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Abstract—Scene text detection is a task of identifying text
regions and labeling them with bounding boxes in a complex
background. It has received a lot of attention recently and has
become far from unsolvable due to progress of deep learning
for computer vision and also due to rapid development of
computer hardware which is able to process complex neural
networks. Some of the most common challenges that make
this task difficult are irregular text shapes, text interferences,
very complex background, different text sizes and low image
quality. This paper presents an overview of state-of-the-art
solutions for scene text detection where ICDAR 2015 was
used as a benchmark dataset. We compare solutions with
respect to precision, recall and F-score.

Keywords—Scene text, Text detection, Bounding box, Multi-
oriented text, Segmentation, Convolutional neural network

I. INTRODUCTION

Today, textual information is everywhere around us and
correctly interpreting it is crucial for utilizing the benefits
that society has to offer. This paper focuses on research
of textual information that can be found in an outdoor
environment, i.e. scene text. Typically, these information
are used for wayfinding, advertising, traffic control and
displaying of art or any other type of information that is
meant to be seen by large number of people. By using
machine learning, we could extract the meaning from
these texts and use it to help automate outdoor tasks.
For example, text information can be used in training
of self driving cars, drones and Text-to-Speech models
for visually impaired individuals. To achieve this, the
automation system would first have to get the image of the
scene text, then detect the location of the text in an image
and finally recognize the text. Detecting or localizing the
text in an image is finding and labeling the correct location
of the text. Text recognition is a process that converts an
image of text into a machine-readable text format [1]. This
paper will focus only on the solutions for the problem of
localizing the text in an image.

Detecting scene text in an image faces many challenges
and the following are the most common ones:

• Irregular text shapes. Text in an outdoor envi-
ronment often appears in various orientations and
shapes. Irregular text shapes can include text that
is curved, slanted or written at an angle, which can
cause problems for models that are designed to detect
text in a specific orientation or shape.

• Text interferences. Text interference refers to various
factors that can make it difficult to detect text in

natural scenes. For example, other objects can cause
occlusion of the text in the image or there can be low
contrast between text and the background, making it
difficult to distinguish them.

• Complex background. Scene text in an image often
appears on cluttered and dynamic backgrounds, i.e.
complex backgrounds. Complex backgrounds can in-
clude textures, patterns, or other elements that are
similar to the text. While these backgrounds can
cause already mentioned text interferences, they can
also produce false positives and detect text in the
background patterns.

• Different text sizes. Scene text comes in various
sizes. It can be small like on signs and labels or it
can be large like on billboards and buildings. Models
that are trained to detect text at a specific size may
not perform well when they are given text that is
of different size than what they have seen during
training.

• Low image quality. Low image quality refers to
factors such as poor lighting, blurriness and noise.
Poor lighting can cause unwanted shadows and reflec-
tions, blurriness can make it difficult to distinguish
the text from the background and noise can cause
text interferences.

To overcome these challenges, many approaches have been
proposed, but those from deep learning era have produced
the best results. It is notable to mention that there were
methods before the rise of deep learning that tackled the
problem of scene text detection and they mostly adopted
the Connected Components Analysis (CCA) or Sliding
Window (SW) based classification [2]. Solutions that adopt
these methods will not be covered in this overview, since
all state-of-the-art solutions build models on deep learning
methodologies.

The remaining sections of this paper are arranged as
follows: In Section 2, the general deep learning method-
ologies for scene text detection are briefly reviewed.
In Section 3, state-of-the-art solutions are described. In
Section 4, comparison of the state-of-the-art solutions on
benchmark dataset is carried out. Finally, conclusion is set
in section 5.

II. RELATED WORK

Deep learning has played an important role in the field
of scene text detection by enabling the development of
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Fig. 1: TextFuseNet: pipeline

highly accurate and robust text detection models [2]. Be-
fore the deep learning era, feature extraction for scene text
detection relied on hand-crafted features. These features
were difficult to engineer and could not handle variations
in text such as different fonts, orientations and scales.
In contrast, deep learning models can automatically learn
powerful representations from the data, allowing them to
be more robust to variations in text. These models use con-
volutional neural networks (CNNs) to automatically learn
features from images. Overall, the use of deep learning
has led to significant improvements in the performance of
scene text detection systems.

Recently, scene text detection experienced great im-
provement with the development of the CNNs. CNN-based
algorithms for scene text detection can be classified into
two categories: regression-based, segmentation based and
hybrid methods [3]. These approaches will be explained
in a more detail in the following subsections.

A. Regression-based CNN methods

Regression-based approaches [4]–[11] for scene text de-
tection imply training a model to regress the coordinates of
the bounding box for an object directly from the image [3].
Regression-based methods are typically simpler and faster
than segmentation-based methods because they only need
to predict a small number of bounding box coordinates,
but they may not be as accurate when localizing occluded
and small objects.

B. Segmentation-based CNN methods

Segmentation-based approaches [12]–[20] for scene text
detection imply training a model for pixel-level prediction
of objects, i.e. prediction of a segmentation mask for
each object in the image [4]. Segmentation-based methods
are typically more accurate than regression-based methods
because they provide more detailed information about the
object’s shape and position in the image. However, these
methods are usually more computationally expensive and
require complex post-processing.

C. Hybrid methods

Hybrid approaches [21]–[24] combine feature maps pro-
duced by regression-based and segmentation-based meth-
ods into a sole feature representation which is used for
scene text detection. The idea behind using both feature

maps is reducing the negative effect of each of these
approaches and having more useful information.

III. STATE-OF-THE-ART APPROACHES

In this section, state-of-the-art architectures for scene
text detection will be described in detail. Each architecture
will be described in a separate subsection.

TextFuseNet

TextFuseNet is a scene text detection framework that
is using multi level feature extraction for detecting texts
of arbitrary shapes [24]. The proposed method is a hy-
brid approach, i.e. the authors perform regression and
segmentation. To help explain the reasoning behind such
approach, they categorize all of the work in this area into
two classes: character-based and word-based. The former
detects characters and groups them into words, while the
latter immediately detects words. The key idea of their
work was extracting three semantically different types of
features from the image and combining their information
to detect text in various shapes, orientations and sizes. The
three levels of features they extract are: character, word
and global.

To extract features and later detect bounding boxes, the
authors construct an architecture consisting of five parts:
feature pyramid network (FPN), region proposal network
(RPN), semantic segmentation branch, detection branch
and mask branch. ResNet FPN is used as the backbone to
extract feature maps of different sizes which they combine
in semantic segmentation branch to extract global level
features via RoIAlign. RoIAlign is used to extract all levels
of features from feature maps. RPN is used to generate
text proposals and forward those to detection and mask
branches. For extracting features from feature maps in the
detection and mask branches, they perform, what they call,
multi-path Fusion, which essentially combines, i.e. sums
them element wise, features from different paths into fused
features. In the detection branch the authors extract word
level features from the proposals and fuse them with global
features to perform bounding box regression for words
and characters. After detecting characters, they can extract
character level features as well and they do this in the mask
branch. When they extract all feature levels, they fuse them
all together and use them for instance segmentation. In the
end, the output of the mask branch is used in combination
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Fig. 2: Orderless box discretization: pipeline

with the output of the detection branch to get the final text
detection result. This entire pipeline can be seen on Figure
1.

In order to evaluate the model, the authors also require
character annotations in the dataset and since most datasets
only have word annotations, they generate them on their
own. For generating character annotations, their own pre-
trained model is used to detect characters which will be
used in evaluation, i.e. they perform weak supervision.

Orderless Box Discretization Network

Orderless Box Discrectization Network is a regression-
based method for scene text detection [25]. The model
outputs quadrilateral labels, since they are much more
effective at detecting curved text than rectangular labels.
The authors introduce a novel method for regressing the
bounding box in which they address the problem of
inconsistent labeling. This problem occurs for regression-
based methods because the labels for the bounding boxes
are highly sensitive to changes in the image, like rotation,
so it causes a significant change in label sequence with just
small amount of interference. To solve this problem, they
introduce a system that predicts order irrelevant points,
which they call Key Edges (KE). These KEs are invariant
representations of the coordinates which do not affect label
sequence and are still able to produce a valid bounding
box.

Their system architecture consists of three parts: an Or-
derless Box Discretization (OBD) block, a matching-type
learning (MTL) block and rescoring and post-processing
(RPP) block. Input image is first let through FPN and RPN,
where the authors generate region of interest proposals
from which they extract features with RoIAlign and feed
them into the OBD block. The Orderless Box Discretiza-
tion block is used to generate quadrilateral bounding
boxes. Each quadrilateral bounding box is described with
eight KEs which make four vertices of the bounding box:
minimum x and y, the second-smallest x and y, the second-
largest x and y, and the maximum x and y. After the
OBD block has generated these eight KEs, they are fed
into the matching-type learning block which takes care
of the matching between x and y KEs to form the most
accurate bounding box. Each x KE should match exactly
one y KE and all should be matched where they represent
the four vertices of the bounding box. Every slightly
different pairing results in a different bounding box and
since there is four x KEs trying to be matched with y
KEs with respect to their order, there is exactly twenty
four possible matchings. To further explain this, first x
KE can be matched with one of four y KEs, second x KE
can then be matched with remaining three y KEs, third x

KE can be matched with the remaining two y KEs and
the last x KE can only be matched with the last y KE
so in total, when multiplicaion is carried out, there are
twenty four combinations. Therefore, the model outputs
twenty four classes and the authors train the model by
minimizing the cross-entropy loss. Finally, the rescoring
and post-processing block is used to reduce the number
of false positives from the first two blocks by calculating
scores for the KEs and drawing conclusions from them.
This pipeline can be seen on Figure 2.

Real-time Scene Text Detection with Differentiable Bina-
rization

This is a segmentation-based method for scene text
detection that is characterized by a particularly low
inference time and thus high frames per second rate
[20]. Segmentation-based methods usually require com-
plex post-processing step and because of that they are slow.
These methods produce a probability map which needs
to be transformed into binary map by using some fixed
threshold and also it is necessary to apply certain pixel-
level grouping method to get final detection result. Their
proposed method inserts binarization step into the model to
achieve simpler post-processing and better inference time.

The idea of involving the binarization into the model
is not only lowering the inference time, but also opti-
mizing this post-processing step. By optimizing it inside
of a neural network, the authors enable the network to
adaptively set the threshold which should perform better
than fixed threshold at distinguishing background from the
text. Standard process of binarization is not differentiable
and so it cannot be learned by the neural networks
backpropagation step, so they introduce a function which
carries out differentiable binarization. Usually, binarization
is performed as follows:

Bi,j =

{
1, if Pi,j ≥ t

0, otherwise

The new differentiable method is:

Bi,j =
1

1 + e−k(Pi,j−Ti,j)

B represents output from the binarization or the bina-
rized map, P is the probability map produced from the
segmentation-based method, t is a fixed threshold, k is an
amplifying factor and T is the adaptive threshold map.

The architecture of their proposed method is a pipeline
consisting of the following steps: feature extraction, gener-
ating probability map, generating threshold map and gen-
erating approximate binary map. In the feature extraction
step, the input image is fed into a FPN backbone where
the authors produce different levels of feature maps which
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Fig. 3: Segementation-based approach with Differentiable Binarization: pipeline

are then up-sampled to the same scale and combined into
a final features used for segmentation. For the backbone,
they experimented with ResNet-18 and ResNet-50. Using
these features, they generate probability map and threshold
map in parallel branches. These maps are, then, used to
generate the approximate binary map. Approximate binary
map should correctly segment the bounding boxes found
in the image. Since they perform supervised training, they
generate labels for the probability and threshold maps, but
for the binary map the same labels are used as for the
probability map.

Progressive Scale Expansion Network

Progressive Scale Expansion Network (PSENet) is a
scene text detection model that addresses two issues:
detecting text of arbitrary shape and distinguishing text
instance from another text instance that is close to it in
the image [19]. For the first problem, the authors opt for
the pixel-wise segmentation because they believe it per-
forms better than regressing the vertex coordinates of the
bounding box. However, segmentation-based methods fail
to solve the second problem of separating two really close
text instances because pixel-wise segmentation will most
likely combine the two text instances into one. PSENet
solves this problem using progressive scale expansion
algorithm.

PSENet pipeline consists of only two steps: feature
extraction and progressive scale expansion block. In the
feature extraction step, the input image is fed into a FPN
which outputs four levels of feature maps. Low level
feature maps are concatenated with high level feature
maps and thereby generating four larger feature maps
which the authors combine into single feature represen-
tation. This feature representation is used for extracting
segmentation maps in the progressive scale expansion
block. They implement progressive scale expansion block
as follows: feature representation extracted from the input
image is sent to n number of branches, where each branch
is responsible for generating a segmentation map. Each
segmentation map masks each text instance in the image,
but with different scales. So, for each text instance in the
image, they predict multiple segmentation maps, which
they call kernels. Each kernel segments the same shape of
the input text instance and have the same central point,
but the segmented pixels differ in size, i.e. each kernel
denotes different area size of pixels for the same instance.
Area size of the pixels or the scale of the kernel is a

hyperparameter they set orderly where the first kernel
returns the smallest scales for the text instances and the
last kernel returns the biggest scales of the text instances.
After obtaining the kernels, they carry out the core part
of the algorithm which is responsible for creating precise
segmentation masks for each text instance in the image.
This step is based on the Breadth-First-Search (BFS)
algorithm, i.e. they perform exhaustive search of the best
fit segmentation masks. Here, they start with the first,
smallest, kernel where they detect number of text instances
or connected components. By doing this, they define the
central part of every text instance. After that, they progres-
sively expand other kernels by grouping their pixels and
completing the shapes of connected components. Finally
they extract these connected components as independent
text instances.

To train this model, the authors require the ground
truth for the kernels of all selected scales. They generate
different scales of the text instance from the bounding
box labels by shrinking the bounding box with the Vatti
clipping algorithm, but the original bounding box is used
as the ground truth for the biggest scale.

IV. EVALUATION OF THE STATE-OF-THE-ART
SOLUTIONS

In this section, the evaluation of the approaches de-
scribed in the previous section is carried out. Their
performances are compared on ICDAR 2015 benchmark
dataset which is described in more detail in the following
subsection. Metrics that were used for the evaluation are:
precision, recall and F-measure. Also, FPS was compared
between the models. The evaluation itself was carried out
in the subsection B.

A. Dataset

The ICDAR 2015 dataset, or the International Con-
ference on Document Analysis and Recognition 2015
dataset, is a dataset commonly used for evaluating text
detection and recognition methods. It consists of 1500
images, where 1000 images were used for training and
500 for testing [26]. It includes both scene text images and
born-digital images. The text in images comes in different
languages and orientations and also some of the images
intentionally have blur, noise or low resolution. This
dataset was used as a benchmark dataset for evaluation
of all architectures that are described in this paper.

MIPRO 2023/DC-CPS 1103



Input Image ResNet-FPN
Concatenating and
combining feature

maps
ffour feature maps of different levels

Progressive Scale
Expansion block

Final detection
result

1
2
3

n-1

n

n 
kernels

BFS search

Fig. 4: PSENet: pipeline

Model Precision Recall F-measure
TextFuseNet 93.96 90.56 92.233

OBD 92.1 88.2 90.1
DB 91.8 83.2 87.3

PSENet 88.7 85.5 87.1

TABLE I: Detection results on the ICDAR 2015 dataset

Model FPS
TextFuseNet 8.3

OBD 4.5
DB 82

PSENet 12.38

TABLE II: Highest FPS achieved

B. Comparisons of state-of-the-art approaches on bench-
mark dataset

In this section, the results of the evaluation are pre-
sented. Like mentioned, the approaches are evaluated on
the standard metrics: precision, recall and F-measure. The
results can be seen in the table 1. TextFuseNet achieved the
best measures on all three metrics and therefore perform
the best on ICDAR 2015.

Aside from their metrics performance, it is also im-
portant that these methods return the localization results
quickly, since scene text detection in an outdoor environ-
ment is often carried out in real-time and therefore re-
quiring high frames per second (FPS) rate. More complex
methods usually achieve better metrics, but worse FPS
and simpler methods achieve worse metrics and better
FPS. Sometimes, getting better FPS is more important
than accuracy and in that case simpler backbones are used
for feature extraction. Described approaches experimented
with different architectures and have evaluated the models
on different datasets than ICDAR 2015. In table 2, one
could see the highest FPS rate achieved in each paper,
not necessarily on ICDAR 2015. DB model recorded the
highest FPS, which was also the selling point of their
paper.

V. CONCLUSION

In this paper, an overview of state-of-the-art solutions
for scene text detection was given. These solutions use
complex neural networks to solve this task and they can
be roughly classified into three groups: regression-based,
segmentation-based and hybrid methods. They were eval-
uated on ICDAR 2015 benchmark dataset with respect to
the precision, recall and F-measure. Also, the comparison

of the real-time inference was conducted by comparing
their FPS rates.
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