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Abstract—Coastal and Regional Ocean COmmunity
model (CROCO) is a modeling system used in oceanographic
simulations. CROCO solves primitive hydrodynamic equa-
tions for momentum, heat and mass transport on a three
dimensional, terrain following grid. Several biogeochemical
models are already implemented in CROCO, including the
PISCES model, which it borrows from NEMO, a different
oceanography modeling system. While PISCES is a highly
complex model, used in many oceanographic applications,
it lacks variable stoichiometry and some plankton func-
tional types needed in certain applications. On the other
hand, Biogeochemical Flux Model (BFM) is a dedicated
biogeochemistry modeling system, customizable and of user-
defined complexity. It can be run as a standalone model or
in conjunction with an oceanographic simulation. Previously
we have reported on our work regarding the incorpora-
tion of BFM into CROCO. In this work we address the
performance aspects of this coupling. Namely, compared
to e.g. PISCES, BFM is a much more complex model
with more tracers, which makes it more computationally
expensive. It is therefore of the essence to investigate, and
to highlight possible areas of improvement in this coupling’s
computational performance.
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I. INTRODUCTION

Coupling specialist models with each other is im-
portant, as it merges different branches of ocean sci-
ence. Often circulation models are coupled with marine
biogeochemical models [1]-[4]. The circulation models
bring the spatial aspect into biogeochemical calculations,
while on the other hand, the biogecohemical models can
provide spatialy and temporally variable light absorption
which influences the temperature profile in the circulation
models [5]. Although some circulation models come
prepackaged with some of the biogeochemical models [6],
[7], comprehensive studies may sometimes require the use
of a specialist model such as the Biogeochemical Flux
Model (BFM) [8]. The biogeochemical models that come
coupled with the oceanographic models, can serve as a
template on how to implement a different biogeochemical
model in the existing code.

CROCO is an oceanographic model, which incorpo-
rates momentum, mass (tracer), and heat transport [6].
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CROCO code includes coupling with several biogeochem-
ical models and the most sophisticated among these is
PISCES biogeochemical model. The latter was originally
coupled with NEMO oceanographic model [7]. Although
PISCES is widely used in biogeochemical simulations,
we have decided that our needs would be better served
with BFM. The latter was chosen because it allows for
variable stoichiometry (nutrient ratios in living functional
groups — LFQG), because the addition of new LFGs is rel-
atively straightforward, and because the BFM is the model
of choice in Copernicus Mediterranean biogeochemical
forecasts and reanalyses, which will provide the boundary
conditions in simulations.

In this work we present some aspects of our coupling
of CROCO and BFM. First we briefly introduce both
modeling environments, and proceed to highlight some
key aspects of the coupling. The main focus of the paper
is the assessment of the computational performance of this
coupling, as compared to the original CROCO-PISCES
model. We then additionally briefly explore the accuracy
of a performance enhancing solution, and discuss possible
areas of improvement for the current state the coupled
codes.

II. CROCO

CROCO is a branch of the widely used Regional
Ocean Modeling System (ROMS) [9], with an additional
non-hydrostatic core and several other features including
an extensive MATLAB toolbox for model configuration
and results analysis [10]. Although written in Fortran,
CROCO’s design enables the user to toggle between
different model complexities through C-preprocessor by
defining or undefining its components at compilation [11].
In its essence CROCO solves primitive transport equa-
tions. Besides the oceanographic physics, it also enables
the user to employ the included biogeochemical mod-
els. This is done by introducing tracer variables which
represent the concentrations of biochemical components
in the ocean. By enabling ocean biology, the user may
further make their pick of biology-dynamics model of
varying complexity (5-24 tracer components). The most
sophisticated of the pre-included models is PISCES with
24 tracer variables. PISCES is borrowed from a different
oceanographic model — NEMO [7].
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III. BFM

BFM is an independently developed biogeochemical
model [8]. It allows the user to specify its complexity,
first at build time, and also at run time. The complexity
involves the choice to compute pelagic, and benthic
variables, to include sea ice effects, etc. By varying the
complexity, the user not only chooses the amount of tracer
variables that are used in computations, but also how and
to what degree these variables interact with each other.
When building BFM the user can pick one of the preset
configurations or they can create their own configuration.
In this study the “PELAGOS2” preset was used, as it is
appropriate for use in coupled models.

IV. COUPLING

For the purpose of this research CROCO 1.1, and BFM
5.2.0 were used. BFM was previously successfully cou-
pled with NEMO [7]. Therefore PISCES is a common link
between CROCO and BFM. PISCES’ implementation in
CROCO, as well as BFM’s implementation in NEMO
were both used as blueprints for coupling of BFM and
CROCO. BFM’s coupling with NEMO is achieved by
almost completely rewriting NEMO’s Tracers in Ocean
Paradigm (TOP) component. All of this was not necessary
in CROCO, as CROCO has its own subroutines for tracer
transport. However, BFM’s coupling with NEMO was
instrumental to understanding the initiation processes, as
well as main BFM tracer dynamics calls.

BFM’s “PELAGOS?2” preset introduces 58 tracer vari-
ables. These tracers are then initialized in CROCO’s
init_arrays subroutine. Tracers’ initial values can
either be obtained from input NetCDF files or from
analytical initialization through ana_initial subrou-
tine, both of which are taken care of by CROCO. An-
alytical boundary condition settings need to be manip-
ulated in the coupled source code. The main program
then calls a BFM subroutine bfm_ini_tile which
initializes the appropriate BFM arrays and parameters,
including reading the BFM namelist files, and initializing
the parameters found therein. Also in this step, masks
for 3D-to-1D and vice versa array transformations are
built. An additional call is made to the trc_sbc_bfm
subroutine, which reads the input files and initializes
the surface boundary conditions, such as irradiation, and
dust deposition. The latter subroutine has been mostly
rewritten by following the preexisting PISCES’ subroutine
trc_sbc_pisces’s example. During timestepping in
the main program, the 3D tracer arrays are updated
via the step3d_t subroutine, which also includes a
biology update (by calling biology_tile). Therein
the main BFM call is made. CROCQO’s 3D tracer ar-
rays (t) are transformed to BFM’s 1D tracer arrays
(D3STATE). These are then passed to BFM’s main sub-
routines (trc_bfm) to calculate their respective mass
fluxes. BFM’s tracer arrays are then updated with these
mass fluxes through Euler’s method. Finally the values
from BFM’s diagnostic arrays, as well as tracer arrays,
are copied back to CROCO’s arrays. The output is done
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entirely through CROCQO’s subroutines, as BFM’s output
was disabled, with the exception of a BFM’s separate log
file. Some of the key communications between different
subroutines of the two codes, are laid out in Fig. 1.

CROCO BFM

main

init arrays
including BFM
tracers

bfm ini tile

trc_sbc _bfm
main loop
step3d_t
biology tile Y
t - D3STATE trc_bfm
- EcologyDynamics
D3STATE - t

Figure 1. A schematic illustrating some of the key communications made
between the two codes.

V. TEST CASE

The CROCO-BFM coupled model was verified by
comparing it to the coupling of MITgcm and BFM [2].
A test case was designed where a wind-induced gyre is
formed within a closed square oceanic pool: 41.0°N —
43.0°N, -20.5°E - -17.5°E, with even 280 m depth. The
grid dimensions were 95 x 86 x 32. Model verification
is not the purpose of this study, and these results were
presented previously [12]. While conducting these tests,
however, very slow performance of the coupled model
was observed.

Consequently, to mitigate the slowdown by BFM, the
biology call can be made only every n iterations, an
approach also explored in [2]. The biological processes
are expected to be slower than tracer physics which
justifies the longer biology time step. Thus the test
case is set up to simulate roughly 14 days of oceanic
circulation (2000 time steps of 600 s) and biology in
separate runs with PISCES, and BFM. In the PISCES
run the biology call is made on every update, whereas in
BFM runs it is made every n updates, n € [1,8] N N.
The PISCES run serves merely as an example of what
“optimal” computation times could be, and BFM runs are
compared to the n = 1 run to check for possible accuracy
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concerns when decreasing the biology update frequency.
To measure the accuracy of n € [2,8] N N solutions the
normalized ¢2—norm is calculated as follows:

2 _ 1 > (eri = ni)’
¢ —norm(cy,) = max(cl)\/ N C (D
n € (2,8 NN,

where ¢, ; represents the tracer concentration for solution
n at i-th node, and NV is the total number of discrete grid
nodes.

VI. RESULTS AND DISCUSSION

The results presented in this section were obtained
by running the test case on a laptop PC equipped with
AMD Ryzen 7 6800HS CPU, and 40 GB DDRS5 RAM.
Although the computational performance of the code can
be significantly improved by running it in parallel mode
(MPI), these tests were performed in single-core mode to
better highlight the execution time ratios of the biology vs
tracer physics step. Some aspects of the speed-up achieved
through parallel execution were presented in [12].

First we present a profile break-down of the
step3d_t subroutine, which lays out the total time
spent at a certain part of the aforementioned subroutine.
Results are given in Fig. 2, and Table 1.

6000 1 Physics

Biology preprocessing
Other BFM
EcologyDynamics call

5000 -

Total time in subroutine call [s]

BFM 1 BFM 2 BFM 3 BFM 4 BFM 5 BFM 6 BFM 7 BFM 8 PISCES

3

Figure 2. Total time spent on different subroutines. “Physics” refers
to the step3d_t subroutine, excluding the biology update; “Biology
preprocessing” refers to the transformation of t to D3STATE, and vice
versa, and in PISCES’s case the full biology update; “Other BFM” are
diverse BFM calls; “EcologyDynamics call” is the main BFM call to
EcologyDynamics. The number following “BFM” is indicating the
period of biology update in time steps, n.

The slight deviation in average times between the cases,
presented in Table I, are due to the PC not having locked
frequencies, and the computations were being carried
out, while the PC was used for other tasks as well.
However, for the purpose of this study, the quality of
these data should be sufficient, as expected trends are
shown. Some performance hits of BFM compared to
PISCES can be expected as the number of tracers used
in the simulation is more than doubled (58 as opposed
to 24). Consequently the average execution time of the
tracer physics part of step3d_t subroutine increases
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from 0.33 s to 0.70 s. Therefore, equal execution time
for BFM and PISCES cannot be expected. However,
the average biology_tile call goes from 0.32 s
for PISCES to 2.34 s for BFM, which is about 7-
times slower. With BFM being a more complex model,
some degree of slowdown is expected here as well, but
this result seems excessive. The transformation between
BFM’s 1D and CROCO’s 3D arrays appears to be the
weak point of our coupling’s current implementation, as
it takes about 20% of biology_tile call time on
average, and more work should be dedicated to allevi-
ate this issue. Fortran supports vector remapping, which
could be a solution here. In this case t (of CROCO)
should be declared as target, and D3STATE (of BFM)
as pointer. However, the issue is that t is structured
as (positional id, species), and D3STATE as
(species, positional id), which prevents the
use of the proposed solution. As Fortran arrays are stored
in memory in column-major order, this means that values
of t for the same tracer species at different coordinates are
stored close to each other. This is optimal for computing
mass transport — the main goal of CROCO. In D3STATE
different species at the same coordinate are stored close,
which is optimal for computing interplay of these species
— the main goal of BFM. Thus to solve the issue of
restructuring the basic tracers’ data structures on every
biology call, the BFM code would need to be rewritten.
All instances of D3STATE, and other arrays that it inter-
acts with, would need to be changed to (positional
id, species), and this may bring upon a performance
hit in the EcologyDynamics call. By increasing n (the
period of biology update in time steps) the total time spent
computing biology is brought down significantly, which
is shown in Fig. 2. If one’s aim was to make the time
computing biology about equal to the time computing
tracer physics (as is the case in PISCES), n should be
between 3, and 4. At n = 8 the total time spent computing
biology is even lower for BEM than for PISCES, which
is expected, as, as it was mentioned above, BFM is about
7-times slower than PISCES. How the value of n affects
the results accuracy is presented in Fig. 3.

Some data in Fig. 3 appear distorted, because the output
was done every 10 time steps. Consequently, a tracer’s
concentration may not have been updated at a certain
output and the deviation from n = 1 solution may be
greater than at an output when the concentration was
updated. Thus n = 2, and n = 5 lines appear smooth,
as 2 and 5 are divisors of 10. Some tracers are more
affected by increasing n than others. Out of 58 those,
which suffer from accuracy issues the most, are presented
in Fig. 3. These are the concetrations of: N1p - phosphate;
N4n - ammonium; Plc - carbon in diatoms; P3c - carbon
in picophytoplakton; Rlc - carbon in labile dissolved
organic matter; R6c - carbon in particulate organic matter;
ZAc - carbon in omnivorous mesozooplankton; Z5c -
carbon in microzooplankton. As one would expect the
deviation from n = 1 solution increases with increasing
n, which effectively increases the time interval in Euler’s
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Figure 3. The discrepancy of tracer concentrations for different biology update frequencies. A case where biology is solved on every time step
(n = 1) is the base result, to which we compare the dimensionless £2-norm of other cases. Displayed are only the tracers where the £2-norm exceeds
0.01. The labels represent the concentrations of the following species: N1p - phosphate; N4n - ammonium; Plc - diatoms; P3c - picophytoplakton;
Rlc - labile dissolved organic matter; R6c - particulate organic matter; Z4c - omnivorous mesozooplankton; Z5c¢ - microzooplankton. The label
numbers represent the biology update period in expressed in time steps (n).
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TABLE I. AVERAGE AND TOTAL TIME SPENT COMPUTING TRACER PHYSICS AND BIOLOGY IN STEP3D_T.

Case Average tracer physics time [s] | Average biology time [s] | Total tracer physics time [s] | Total biology time [s]

BFM (n = 1) 0.69 2.27 1388 4538
BFM (n = 2) 0.71 2.22 1418 2220
BFM (n = 3) 0.69 2.46 1373 1639
BFM (n = 4) 0.71 2.31 1430 1156
BFM (n = 5) 0.70 2.30 1398 923
BFM (n = 6) 0.69 2.48 1378 829
BFM (n =T7) 0.70 2.36 1392 676
BFM (n = 8) 0.71 2.30 1421 578

PISCES 0.33 0.32 661 641

integration. However, these deviations can be over 40%
(N4n, R6c, when n = 8). Although the computational
performance is increased, there can be a significant impact
on accuracy, and in going forward a balance between
the two should be found. Implementing a different time-

performing the biology update at a lower frequency, i.e
every n—th step. In doing so, one can achieve satisfactory
performance results, but there is noticeable penalty to the
accuracy. Our tests show that n = 3 or n = 4 produce
good results in test case conditions, while keeping the
slowdown at a reasonable amount. The effects of the

integration scheme, such as 2" order Euler method, or
even 4" order Runge-Kutta may improve the integration
accuracy, but would inherently increase the amount of
EcologyDynmaics calls in a given time step, effec-
tively further slowing down the computation. Specifically
for the presented case, n = 3 or n = 4 seem like a
good compromise, as at these n the total biology time
is about the same, as total tracer physics time, and the
deviation from the n = 1 solution is not so big. However,
one should note that this computations were done in the
period of vigorous model dynamics due to the adaptation
to the initial conditions. After the initial growth, many
discrepancies start to fall as the model reaches a more
stable state. It would perhaps be interesting to explore
the possibility of an adaptive biology update period, as
in oceanographic computations not all of the nodes are
equally biologically active.

VII. CONCLUSION

Performance aspects of the CROCO-BFM coupling
were presented, i.e. the computational performance, a pos-
sible measure to improve the latter, and a brief numerical
accuracy analysis of these measures. We have considered
a small-scale closed basin as a test case, solving it for
approximately 14 days of simulated time. The coupled
model performs significantly slower than the reference
model, which is CROCO with PISCES biology. One
reason behind slower performance is BFM simulating 58
tracers vs PISCES’ 24. This results in longer computation
times for both tracer physics, and biology. However,
while the tracer physics computation time merely dou-
bles, the biology computation time increases sevenfold.
Some of these issues come from having to transform
between CROCQO’s, and BFM’s data structures in their
communication, but there is no simple solution to this
problem. The issue of poor performance can be solved by
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biology call on reduction of accuracy in large-scale simu-
lations, as well as for longer time periods, have not been
explored in this study.
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