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Abstract—This paper describes a fuel blending algorithm
based on artificial intelligence and model predictive control.
A gas-fired power plant was modeled using physical laws
and on-site measurements. A neural network is used to
calculate the methane number of the fuel and determine
the fuel blending ratio limits so that the methane number
is within the limits specified by the engine manufacturer. A
model predictive controller adjusts the final blending ratio to
meet safety requirements and minimize operating costs. The
algorithm was tested in simulations with different scenarios
and a reduction in both the operating costs and amount of
flaring was observed.

Keywords—fuel blending, methane number, neural net-
work, model predictive control, flare mitigation

I. INTRODUCTION

Flares are important safety devices that can burn off
unwanted gases due to their volatile nature concerning
the amount, availability, and quality. However, if operated
improperly, flaring can emit vast amounts of pollutants,
and pose significant environmental and health risks. It is
highly desirable to achieve zero flaring via flare mini-
mization and flare gas recovery. By integrating the flared
gases into a fuel gas network, it is possible to reduce
emissions, as well as conserve energy in refineries [1]. A
comparison of economic profitability for various scenarios
for using flare gases is investigated in [2]. According to
the paper, the flare gases with higher flow rates and better
gas composition in terms of the amount of hydrogen and
hydrogen sulfide highly influence the profitability of using
such gases in various applications.

In this paper, we investigate the possibility of using
model predictive control and neural networks to use flare
gases in a dual-fuel engine.

Model predictive control (MPC) is a control strategy
that uses a model of a system to predict its response to a
given control input. An MPC algorithm repeatedly solves
an optimization problem and computes the optimal control
action that minimises the cost function and controls the
states of the system to the desired operating point while
satisfying the control input and state constraints. MPC is
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widely used in industrial and process control applications,
where it is valued for its ability to handle constraints. For
example, MPC is used to control nonlinear systems with
constraints, such as internal combustion engines where
multiple objectives must be satisfied [3], or in applications
such as fuel blending of six different feed gases where the
objective is to achieve fuel blends with specific limits on
the different composition properties [4].

Instead of industrial fuel blending, in this paper we
investigate the possibility of blending the flaring gas with
natural gas in order to use it with a dual-fuel engine (or a
gas-powered generator - genset). However, one of the main
quality requirements of natural gas as an engine fuel is the
methane number (MN). This parameter indicates the fuel’s
capability to avoid knocking (spontaneous combustion) in
the engine. A higher MN value indicates a better fuel
quality for gas engines. The required minimum MN value
usually depends on the engine manufacturer. More and
more engine manufacturers or require fuel with a mini-
mum methane number of 80, while some still maintain
methane number limits below 80 (most often 70) [5]. In
[6], a fuel blending system was used to vary the MN. With
smaller MNs, NOx and CO emissions increased while
combustion stability remained unaffected.

The use of artificial neural networks for methane num-
ber prediction is reported in [7], where the model was
trained using 1202 different gaseous fuel compositions.
The neural network model was compared to the AVL
(Anstalt für Verbrennungskraftmaschinen List) model and
it was reported that the model was able to predict the MN
accurately (R = 0.999).

In this paper, the artificial neural network is used to
predict the MN of different fuel blends based on the tail
gas and natural gas with assumed known gas composition.
The results from the neural network are used to find the
limits on the fuel blending ratio which achieve the MN
according to the motor specification. The model predictive
control algorithm is used to minimize the price of the fuel
blend and the amount of flaring while respecting several
constraints on the variables of interest.
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Fig. 1. Illustration of the plant operation.

II. METHODS

A. Plant description

The industrial process of interest in this work is a gas-
fired power plant. The main component of the power
plant is a generator set which runs on gas and produces
approximately 1 MW of electrical power. Two gases are
available for fueling the generator: natural gas, which is
in constant supply and has to be paid for, and permeate
gas, whose supply varies, but is available for free. The
generator runs on a mixture of the two fuel gases and the
mixing ratio is set manually. The permeate gas is usually
of lower quality (i.e., contains less methane), which can
affect the generation of power and should be considered
when setting the mixing ratio.

Additionally, a gas tank was installed on the permeate
gas stream to act as a buffer and mitigate the effect of
variations in availability. Since the pressure in the tank
needs to be limited, a safety mechanism which flares
excess gas in case of high tank pressure was implemented.

A simplified schematic of the power plant is given in
Figure 1.

B. Plant model

The power output of a fuel engine that runs on methane
depends on the flow rate of the methane, as well as
the engine’s design and operating conditions. Generally,
increasing the flow rate of methane to the engine will
result in an increase in power output. However, there is
a limit to how much methane can be safely and efficiently
combusted within the engine, and at high flow rates, the
engine may not be able to utilize the methane, resulting
in decreased power output. Additionally, the engine’s
compression ratio, ignition timing, and other factors can
also affect the engine’s power output.

The focus of the work presented here was on control-
ling two variables of interest, the power output of the
gas generator (engine) and the pressure in the gas tank
(buffer). The actual power plant contains several control
loops which ensure stable operation and allow for certain
simplifications in control design.

In modelling the gas generator, it was assumed that the
output power is proportional to the amount of methane in
the fuel, with a certain response time. The resulting model
can be written as a differential equation:

dP

dt
=

1

τ
(knqn + kpqp − P ) (1)
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Fig. 2. Recorded data and model fit.

where P is the generated power, qi the mass flow of
fuel component i and τ the time constant of the power
output. The notation (·)n and (·)p refers to natural and
permeate gas quantities. The gains from fuel components
to generated power, kn and kp, generally depend on the
fuel characteristics and the operating point (engine speed
and torque), as well as other factors such as the engine
efficiency. However, the on-site measurements enabled cal-
culating the gains by a least squares fit and approximating
them as constants. Figure 2 shows the measurements and
the power output calculations using the obtained gains,
which were in the order of 10±1 kW/(L/s) for different
datasets.

The tank pressure is affected by the incoming and
outgoing permeate gas. The conservation of mass principle
states that [8]:

dM

dt
= ṁin − ṁout (2)

where M is the total mass of a substance in a tank and
ṁi are the incoming and outgoing mass flows. Following
the procedure in [9], the derivative of the tank pressure
can be expressed as:

dp

dt
=

p

ρV
(qi − qp) (3)

where p, ρ and V denote the gas pressure, density and
volume, qi the incoming mass flow and qp the outgoing
mass flow of permeate gas.

The available measurements indicate that the gas density
is approximately constant and equal to 1 kg/m3 for
both gases so volumetric and mass flow can be used for
calculations interchangeably.

C. Neural network-based ratio limit calculation

Gas engine manufacturers usually specify the desired
limits for the methane number of fuel. Several methane
number calculators are available as web [10] or mobile
phone [11] applications, but using them in a control
system requires a hardware implementation. The European
Association of Internal Combustion Engine and Alterna-
tive Powertrain Manufacturers provides an open-source
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Fig. 3. Gas methane contents dataset (stars indicate the measurements).
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Fig. 4. Neural network performance on the test set.

methane number calculator developed using Microsoft
Excel and BASIC [12].

Since the methane number is a nonlinear function of
the gas components and running on an embedded system
is required, a neural network was trained for calculating
the methane number. For this purpose, on-site gas contents
measurements were used. The permeate gas measurements
obtained during one year are given in Table I. The natural
gas measurements from the same period are approximately
constant and similar to those of permeate gas in April
2021. With this data, an augmented dataset of 110 samples
was created with random linear combinations of adjacent
samples, as shown in Figure 3.

A relatively small network, with one hidden layer
and two neurons with a radial basis activation function,
was trained using Bayesian regularization and an 80/20
train/test split. It proved to be complex enough and per-
formed well on the test set (MSE=0.0547), as shown in
Figure 4. The main difference between this network and
the one presented in [7] is the network size; in this case,
a much smaller network is sufficient since there is less
variation in the dataset.

Given the contents of the natural and permeate gases,
the neural network calculates the methane number for each
one. The methane number of the engine fuel, however,
depends on the mixing ratio of the two components. For
simplicity, it was assumed that the contents of the mix can
be calculated as:

cmix = rcp + (1− r)cn (4)

where ci are the contents of component i and r is the
mixing ratio. The methane number of the mix is then
calculated for different values of the mixing ratio and the
boundary ratio values which satisfy the methane number
limits (set by the manufacturer or the operator) are found.

Since the methane number is a nonlinear function of the
components, it is possible that there are several mix ratio
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Fig. 5. Ratio limit selection.

intervals which satisfy the methane number constraint.
However, only one interval can be included in the optimal
control problem formulation presented in the next section.
In that case, the interval which contains the current mix
ratio is chosen to avoid oscillations in plant operation. If
the current mix ratio is not in any of the allowed intervals,
the closest permitted value is chosen. Additionally, if the
gas contents are such that the methane number constraint
cannot be satisfied for any mix ratio, the ratio which
will produce the best possible methane number (although
outside the specifications) is selected.

An illustration is given in Figure 5, where the green
line indicates the permitted mix ratio intervals, the dotted
black line shows the current mix ratio and the full black
lines indicate the selected mix ratio limits.

D. Model predictive fuel mix ratio controller

In order to minimize the use of gas flares and the
operating costs, while limiting the tank pressure and power
tracking error, a model predictive controller was used
to determine the optimal fuel mix ratio. The reason for
choosing the mix ratio instead of the individual gas flows
as the output variable was the already existing engine
controller, which determines the final flows according to
the desired mix ratio and generated power.

Generally, a model predictive controller seeks the con-
trol sequence such that the user-defined cost function
(which contains, e.g., energy usage, reference tracking
error, safety limit violations) is minimized. The total cost
function is calculated over a prediction horizon of open-
loop behavior, consisting of several discrete time steps.
Also, the choice of optimal control values is subject to
state and control constraints (e.g., safety boundaries and
actuator limitations).

1) Discrete-time model: Firstly, a discrete-time model
of the plant is needed for MPC. Expressions (1) and (3)
lead to the following state-space representation:[

P
p

]+
=

[
1− Ts

τ 0
0 1

] [
P
p

]
+

[Ts

τ kn
Ts

τ kp
0 −Tsp

ρV

] [
qn
qp

]
(5)

where Ts denotes the chosen sampling time. Note that
the incoming flow of permeate gas, qi, is not included in
this model since it is not measured/controlled and can be
treated as an unknown disturbance. Also, it is assumed
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TABLE I
PERMEATE GAS CONTENTS SAMPLED DURING ONE YEAR

component 8.1.2021. 3.2.2021. 3.3.2021. 6.4.2021. 5.5.2021. 7.6.2021. 6.7.2021. 10.8.2021. 2.9.2021. 4.10.2021. 3.11.2021. mean value
C1 [mol%] 60.58 62.02 75.08 80.13 66.71 67.86 61.71 67.86 76.1 55.866 68.471 67.49
C2 [mol%] 1.28 1.44 1.63 4.21 1.26 1.36 8.23 2.07 6.53 10.159 6.751 4.08
C3 [mol%] 0.32 0.13 0.15 0.51 0.15 0.17 2.31 0.24 0.96 1.715 0.972 0.69

i-C4 [mol%] 0.1 0 0.05 0.12 0.05 0.05 0.45 0.04 0.17 0.294 0.161 0.14
n-C4 [mol%] 0.28 0 0 0.04 0.02 0.09 0.59 0.02 0.11 0.22 0.085 0.13
i-C5 [mol%] 0.16 0 0 0 0 0.04 0.18 0 0.05 0.082 0.033 0.05
n-C5 [mol%] 0.24 0 0 0 0 0.06 0.13 0 0 0.07 0 0.05
C6+ [mol%] 0.72 0.07 0.12 0.31 0.03 0.59 0.31 0.05 0.23 0.305 0.06 0.25
N2 [mol%] 4.12 4.58 6.1 6.48 7.45 7.65 1.58 7.66 4.77 2.312 4.077 5.16

CO2 [mol%] 32.21 31.77 16.87 8.2 24.33 22.14 24.51 22.08 11.09 28.977 19.39 21.96

that both the generator power and the tank pressure are
measured. Finally, the required output, optimal mixing
ratio, can be obtained from the optimal gas flows, qn and
qp, as r = qp/qn. The resulting model (5) is a discrete
linear time-varying system:

x+ = Ax+B(x)u, x = [P p]⊤, u = [qn qp]
⊤ (6)

which can be used in the MPC design.
2) The objective function: The objective function indi-

cates which variables are important, i.e., should be min-
imized in the optimization. In this instance, the primary
aim of the controller is to minimize deviations from the
reference and the operating cost. The objective function
can then be formulated as:

V (x, u, r) =

N∑
i=0

∥xi − r∥2Q + ∥ui∥2R (7)

where N is the prediction horizon, x = [x0, . . . , xN ]⊤ and
u = [u0, . . . , uN ]⊤ the state and control sequences, r the
state reference and Q and R positive semi-definite weight
matrices. The notation ∥v∥2M denotes the quadratic form
v⊤Mv.

Reference tracking errors of engine power and tank
pressure can be penalized individually by choosing Q to
be diagonal. Also, operating cost minimization can be
achieved by setting:

R =

[
rn 0
0 rp

]
, rn ≫ rp (8)

which will also result in mix ratio maximization, i.e.,
permeate gas will be used as much as possible and flaring
will be minimized.

3) Constraints: Ideally, the optimal control problem
should be formulated as a linear or quadratic program,
since there are efficient methods and solvers for solving
them [13]. To achieve this, the control input matrix in
(5) is assumed to be constant during the horizon, using
the current tank pressure measurement. If the tank pres-
sure does not change significantly during the prediction
horizon, this simplification should not affect the results.
Another option would be to use the controller predictions
from the previous time step. The system dynamics can
then be included as linear constraints in the optimization
problem.

Additionally, the gas flows qn and qp should be con-
strained between zero and maximum flows, qn,max and

qp,max. The mix ratio constraints from the neural network
can be added with the following expression:

rmin ≤ qp
qn

≤ rmax (9)

Since the natural gas flow is nonnegative, this can be
rewritten as a linear inequality:

qnrmin ≤ qp ≤ qnrmax (10)

If the optimization argument includes the state, an initial
state constraint is needed such that the predictions start
from the current measurement. Finally, the engine power
and tank pressure can also be constrained to lie between
the minimum and maximum allowed values, xmin ≤ x ≤
xmax.

4) The optimization problem: The resulting optimiza-
tion problem can be formulated as:

min
x,u

V (x, u, r) =
N∑
i=0

∥xi − xr∥2Q + ∥ui∥2R (11a)

s.t. x+
i = Axi +Bui (11b)

x(0) = x0 (11c)
xmin ≤ xi ≤ xmax (11d)
umin ≤ ui ≤ umax (11e)
u1,irmin ≤ u2,i ≤ u1,irmax, ∀i ∈ [1, N ] (11f)

The cost function is quadratic in the optimization variables
and all constraints are linear. Therefore, the problem can
be written as a standard quadratic program:

min
x

1

2
x⊤Px+ q⊤x (12a)

s.t. l ≤ Ax ≤ u (12b)

and the optimal solution can be obtained using a QP solver
such as OSQP [14] or MATLAB’s quadprog [15].

E. The simulation model

A simulation of the plant and the control algorithm
was developed using MATLAB and Simulink. In the
simulation, gas contents are periodically sampled from
the dataset used to train and test the neural network, i.e.,
the on-site measurements. The neural network uses these
measurements to calculate the allowed fuel mix ratio. The
mix ratio limits are given to the MPC, which outputs the
optimal mix ratio that satisfies the imposed constraints and
minimizes the specified cost. Finally, this ratio is used by
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TABLE II
SIMULATION PARAMETERS

Parameter Value Unit Description
qmax 300 L/s maximum fuel flow
qi,max 0.1667 L/s maximum incoming permeate gas flow

τ 20 s power response time constant
V 35 m3 buffer tank volume
N 20 − MPC prediction horizon
QP 1/10002 1/(kW )2 MPC power tracking error weight
Qp 1/602 1/(kPa)2 MPC pressure tracking error weight
Rn 1 · 10−4 1/(L/s)2 MPC natural gas flow cost
Rp 1 · 10−6 1/(L/s)2 MPC permeate gas flow cost
Ts 1 s control loop sampling time

a lower-level PID controller that sets the individual flows
of the gases in order to achieve the desired engine power
output.

The control loop runs with a sampling time of 1 second,
while the engine power and tank pressure dynamics are
simulated using continuous-time models (1) and (3). An
upper bound on the tank pressure is not imposed since the
excess gas can be flared. Also, the incoming permeate gas
is modeled as a uniformly distributed noise of moderate
amplitude.

The simulation scheme is shown in Figure 6 and the
most important parameters are given in Table II.

III. RESULTS

The primary objective of the described control scheme
was to automatically set the mixing ratio of the two gases.
Therefore, closed-loop simulations were compared with
the case where the mix ratio is set manually and constant.
For calculating the cost of fuel, it was assumed that the
unit price of natural gas is 1 and that of the permeate gas
is 0.3. Two different scenarios were considered.

In the first scenario, the natural and permeate gas
contents were obtained by blending the points obtained
from on-site measurements (Figure 3). In this case, the
natural gas content varies slowly and the methane content
in the natural gas is approximately constant, while the
permeate gas is more volatile.

In the second scenario, the gas contents are randomly
selected from the combined dataset, and this scenario
represents a mixing of two volatile gasses where it is more
difficult to meet the methane number limits.

Figures 7 and 8 show the simulation results for the first
scenario with the gas contents dataset shown in Figure 3.
In both cases, engine power, tank pressure and methane
number are within the specified limits. However, in the
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Fig. 7. Simulation results with a manually set mix ratio and sequentially
chosen gas contents.
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Fig. 8. Simulation results with an automatically set mix ratio and
sequentially chosen gas contents.

second case, the control input oscillates more, while the
total fuel cost is reduced by 16% and the flaring time is
reduced by 81%.

Figures 9 and 10 show the results for the second
scenario when the gas contents are chosen randomly from
the combined dataset, instead of sequentially from separate
datasets for each gas. In the first case, the power output
is fairly stable, but the tank pressure is too high and the
flares are activated more often. Additionally, the methane
number limits are exceeded several times as the manually
set mix ratio does not fall within the allowed interval. In
the second case, the control inputs again oscillate more,
but the duration of flaring is reduced by approximately
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Fig. 9. Simulation results with a manually set mix ratio and randomly
chosen gas contents.
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Fig. 10. Simulation results with an automatically set mix ratio and
randomly chosen gas contents.

45%. The methane number limits are slightly violated only
once, when the gas contents are such that the methane
number constraints cannot be met for any mix ratio. Also,
there is no significant difference in the power output
compared to the first case. Finally, the total cost of fuel is
reduced by 19% in the second case.

IV. CONCLUSION

This paper presents artificial intelligence-based predic-
tive fuel blending control for flare gas mitigation. Since the
methane number is a nonlinear function that depends on
gas composition, a neural network was trained to calculate
it for different fuel blends and find the fuel mixing ratio

values that satisfy the limits on methane number provided
by the motor manufacturer. With these constraints on
the mix ratio, a finite-horizon optimal control problem is
solved where the main goal is to output the desired power
while minimizing both the cost of the fuel and gas flaring
for all possible control inputs. The optimal solution is then
applied to the plant and the whole process is repeated. The
algorithm was tested in two scenarios where the natural
and permeate gas contents were sampled sequentially or
randomly from the real data obtained from the site. The
simulation results show that the proposed algorithm is
capable of producing the desired power while mitigating
costs and flaring, but also respecting the constraints on the
fuel methane number.
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