
High-Performance Serverless Request Generator:
Capable of Generating a Hundred Thousand

Requests Per Second
D. Mileski∗ and M. Gusev∗∗

∗ Innovation Dooel, Skopje, North Macedonia
∗∗ Sts Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering, Skopje, North Macedonia

E-mail: dimitar.mileski@ieee.org, marjan.gushev@finki.ukim.mk

Abstract—Depending on the scope, performance testing
systems are distributed and scalable systems that can use
many distributed instances to generate workload. Server-
based systems used in performance testing can not cope
with flexible workloads and specifications that may generate
high costs for an extensive number of generated requests.
Our goal was to develop a Virtual Patient Generator for
testing the electrocardiogram streaming system for moni-
toring thousands of patients. To deliver a fully functional
workload generator of a hundred thousand requests per
second, in this paper, we developed a High-Performance
Serverless Request Generator as an implementation of a
Distributed Serverless Workload Generator concept. The
system architecture comprises Serverless services, Pub/Sub,
and Cloud Storage capable to deliver a cheaper version
of a flexible number of requests, being scalable to an
even higher extend. We present limitations, performance,
and advantages by comparing the presented serverless load
testing system with other workload generators available as
SaaS or distributed load testing systems based on servers.

Keywords— high performance computing; performance test-
ing; serverless; FaaS; distributed systems; cloud computing;
ECG

I. INTRODUCTION

The performance of scalable and elastic systems is
tested with workload generators. Performance testing [1]
is the process of evaluating a system or application’s
performance characteristics, such as responsiveness, sta-
bility, and scalability, under a variety of workloads. The
goal of performance testing is to identify bottlenecks
and other issues that may affect the system’s ability to
meet its performance requirements and to ensure that the
system can handle the expected levels of usage. This can
include testing the system’s response time, throughput, and
resource utilization under different loads and conditions,
as well as simulating real-world usage scenarios.

The generation of a considerable workload requires
the deployment of scalable, elastic, and high-performance
systems. Distributed systems may be necessary to ac-
commodate the demands of such evaluation and testing
procedures. The most common performance tests types
are:

• Load testing [2] is a type of performance testing used
to evaluate a system or application’s behavior under
a specific load or user demand.

• Stress testing [1], also known as endurance testing, is
a type of performance testing that is used to evaluate a
system or application’s behavior under extreme loads
or conditions. The goal of stress testing is to identify
the upper limits of a system’s capabilities and to
determine how the system behaves when it is pushed
beyond its normal operational limits.

• Soak testing [1], also known as endurance testing or
reliability testing, is a type of performance testing that
is used to evaluate a system or application’s behavior
over an extended period of time. The goal of soak
testing is to identify any issues that may arise after
prolonged usages, such as memory leaks or resource
exhaustion, and to ensure that the system remains
stable and responsive over an extended period of time.

• Spike testing [1] is a type of performance testing
that is used to evaluate a system or application’s
behavior under sudden and significant changes in load
or usage. The goal of spike testing is to identify how
the system behaves under unexpected and extreme
conditions to ensure that the system can handle sud-
den and significant increases in load or usage without
impacting performance.

During our research, we have addressed embarrassingly
parallel problems and evaluated the corresponding speedup
performance [3] experimenting with virtual machine ap-
proaches versus parallel serverless threads in the Car-
dioHPC use case. CardioHPC [4] project aims at realizing
an experiment and simulating real-time processing and
monitoring of electrocardiogram (ECG)s. To evaluate the
performance of the ECG Streaming system for monitoring
10,000 patients for the CardioHPC project, we developed
a High-Performance Serverless Request Generator (HP-
SRG) capable of generating hundred thousand requests per
second. Evaluation of serverless ECG stream processing
in federated cloud implementations was also addressed
in our earlier research [5]. We have already evaluated
the automatic scalability of serverless services focusing
on FaaS serverless [6] that served as the basis for the
development of HPSRG.

Systems for performance testing are often server-based
distributed systems, and serverless architecture can provide
automatic scalability as an infrastructure for the devel-

MIPRO 2023/DC-CPS 1117

POST JSON Config

Push
Messages

Gen Trigger Topic
Cloud Pub/Sub

Topic

HTTP Requests
Gen-n-1-r-us-central1
Cloud Functions

Gen-n-1-r-europe-west2
Cloud Functions

Gen-n-1-r-asia-northeast1
Cloud Functions

Testing service (U
R

L)

30 sec
 ECG Data

ECG Files
Cloud Storage

HTTP Requests

HTTP Requests
...

Web App

Pub/Sub Message Generator
Cloud Functions

3 Buckets regions: us, eu, asia

Fig. 1: System architecture: High-Performance Serverless Request Generator

opment of performance testing systems being able to
generate such a large workload. Performance tests require
flexible workloads and specifications, configured by a
corresponding user interface.

Performance testing of CardioHPC and ECG Streaming
system for monitoring of 10,000 patients uses the new
HPSRG system that generates a workload in the form of
JSON files containing ECG data. These are then streamed
to a production system for monitoring of ECG streams [7].
HPSRG architecture can be implemented and deployed
in any cloud that supports serverless services FaaS or
serverless containers, object storage, and implementation
of Pub/Sub - Publisher Subscriber model.

The paper follows the next structure. Related work
and analysis of the state-of-the-art are presented in Sec-
tion II. System architecture, Experiments, and Evaluation
methodology are described in Section III illustrating the
approach that will achieve generating a hundred thousand
requests per second. Results are evaluated in Section IV.
Finally, results are discussed in Section V and conclusions
presented in Section VI along with future work directions.

II. STATE OF THE ART

A variety of software and tools are used for testing
the performance of different applications, most of which
are server-based rather than serverless. A survey of per-
formance testing software [8] focusing on well-known
performance testing systems, such as WebLOAD [9] [10],
LoadNinja [11] [12], HP Load Runner [13] [14], Apache
J Meter [15] [14], Selenium [16] [14], NeoLoad [17] [10],
WebLoad Professional [10], LoadUI [18] [10], WAPT [19]
[20], Loadster [21] [10], and LoadImpact (Load Impact is
now rebrended as k6) [22] [8], highlights the significance
of performance testing, including scalability, crucial for
accommodating increased numbers of users, and stability,
ensuring the application works reliably at all times.

WebLOAD [9] [10], NeoLoad [17] [10], WebLoad
Professional [10], and WAPT [19] [20] are load test-
ing tools for performance testing of web applications,
APIs, and mobile applications supporting a wide range
of protocols, technologies, real-time monitoring and result

analysis. These tools identify performance bottlenecks and
scalability issues.

HP LoadRunner [13] [14] is a load testing tool de-
veloped by Hewlett Packard Enterprise (HPE) to sim-
ulate user traffic and monitor the performance of web
applications and APIs, supporting multiple protocols and
technologies, including various web, mobile, and cloud-
based applications.

Apache J Meter [15] [14] is an open-source load testing
tool that can simulate user traffic and monitor the web
applications and API’s performance. A wide range of
supported protocols and technologies provide a highly
extensible environment to create custom test cases and
plug-ins.

Selenium [16] is an open-source testing framework that
supports functional testing of web applications and APIs.
It can also be used for load testing, but it is primarily used
for functional testing.

SAAS load testing tools offer cloud-based performance
and scalability testing for applications through simulated
user traffic [23] [24]. Some well-known SAAS load testing
tools are BlazeMeter [25] [26], LoadImpact [22] [8], Load-
Runner Cloud [13] [26], Loader.io [27], Gatling FrontLine
[28] [12], Neoload [17] [10], Flood.io [29], OctoPerf [30],
LoadUI Pro Cloud [18] [8], and Sauce Labs [31] [32].

BlazeMeter [25] [26], LoadNinja [11] [12], LoadUI
[18] [8], Loadster [21] [10], LoadImpact [22] [8], Gatling
FrontLine [28] [12], Neoload [17] [10], Flood.io [29],
OctoPerf [30], LoadUI Pro Cloud [18] [8], and Sauce
Labs [31] [32] are all cloud-based load testing tools that
evaluate the performance of websites, mobile applications,
and APIs by simulating large amounts of user traffic,
providing real-time monitoring and results analysis with
drag-and-drop interfaces to create and manage load tests.
LoadRunner Cloud [13] [26] is a cloud-based performance
testing solution offered by HPE. Loader.io [27] is a cloud-
based load testing platform that offers an easy-to-use
interface for load testing websites and APIs.

The HPSRG system offers a distinct advantage over the
conventional distributed testing systems through its use
of serverless technology, which eliminates the need for
server management and significantly reduces deployment

1118 MIPRO 2023/DC-CPS

time. The utilization of a serverless pay-as-you-go system
offers a more precise payment model as users are solely
charged for resources used per request, while in the case
of virtual machines, the users are charged for the entire
duration of usage, even during periods when performance
tests are not executed.

III. METHODS

In this section, we present the system architecture of a
new High-Performance Serverless Request Generator, and
then specify the experimental and evaluation methodology.

A. Solution Architecture

HPSRG is a solution based on serverless technology,
and the specific implementation in this paper is based on
Google Cloud [33]. In implementing the solution archi-
tecture presented in Fig 1, we have utilized Google Cloud
Functions Generation 1 [34] Function-as-a-Service (FaaS)
offering, in conjunction with Google Cloud Storage [35],
an object storage solution, and Google Cloud Pub/Sub
[36], which represents an implementation of the Publisher-
Subscriber model within the Google Cloud ecosystem.

HPSRG generates requests to a Testing service (in-
voked by a URL) as presented in Fig 1. The Web App
allows users to input configuration parameters for HPSRG
through a dedicated client form. Upon submission of the
form, the Web App sends an HTTP Post request containing
JSON Config to start the HPSRG.

Configurations for HPSRG include Pub/Sub Message
Generator (PMG) execution time, Pub/Sub topic name, and
Google Cloud project ID. The configuration also includes
parameters for individual Generators (Gen) (eg: Gen-1-
r-us-central1, Gen-n-1-r-europe-west2, . . . Gen-n-1-r-asia-
northeast1) such as a number of requests per second,
execution time in seconds, and Testing service (URL).

The web application makes an HTTP POST request to
FaaS serverless function, which initiates the Pub/Sub Mes-
sage Generator with Cloud Pub/Sub Topic. All Gen gen-
erators (Gen-n-1-r-us-central1, Gen-n-1-r-europe-west2 ...)
have a subscription to a topic named ”Gen Trigger Topic”
being a Push or Pull request in Google Cloud Pub/Sub.

Table I presents the configuration of each FaaS server-
less function. The automatic scalability of a FaaS server-
less function is an important feature of the HPSRG archi-
tecture. Performance testing will reveal a sufficient number
of active FaaS instances for each generator. According to
Google Cloud Function Generation documentation [34],
one FaaS can activate up to 3000 instances and each
instance will generate requests to Testing service (URL),
currently a high limit of all other serverless providers.

Note that the Testing service (URL) in Fig. 1 is a no-
op function, which is a dummy placeholder in computer
programming that performs no action, usually used in
situations where a real function is to be implemented later
or when a function must be specified but no operation is
required. Although, the Testing service (URL) is a FaaS

TABLE I: FaaS Config

PMG Generator Testing service
(URL)

Memory 512MiB 256MiB 256MiB
vCPUs 8 1 1
Min number of instances 0 0 0
Max number of instances 1 3000 3000
FaaS Timeout 540s 540s 5s

TABLE II: Cloud Regions

FaaS Region
PMG europe-west-1
Testing service

(URL) europe-west-1

1 Gen europe-west-1
3 Gen europe-west-1, asia-north-east-1, us-east-1

7 Gen
europe-west-1, asia-north-east-1, us-east-1
europe-central-2, asia-south1, us-west4,
southamerica-east1

15 Gen

europe-west-1, asia-north-east-1, us-east-1,
europe-central-2, asia-south1, us-west4,
southamerica-east1, europe-west2, australia-southeast1,
asia-southeast1, europe-west6, us-west1,
us-central-1, asia-east2, northamerica-northeast1

deployed in the Google Cloud europe-west-1 region but
it can be deployed anywhere since the request generator
developed and tested in this paper can send requests to
any service.

B. CardioHPC Experiments

Our CardioHPC experiment aims at testing more FaaS
serverless function generators: Gen-n-1-r-us-central1,
Gen-n-1-r-europe-west2 . . . Gen-n-1-r-asia-northeast1. In
our use case, we use push messages, which means that
when a message is published on that topic, everyone
who has subscribed to that topic will receive the message
following to the push principle. Generators (Gen) use ECG
data prerecorded and stored in the Google Cloud Storage,
as a type of Object Storage. Data in Google Cloud Storage
is organized in buckets, and for the specific architecture we
created three different buckets (ecg files eu, ecg files us,
ecg files asia). The ECG data originates from the MIT-
BIH [37] [38] ECG benchmark dataset, being resampled
from 360 to 125 Hz and rescaled from 11 to 10-bit resolu-
tion. Each Generator selects a random ECG recording and
sends a 30-second ECG signal (with 3750 ECG samples)
to the specified Testing service (URL). The no-op function
returns success or error based on the successful parsing of
the JSON with ECG.

The HPSRG JSON Config parameters were experimen-
tally determined to maximize the number of instances for
Gen, then all 4 experiments were conducted with these pa-
rameters using a reasonable number of request generators,
1, 3, 7, and 15. Each experiment lasts 25 minutes, during
which the number of requests stabilized after reaching a
certain point. The deployment cloud regions of all Gen are
listed in Table II.

MIPRO 2023/DC-CPS 1119

Fig. 2: Number of Generators (Gen) and Requests per
second hitting the Testing service (URL).

C. Evaluation methodology

To evaluate the performance of the service, various tests
such as Load Tests, Stress Tests, Soak Tests, and Spike
Tests require the HPSRG to generate a high volume of
requests to the service. In our CardioHPC experiment we
use the following evaluation metrics to test the generator:

• number of Requests Per Second sent to the Testing
service (URL),

• number of Active FaaS Instances per Generator,
which is used to assess if the maximum number of
active instances specified by the cloud platform is
being utilized,

• cost of running experiments on serverless services in
the Google Cloud public cloud is the third evaluation
metric.

The achieved results for these evaluation metrics are
collected by the Google Cloud Monitoring service of
Google Cloud Function Generation 1.

IV. RESULTS

Fig. 2 presents the request rate per second directed
toward the specified Testing service (URL) of the service
being evaluated, as a function of varying numbers of
Generators. The CardioHPC experiment was conducted for
several distinct scenarios - test cases, and in this paper, for
clarity of visual presentation, we present results only for
a single generator (n = 1), n = 3, n = 7, and n = 15
generators.

Fig. 3 presents the active instances of each service for
the HP serverless request generator system architecture
(Fig. 1). Specifically, the number of active instances is
provided for the following services:

• Pub/Sub Message Generator,
• one of the Generators (such as the Gen-n-1-r-europe-

west1), and

1
251
501
751

1001
1251
1501
1751
2001
2251
2501
2751
3001
3251
3501

0
1

:0
0

0
2

:0
0

0
3

:0
0

0
4

:0
0

0
5

:0
0

0
6

:0
0

0
7

:0
0

0
8
:0

0

0
9

:0
0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6
:0

0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

A
c
ti
v
e

 F
a

a
S

 I
n

s
ta

n
c
e

s

Time in minutes

Pub/Sub Message Generator Gen-n-1-r-europe-west1 Testing service (URL)

Fig. 3: Active FaaS Instances

• Testing service (URL)

V. DISCUSSION

A. Performance analysis

The test cases within the CardioHPC experiment were
conducted over a duration of 25 minutes. The initiation
of the experiment (Fig. 3) for Gen-n-1-r-europe-west1 is
specially marked. We observe an increase in the number
of requests per second from zero to a stabilized value
for all cases, upon activation of the instances from the
Generators. The number of active instances increased from
zero to the specified maximum of 3000, as outlined in the
Google Cloud Function Generation 1 documentation.

Fig. 2 displays fluctuations of the number of requests
per second until the value is stabilized, which can be
attributed to the specified timeout of 540 seconds (9
minutes) for each of the Generators in Table I. This
requires a new instance to be initiated upon termination,
with a maximum running time of 540 seconds, as defined
in the JSON Config.

These fluctuations can be mitigated through the utiliza-
tion of Google Cloud Function Generation 2, which oper-
ates on the Google Cloud Run service with a maximum
instance timeout of one hour. Additionally, oscillations
may also occur due to network factors and the fact that the
generator is a distributed system generating requests from
various global locations (such as London, Las Vegas, Sao
Paulo, Sydney, and Mumbai). The values are presented
in terms of requests per second, but it may be more
appropriate to consider them as requests per minute or
hour, depending on the system being evaluated.

Fig. 2 presents the rate of requests per unit of time
for different number of Generators within the HPSRG
system. The values are indicated in the form of thousands,
millions, and billions, with the respective units colour-
coded in grey, orange, and red.

B. Limitations

The number of active instances of the Pub/Sub Mes-
sage Generator (Fig. 2) shows only one active instance

1120 MIPRO 2023/DC-CPS

which generates the messages to act as triggers for the
FaaS Generators. The FaaS Generators, while generating
requests for the Testing service (URL), exhibit a range
of active instances from 2700 to 3000, with one instance
falling below 2700. The Testing service (URL) represents
the service under test, to which the HPSRG sends requests.

The stability of the number of active instances around
3000, which is the theoretical maximum according to the
documentation, is noteworthy. Initially, the platform starts
up to 3500 instances, which could be in response to sudden
spikes in requests. However, the maximum number of
instances in Google Cloud Function Generation 1 cannot
be specified to be greater than 3000, despite the platform
occasionally surpassing this number.

C. Scalability of HPSRG

Solutions to accommodate an increase in demand for
higher rates of requests include:

• Increasing the number of Pub/Sub Message Genera-
tors and Gen Trigger Topic.

• Deploying new generators (ex: Gen-n-x-r-us-central1
...) in the same or in other public or private clouds.
Each generator uses the same codebase written in
Python that can be deployed to other serverless
services in other public or private clouds.

Potential limitations to scaling HPSRG, as suggested,
could include restrictions from the public cloud provider in
terms of resource consumption rates and quotas. However,
it should be noted that such limitations are not inherent to
the HPSRG architecture itself.

D. Advantages

The HPSRG system has an advantage over distributed
testing systems by utilizing serverless technology, elimi-
nating the need for server management, and reducing de-
ployment time. It can handle any workload as HTTP Post
requests and does not require the management of virtual
machines to achieve high request throughput. However,
HPSRG lacks result visualization tools and its Web App
is only used for configuring test setups. Apache JMeter,
on the other hand, is a more comprehensive system with
a range of tools and plugins for visualizing performance
testing results.

In the CardioHPC project, results from the HPSRG test-
ing were obtained through the Google Cloud Monitoring
[39] service and visualized using external tools specialized
for ECG monitoring.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the High-Performance Server-
less Request Generator as a new solution for service
performance testing. The HPSRG can generate a hundred
thousand requests per second, millions of requests per
minute, and billions of requests per day. This demonstrates
the potential of the serverless model and automatic scala-
bility in cloud-based performance testing. The HPSRG is

exploited to evaluate the serverless ECG Streaming system
for monitoring 10,000 patients in the CardioHPC exper-
iment for real-time processing and monitoring of ECG
streams for more than 10.000 patients simultaneously.

As a potential future work, we aim at offering the HP-
SRG as a software-as-a-service (SaaS) publicly available
solution and support other configurable performance test-
ing systems for a lower cost and scalable flexible increased
throughput. It is essential to examine the operational cost
of such a generator and determine if a private cloud that
supports serverless services would be more advantageous.

ACKNOWLEDGEMENT

The experiment ”CardioHPC - Improving DL-based
Arrhythmia Classification Algorithm and Simulation of
Real- Time Heart Monitoring of Thousands of Pa-
tients” has received funding from the European High-
Performance Computing Joint Undertaking (JU) through
the FF4EuroHPC project under grant agreement No
951745. The JU receives support from the European
Union’s Horizon 2020 research and innovation program
and Germany, Italy, Slovenia, France, and Spain.

REFERENCES

[1] I. Molyneaux, The art of application performance testing: from
strategy to tools. ” O’Reilly Media, Inc.”, 2014.

[2] S. Pradeep and Y. K. Sharma, “A pragmatic evaluation of stress
and performance testing technologies for web based applications,”
in 2019 Amity International Conference on Artificial Intelligence
(AICAI). IEEE, 2019, pp. 399–403.

[3] D. Mileski and M. Gusev, “Serverless implementations of real-time
embarrassingly parallel problems,” in 2022 30th Telecommunica-
tions Forum (TELFOR), 2022, pp. 1–4.

[4] M. Gusev, S. Ristov, A. Amza, A. Hohenegger, R. Prodan,
D. Mileski, P. Gushev, and G. Temelkov, “Cardiohpc: Serverless
approaches for real-time heart monitoring of thousands of patients,”
in 2022 IEEE/ACM Workshop on Workflows in Support of Large-
Scale Science (WORKS), 2022, pp. 76–83.

[5] S. Ristov, M. Gusev, A. Hohenegger, R. Prodan, D. Mileski,
P. Gushev, and G. Temelkov, “Serverless ecg stream processing in
federated clouds with lambda architecture,” IEEE Computer, vol.
to be published, 2023.

[6] D. Mileski and M. Gusev, “Serverless faas scalability evaluation:
An ecg signal processing use case,” in 2022 45th Jubilee Interna-
tional Convention on Information, Communication and Electronic
Technology (MIPRO), 2022, pp. 853–858.

[7] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A server-
less real-time data analytics platform for edge computing,” IEEE
Internet Computing, vol. 21, no. 4, pp. 64–71, 2017.

[8] N. Srivastava, U. Kumar, and P. Singh, “Software and performance
testing tools,” Journal of Informatics Electrical and Electronics
Engineering (JIEEE), vol. 2, no. 1, pp. 1–12, 2021.

[9] RadView, “Webload overview,” Apr 2022, last accessed 06
February 2023. [Online]. Available: https://www.radview.com/
webload-overview/

[10] M. Sharma, S. Vaishnavi, S. Sugandhi, and S. Abhinandhan, “A
comparative study on load testing tools,” International Journal of
Innovative Research in Computer and Communication Engineering,
vol. 4, no. 2, pp. 1906–1912, 2016.

[11] SmartBear, “No learning curve. no correlations. just real-world
accuracy.” last accessed 06 February 2023. [Online]. Available:
https://loadninja.com/

[12] A. Kołtun and B. Pańczyk, “Comparative analysis of web appli-
cation performance testing tools,” Journal of Computer Sciences
Institute, vol. 17, pp. 351–357, 2020.

[13] MicroFocus, “Load testing software: Loadrunner professional,”
last accessed 06 February 2023. [Online]. Available: https://www.
microfocus.com/en-us/products/loadrunner-professional/overview

MIPRO 2023/DC-CPS 1121

https://www.radview.com/webload-overview/
https://www.radview.com/webload-overview/
https://loadninja.com/
https://www.microfocus.com/en-us/products/loadrunner-professional/overview
https://www.microfocus.com/en-us/products/loadrunner-professional/overview

[14] R. Abbas, Z. Sultan, and S. N. Bhatti, “Comparative analysis
of automated load testing tools: Apache jmeter, microsoft visual
studio (tfs), loadrunner, siege,” in 2017 international conference on
communication technologies (comtech). IEEE, 2017, pp. 39–44.

[15] Apache, “Apache jmeter,” last accessed 06 February 2023.
[Online]. Available: https://jmeter.apache.org/

[16] ThoughtWorks, “The selenium browser automation project,”
last accessed 06 February 2023. [Online]. Available: https:
//www.selenium.dev/documentation/

[17] Tricentis, “Tricentis neoload for enterprise performance testing,”
Feb 2023, last accessed 06 February 2023. [Online]. Available:
https://www.tricentis.com/products/performance-testing-neoload

[18] SmartBear, “Ensure high performance apis in less time,”
last accessed 06 February 2023. [Online]. Available: https:
//www.soapui.org/tools/readyapi/api-performance-testing/

[19] SoftLogica, “Test the performance of web applications under
load,” last accessed 06 February 2023. [Online]. Available:
https://www.loadtestingtool.com/

[20] S. Kundu, “Web testing: tool, challenges and methods,” IJCSI
International Journal of Computer Science Issues, vol. 9, no. 2,
pp. 1694–0814, 2012.

[21] I. Loadster, “Load stress testing for high-performance websites,”
last accessed 06 February 2023. [Online]. Available: https:
//loadster.app/

[22] G. Labs, “Open-source load testing tool for developers: K6
oss,” last accessed 06 February 2023. [Online]. Available:
https://k6.io/open-source/

[23] Q. Gao, W. Wang, G. Wu, X. Li, J. Wei, and H. Zhong, “Migrating
load testing to the cloud: a case study,” in 2013 IEEE Seventh
International Symposium on Service-Oriented System Engineering.
IEEE, 2013, pp. 429–434.

[24] M. Yan, H. Sun, X. Liu, T. Deng, and X. Wang, “Delivering web
service load testing as a service with a global cloud,” Concurrency
and Computation: Practice and Experience, vol. 27, no. 3, pp. 526–
545, 2015.

[25] I. Perforce Software, “The complete continuous testing platform,”
last accessed 06 February 2023. [Online]. Available: https:
//www.blazemeter.com/

[26] P. Memon, T. Hafiz, S. Bhatti, and S. S. Qureshi, “Comparative
study of testing tools blazemeter and apache jmeter,” Sukkur IBA
Journal of Computing and Mathematical Sciences, vol. 2, no. 1,
pp. 70–76, 2018.

[27] “Loader.io.” [Online]. Available: http://docs.loader.io/api/intro.html
[28] G. Corp, “Gatling enterprise - load testing tool for business,”

Jan 2023, last accessed 06 February 2023. [Online]. Available:
https://gatling.io/enterprise/

[29] “Flood io.” [Online]. Available: https://guides.flood.io/
overview-of-flood/what-is-flood

[30] [Online]. Available: https://doc.octoperf.com/
[31] S. L. Inc, “Cross browser testing, selenium testing, mobile

testing,” last accessed 06 February 2023. [Online]. Available:
https://saucelabs.com/

[32] N. Kilinc, L. Sezer, and A. Mishra, “Cloud-based test tools: A
brief comparative view,” Cybernetics and Information Technologies,
vol. 18, no. 4, pp. 3–14, 2018.

[33] “Google cloud documentation,” last accessed 25 April 2023.
[Online]. Available: https://cloud.google.com/docs

[34] “Google cloud functions generation 1 documentation,” last
accessed 25 April 2023. [Online]. Available: https://cloud.google.
com/functions/docs

[35] “Google cloud storage documentation,” last accessed 25 April
2023. [Online]. Available: https://cloud.google.com/storage/docs

[36] “Google cloud pub/sub documentation,” last accessed 25 April
2023. [Online]. Available: https://cloud.google.com/pubsub/docs

[37] G. B. Moody and R. G. Mark, “The impact of the mit-bih
arrhythmia database,” IEEE engineering in medicine and biology
magazine, vol. 20, no. 3, pp. 45–50, 2001.

[38] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng,
and H. E. Stanley, “Physiobank, physiotoolkit, and physionet:
components of a new research resource for complex physiologic
signals,” circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[39] Last accessed 25 April 2023. [Online]. Available: https://cloud.
google.com/monitoring/docs

1122 MIPRO 2023/DC-CPS

https://jmeter.apache.org/
https://www.selenium.dev/documentation/
https://www.selenium.dev/documentation/
https://www.tricentis.com/products/performance-testing-neoload
https://www.soapui.org/tools/readyapi/api-performance-testing/
https://www.soapui.org/tools/readyapi/api-performance-testing/
https://www.loadtestingtool.com/
https://loadster.app/
https://loadster.app/
https://k6.io/open-source/
https://www.blazemeter.com/
https://www.blazemeter.com/
http://docs.loader.io/api/intro.html
https://gatling.io/enterprise/
https://guides.flood.io/overview-of-flood/what-is-flood
https://guides.flood.io/overview-of-flood/what-is-flood
https://doc.octoperf.com/
https://saucelabs.com/
https://cloud.google.com/docs
https://cloud.google.com/functions/docs
https://cloud.google.com/functions/docs
https://cloud.google.com/storage/docs
https://cloud.google.com/pubsub/docs
https://cloud.google.com/monitoring/docs
https://cloud.google.com/monitoring/docs

