d i s t r i b u t e p a r a l l e l f o r
num_teams ( 3 2 ) t h r e a d _ l i m i t ( 3 2 )

82 , G e n e r a t i n g " nvkerne l__ZN6Fie ldsC1EP13
S pa t i a l R e g i o n _F 1 L 8 2 _ 2 " GPU k e r n e l
85 , Loop p a r a l l e l i z e d a c r o s s teams and
t h r e a d s ( 1 2 8 ) , s c h e d u l e ( s t a t i c )
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Fig. 4: Schematic workflow of OpenACC and OpenMP
offloading threads (default) on the device.
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Fig. 5: Schematic workflow of manually setting threads
on a device for OpenACC and OpenMP offloading.

VI. DISCUSSION

In oopd1, we have tried the argon gas model for testing
with 1000 iterations. Figure 6 shows the time difference
between serial and various parallel implementations. Since
our main goal is to offload the computational task to
GPU, we used all the threads(128) from the compute node
for the OpenMP version. As we can notice, OpenACC
and OpenMP offloading show similar behaviour and also
with optimized thread blocks of these two approaches.
This is mainly due to two reasons: the compiler already
chooses the optimised thread blocks for the given problem,
and the computational task within the device code is not
very intensive. However, this phenomenon might look
different where the device code needs lots of arithmetic
computations, that is, if each warp execution takes more
time. In that scenario choosing the thread blocks manually
would give little more performance benefit than choosing
the default thread block.

At the same time, the OpenMP version with 128 threads
does not compete with the other two options, OpenACC
and OpenMP offloading; this is mainly because the com-
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Fig. 6: Schematic workflow of OpenACC threads on the
device.

putational domain has more than 128 spatial domains
(spatial domain is discretised with 1001). Therefore, the
OpenMP version takes a little longer time to complete the
task compared to GPU (OpenACC and OpenMP offload-
ing). Because GPU (OpenACC and OpenMP offloading)
can have up to 1001 threads, these thread blocks can be
executed on the SMs on the GPU. In addition, V100 GPU
has up to 84 SMs [12], and each warp can be executed
on each SM and adding up to 32 SMs (total, we get 1024
threads (32*32)).

VII. CONCLUSION

We have ported the oopd1 code to GPU using OpenACC
and OpenMP offloading. We notice that both OpenACC
and OpenMP offloading show good speedup compared to
serial and OpenMP versions. Although optimised option
thread blocks for both OpenACC and OpenMP offloading
do not show any difference due to the problem (argon gas)
nature in oopd1; however, it was good to try this option
in oopd1 and notice the behaviour.

We would like to continue with MPI implementation
with GPUs in the future. At the same time, we also
want to study further OpenMP offloading on the AMD
GPU and, if possible, with various compilers for OpenMP
offloading. Moreover, we do not see any huge difference
between OpenACC and OpenMP offloading; therefore, in
the future, we would like to focus on OpenMP offloading,
considering the code can be easily run on both Nvidia
and AMD GPUs. Finally, we would also like to try
various physics parameters in oopd1 and check if the
code can be further optimised for the GPU (including
heterogeneous computing). From this work, we believe
that in the future, a directive-based programming model
for the device would completely eliminate the rewriting
of any existing scientific code for GPU.
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