
Graphical user interface to perform glacier
simulations with PISM

M. Urbanč∗, M. Depolli∗
∗ Jožef Stefan Institute/E6, Ljubljana, Slovenia

urbancmarko1@gmail.com

Abstract—Computer simulations of glacial dynamics help
us understand how glaciers respond to changes in climate,
such as warming temperatures and increased precipitation.
Simulations are performed with PISM (Parallel Ice Sheet
Model). To tackle the complexities of ice dynamics, PISM
employs several sub-models for various aspects and thus
exposes a plethora of parameters. There are also several
options for setting parameter values, i.e. through config files,
command line options or input files. To get a good handle
on all the provided buttons and knobs, we developed a user
interface for setting parameters of out simulations and for
executing PISM with the selected set of parameters on a
remote workstation.

In this paper we present the GUI developed in Jupyter
and deployed in a local JupyterLab installation. The envi-
ronment contains DEM files, Python scripts and other inputs
locally but connects to a 128-core workstation for simulation
execution. The simulation inputs and outputs are transferred
between the computers over an SSH connection. The GUI is
publicly exposed in a single-user environment, only for use,
while development is performed on a git repository which is
then synchronized to the public through git. This approach
is general enough to be used on other software as well.

Keywords—PISM, glacier simulations, user interface,
jupyter, distributed execution, remote management

I. INTRODUCTION

A. Motivation

PISM (Parallel Ice Sheet Model) [1], [2] is a complex
simulation tool that can be used in wide range of applica-
tions that require simulation of ice sheets or glaciers. Per-
forming glacier dynamics simulations is far from trivial,
PISM is designed to executed primarily through scripts;
even the tutorial available in the official documentation
presents it through scripts. A scripting approach makes
in silico experiments highly reproducible, since the whole
experiment can be defined by a script, and the script can be
archived. However, handling multiple geographical areas
of interest and multiple modelling choices eventually leads
the relatively simple execution scripts to evolve into a
complex ecosystem of scripts. Such an ecosystem is diffi-
cult to manage and presents a formidable barrier for new
researchers that are assigned to such an experimentation
task.

Within our research, we found that our typical workflow
for conducting in silico experiments on glaciers can be
defined as follows.

• Select the geographical area to perform the exper-
iment on from a predefined set of options. The

geographical area uniquely defines a set of variables:
the DEM (Digital Elevation Map), climatological data
and expected glaciation extent.

• Select other PISM modelling parameters and param-
eters of the custom climatological models to fully
define the experiments.

• Format all the inputs appropriately for the use in
PISM.

• Execute PISM, either locally or on a remote work-
station. In the latter case, communicate the input and
output files between the local and remote machines.

• Analyze PISM outputs to evaluate the experiment.
Some of the analysis can be fully automated while
some is done interactively or on demand.

To aid in executing the workflow swiftly, correctly,
and with repeatable results, we avoided scripts and rather
designed a graphical user interface (GUI) for the ex-
perimenter. It is written in a combination of Python,
Jupyter notebooks, and helper bash scripts. The presented
approach could be viewed as an extension of the scripting
approach with the majority of functionality migrated from
bash to Python and from command line arguments to
graphical elements. Python has been chosen because of its
flexibility and capability of implementing complementary
models to those included in the PISM itself. The visualiza-
tion is implemented in Jupyter notebooks [3], [4] for ease
of use and beauty of presentation. The workflow based
on these two parts of GUI is presented in Figure 1. The
presented approach was very successful within the context
it was created for and it seems to be general enough
to be applied more broadly. Therefore we present it as
a concept that could be copied by researchers facing a
different complex simulation software.

In this paper we focus only on the main GUI
part/Jupyter notebook which is responsible for parameter
setup, execution with execution monitoring, and some
automated result analysis.

B. Abbreviations and Acronyms

Abbreviations Definitions
PISM Parallel Ice Sheet Model
DEM Digital Elevation Map
JSON JavaScript Object Notation
MPI Message Passing Interface

MIPRO 2023/DS-BE 343

Experiment GUI

Interactive
analysis of
results

Execute PISM

External models:
- surface
 temperature,
- precipitation

PISM inputs

User setup

PISM outputs

Resulting
analysis

Problem-related
input data:
- DEM,
- climatological
 data,
- model
 parameters
- extent
 estimates

Fig. 1: The workflow of experimentation using the presented GUI. The user is aided by a selection of supported
experimental parameters – the relevant subset of the PISM functionality. Several models are also implemented as

Python modules and are seamlessly integrated in PISM execution.

II. METHODS

A. Hardware system

There are three different computers involved in the
workflow. One is the experimenter’s personal computer,
on which they physically work and on which they interact
with the GUI.

Second is the Jupyter server that serves the web pre-
sentation of Jupyter notebooks and executes their code
locally. Note that the Python processing required for the
custom (external to PISM) models are executed here.
Communication with the user is done through the web
server service that runs on the same computer.

Third is what we shall call the PISM execution server,
but could in reality be a whole cluster of computers.
PISM execution server is a number crunching system that
only executes PISM as per the input arguments given.
It communicates with the web server through the SSH
protocol. Internal communication between the multiple
workstations of this server is handled by MPI – a platform
for distributed computing often used in scientific contexts.

B. Software system

Jupyter notebooks are documents produced by the
Jupyter Notebook App. They contain both computer code
(in our case Python) and rich text elements, organised in so
called cells. Notebook documents are meant to be human-
readable as well as executable. Each cell has a type -
executable or rich text and can be executed or rendered
on its own. A cell is executed by its kernel which is
the “computational engine“ that executes code contained
within a notebook document. For example the ipython
kernel [5] executes Python code and markdown kernel [6]
renders rich text cells. Kernels for many other languages
also exist. Cells typically contain analysis descriptions,
analysis code and results (figures, tables, multimedia). The
Jupyter Notebook App is a server-client application which
allows editing and running notebook documents via a web
browser. It can be executed on a local desktop where it
is hosted locally or it can be installed on a remote server
and accessed through the internet.

Several Jupyter notebooks are used to present the GUI
to the user, with the central one designed to perform the

344 MIPRO 2023/DS-BE

majority of tasks: setting of the parameters, selection of
the host workstation for PISM execution, submission of a
job for execution, monitoring of execution, performance
of automated analysis and presentation of the results to
the user. A further set of Jupyter notebooks is used for
development and testing of additional models, and for
interactive or specialist analysis of simulation results.

To keep the interface of Jupyter notebooks clean, the
majority of its source code is organised into Python source
files. In addition, several Python scripts are provided that
are able to bypass the GUI and allow the execution of pre-
prepared experiments from the console. The main use case
of such scripts is the execution of parameter sweeps for
parameter studies, which require simulation of multiple
experiments and an automated analysis of results. For
these scripts, the experiments are also designed in the
aforementioned GUI, however, their setups are stored in a
JSON (JavaScript Object Notation) [7], [8] files. Python
scripts read the experiment setup from JSON files, but are
also able to modify several parameter values on their own,
e.g. a parameter sweep script generates experiments from
an experiment setup, a set of parameters and a set of values
for each of the parameters.

For the GUI we leverage the high level interface el-
ements from Jupyter Widgets [9] – interactive browser
controls for Jupyter notebooks, which can be added to
Jupyter as a Python package. The framework has two
components; a package in the kernel which provides
an interface for the widgets and an extension for the
browser Jupyter frontend to manage Jupyter Widgets. The
ipywidgets package provides Jupyter Widgets for the
ipython kernel. Installing ipywidgets automatically in-
stalls extensions for JupyterLab and Jupyter Notebook (the
jupyterlab-widgets and widgetsnbextension
packages). The package provides a basic and lightweight
set of core form controls that use this framework. These
include but are not limited to: text area, select/multiselect
controls, sliders etc.

Lastly, several bash scripts are used for file synchro-
nization and PISM execution. These are generated from
templates by the Python code when PISM execution is
requested, either from GUI or from scripts. When execut-
ing PISM, bash scripts redirect PISM standard outputs to
temporary files and to the Python monitoring functions,
providing the option of limiting PISM execution time
and handling external signals to terminate execution if so
requested by the user.

C. Remote PISM execution

The first panel (Execution host settings, shown in Fig 2)
of the GUI is responsible for configuring the remote com-
pute node’s parameters. For ease of use and convenience
the user can save to, and load the parameters from JSON
files. The interface has built-in tests which check for a
working SSH connection, a working PISM executable on
the remote host and the existence of the specified working
directory.

Fig. 2: Execution host settings presented on the GUI.

Fig. 3: Experiment settings presented on the GUI.

After passing the built-in tests the user moves onto the
second panel (Experiment settings) of the GUI. Here lie
the meat and potatoes of the interface. As before, the user
can conveniently load or save configuration settings from
JSON files. There are a plethora of parameters that can be
set here, an example is shown in Fig 3.

Once the experiment parameters have been set, the
interface creates the necessary input files for PISM. To
verify the set parameters, some of the more important
model inputs are plotted; see Fig 4. Then a cell can
be executed that causes the interface to connect to the
configured compute node via SSH. It first copies input files
to the compute node, then iteratively copies and executes
the bash scripts (as the simulation is often comprised of

MIPRO 2023/DS-BE 345

several consecutive PISM executions). Finally a script is
executed to copy the results from the execution server
back to the experimenter’s personal computer (where the
Jupyter notebook is open).

After the output files are available on the experimenter’s
personal computer, they can be analysed. The Notebook
with GUI provides some automated analysis that can be
modified according to one’s needs. An example of the
visualization that follows the analysis is shown in Fig 5.
Researchers can quickly overview the plotted results of
simulations and decide whether the experimentation is
progressing well and plan further experiments accordingly.

Each PISM execution requires the use of two scripts to
enable all the code required for setting up PISM, including
a timeout and handles for user-requested termination. The
timeout is responsible for gracefully stopping the process
if it were to take longer than allowed by the user. Note that
the results of the incomplete simulation are nevertheless
stored and can be useful to the user. After their operation,
bash scripts are deleted. During the simulation the user is
presented with progress indicators, as shown in Fig 6.

D. Test deployment

The presented GUI was developed iteratively. In the
first iteration, the GUI was designed, developed and used
only locally on a the main developer’s personal computer.
This was sufficient and also very efficient since only one
person was working on it. In the second iteration, as of the
time of writing this article, the GUI was made available
for demonstration to other researchers from the areas of
computer science and geography. At this stage, in a form
of a demonstration of functionality, it is best served as
a single user environment to avoid the overhead of user
registration. Note that multiple users can nevertheless work
with the notebooks at the same time, but cannot store their
changes which would be a cause of race conditions. In
its final stage, it will be migrated to a multi-user Jupyter
environment, assisted with version control.

The test deployment consists of two computer worksta-
tions: a Jupyter node and a compute node. Ubuntu Server
22.04 was used on both machines. Installation on the
compute node includes Spack [10] and PISM. Spack is
a package management tool designed to support multiple
versions and configurations of software on a wide variety
of platforms. It was designed with large super computing
centers in mind. It makes PISM’s install a whole lot easier
at the cost that it contains an outdated version of PISM
in their repositories. This could of course change in the
future. For our purposes this older version was fine.

On the Jupyter node, JupyterLab is installed within
Docker. This gives us the advantages of repeatability
and ease of deployment as Docker containers are easy to
work with while they provide a predictable environment
and a user-defined level of isolation between applica-
tions. Since the presented GUI has package dependencies
we’ve created a custom Docker image using a Dockerfile
based on the Jupyter Datascience Notebook. The required

Ubuntu packages to run the GUI are: libgdal-dev,
gdal-bin, python3-dev, build-essential and
rsync.

Python dependencies are also installed via the
Dockerfile so that they are permanent and persistent
even if the Docker container is restarted (e.g. through
docker-compose down). Installing additional
packages is possible with pip install ... from
inside the container but the installations will not persist.
The required Python dependencies are: ipywidgets,
netCDF4, numpy, matplotlib, scipy, shapely,
pyproj and gdal. Some of these are already provided
by the Jupyter Datascience Notebook source image but
are listed here for the sake of completeness. It is crucial
that gdal from pip and apt are of the same version.

All the required code for the GUI is stored on the
Jupyter node in the form of a git repository. This
repository is setup as read-only for the Docker container
because it is not meant to be modified inside it. This test
deployment is configured to be synchronized with a central
code repository through git. The repository is mounted
into the Jupyter Docker container as a Docker volume at
path /home/jovyan/work/, which is hard-coded into
the official Jupyter Datascience Notebook Docker image.

Additionaly we also mount the ssh_config and key
files to their appropriate locations to enable Jupyter node
connect to the compute node with non-interactive SSH
sessions. In our environment an additional hop through
a middle-man node was required due to our network
configuration.

E. Development

The intention is that the GUI maintainer develops the
GUI locally on his computer. The maintainer runs the same
Jupyter notebook along with some helper notebooks that
are development oriented. Changes are then synchronized
across to the Jupyter node via git and the GUI is updated.

III. RESULTS

In this section, we shall list several features that we
found invaluable during the development and use of the
proposed GUI. Then we list the positive and negative
aspects of the developed system.

A useful feature of PISM is its ability to stop the
simulation at any time and force its unfinished result to be
stored for inspection. We used this feature to implement
a time limit for simulations, which we found to be very
useful for experimenting with parameters. On a related
note, the ability to monitor the ongoing simulation is
important to experimenters and while we did implement
it through Jupyter supported widgets, there is room for
improvement over our approach. Using the PyQt frame-
work could be one betterment of our approach as PyQt
gives the GUI the flexibility to take on what ever form is
needed, all the while not being limited by the selection of
widgets in Jupyter. This all comes at a great cost though

346 MIPRO 2023/DS-BE

Fig. 4: An example of the overview of experiment settings, which the user can verify to match their desired settings
before confirming to execute the experiment.

Fig. 5: An example of the visualization presented to the user as an experiment completes.

Fig. 6: While a simulation is in progress, GUI visualizes
its progress to the user.

as development of a GUI in PyQt is much more complex
and time consuming than using Jupyter widgets.

The most notable positive aspects of providing a custom
interface towards PISM are listed below.

• Experiments are reproducible from a minimal set of
input parameters.

• Experiment can comprise of an arbitrary number
of consecutive PISM executions, e.g. to improve
execution speed, multigrid simulations are often used,

which are presented as multiple PISM calls with
careful handling of input/output files and modifying
command line arguments between the consecutive
calls.

• Experiments do not need to be executed locally,
workstations with ample computational power can
be used instead of user’s laptops or PCs. This in
turn enables one to design and execute experiments
that run for several days due to their computational
complexity.

• The presented environment is easy to learn for new-
comers.

• The presented environment is fully extensible, since
it primarily comprises of Python scripts and Python
code within Jupyter notebooks.

• GUI is straight-forward to develop since all the
required Python widgets are supported by the frame-
work. All the required input arguments of PISM
were converted into widget-based inputs, by a fast
and efficient development process, facilitated by the
simplicity of widgets. Note that the simplicity of

MIPRO 2023/DS-BE 347

widgets can be a two-edged sword if a more complex
interface is required.

The presented GUI also has its set of problems.

• Execution is slow, for example, rendering the Exper-
iment setup cell can take 10 seconds.

• Working with the Jupyter-based GUI is not the most
intuitive. Selected parameters in a cell that renders
the GUI are not immediately available – another cell
with the code for collecting the parameter values must
be executed, to make them available to the rest of the
notebook. Moreover, while any cell of the notebook
is being executed, input widgets from all the cells are
not responsive.

• The GUI is limited by the visual elements provided
by the ipywidgets library. Storing and loading settings
from a file, for example, is a user-created widget
and is not as responsive as the first-time users might
expect from it.

• Multi-user support is only partial on PISM execution
server. Multiple users could, for example, run simula-
tions concurrently and inadvertently write over other
user’s input or output files. Multiple concurrent users
could also overload the server, since there is no load-
balancing implemented, nor are users aware of the
existing load of the PISM execution server.

• Only a subset of PISM options is supported by the
GUI – those that were used within our experiments
so far.

• The GUI is tightly decoupled to the PISM simula-
tions, therefore, Jupyter notebook must be kept open
for the duration of the simulations, or the results will
be lost. Therefore, running complex experiments that
take hours or days to complete is unrealistic in GUI.

There is room for improvement in the deployment too.
We had learned of several quirks while working on the
test deployment. Multi-user support could be bettered by
running Jupyter notebooks in an instance of JupyterHub
instead of just JupyterLab, which will be attempted in the
next phase of development.

A. Generalization

Given the flexibility of Python, Jupyter and especially
Jupyter widgets our approach is general enough that it
could be applied to other software as well. The condition
is, that such other software supports either command-line
or configuration file interface – there is no sense in creating
another graphical interface if one already exists. We also
see no hurdles in implementing execution on a remote host
over an SSH connection for other software. The interactive
part of the proposed GUI implementation is not great
though (slow and with limited interface), and the source
code that implements it is notably more complex than the

rest. Therefore, we would not recommend our approach
where real-time user interaction is required or where user
interaction is complex, e.g. selection of a region on a plot,
3D rotation of plots, interaction with sound or animation.

IV. CONCLUSIONS

We present an attempt at making the interface towards a
complex simulation software more manageable for exper-
imenters and easier to learn for new users. The presented
approach separates user interface from the simulation
software and is even able to put it on another computer
entirely. Currently, the presented GUI is meant to be
only used online with the editing disabled. All the GUI
development is performed on personal computers with
Jupyter locally installed and is propagated to the web
through git. There are ongoing efforts to make GUI and
the external models also editable from the web interface.
Although the presented GUI serves to handle PISM, the
approach is general enough to be used on other software
as well.

ACKNOWLEDGMENT

This work was funded by the Slovenian Research
Agency, research core funding No. P2-0095 and project
funding No. J1-2479.

REFERENCES

[1] E. Bueler and J. Brown, “Shallow shelf approximation as a
"sliding law" in a thermodynamically coupled ice sheet model,”
J. Geophys. Res., vol. 114, p. F03008, 2009. [Online]. Available:
https://doi.org/10.1029/2008JF001179

[2] R. Winkelmann, M. A. Martin, M. Haseloff, T. Albrecht,
E. Bueler, C. Khroulev, and A. Levermann, “The potsdam
parallel ice sheet model (pism-pik) part 1: Model description,”
The Cryosphere, vol. 5, pp. 715–726, 2011. [Online]. Available:
https://doi.org/10.5194/tc-5-715-2011

[3] T. Kluyver and B. R.-K. et al., “Jupyter notebooks – a publishing
format for reproducible computational workflows,” in Positioning
and Power in Academic Publishing: Players, Agents and Agendas,
F. Loizides and B. Schmidt, Eds. IOS Press, 2016, pp. 87 – 90.

[4] J. M. Perkel, “Why jupyter is data scientists’ computational note-
book of choice,” Nature, vol. 563, no. 7732, pp. 145–147, 2018.

[5] F. Pérez and B. E. Granger, “Ipython: a system for interactive
scientific computing,” Computing in Science & Engineering, vol. 9,
no. 3, 2007.

[6] J. Allaire, J. Horner, V. Marti, and N. Porte, “The markdown
package: Markdown rendering for r,” 2014.

[7] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foun-
dations of json schema,” in Proceedings of the 25th international
conference on World Wide Web, 2016, pp. 263–273.

[8] T. Bray, “The javascript object notation (json) data interchange
format,” Tech. Rep., 2014.

[9] J.-W. maintainers, “Jupyter-widgets/ipywidgets: Interactive widgets
for the jupyter notebook.” [Online]. Available: https://github.com/
jupyter-widgets/ipywidgets

[10] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody,
B. R. de Supinski, and W. S. Futral, “The Spack Package Manager:
Bringing order to HPC software chaos,” in Supercomputing 2015
(SC’15), Austin, Texas, November 15-20 2015. [Online]. Available:
http://tgamblin.github.io/pubs/spack-sc15.pdf

348 MIPRO 2023/DS-BE

