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Abstract—Given the great success that diffusion models
have achieved in generating various types of continuous data,
including image, video and audio, there has been a growing
interest in the application of these models to text generation.
However, the discrete nature of text presents a challenge
for diffusion models initially designed for application in a
continuous feature space. The two main lines of work that
aim to bring together diffusion models and natural language
processing are focused on either defining the diffusion process
in continuous space by converting discrete tokens to em-
beddings or defining the diffusion process in discrete space.
These recent works attempt to combine diffusion models
with leading sequence-to-sequence generation Transformer
architecture as well as with existing pre-trained language
models. In this work, we give a detailed overview of the
approaches developed to date. We present and analyze the
benefits and limitations that each model introduces, along
with how they compare to the autoregressive models that
dominate this field.

Keywords—diffusion models, denoising diffusion models,
text generation, deep generative modeling, natural language
processing

I. INTRODUCTION

Latest text-conditional image generators such as DALL-
E 2 [1] and Imagen [2] have introduced unprecedented
improvements in the field of image generation. They en-
able production of high-resolution outputs for any possible
textual prompt. These modern frameworks are mostly
based on diffusion models, a family of generative iterative
models that achieve state-of-the-art sample quality for
continuous data.

An immediate response to such successes was in-
evitable. Once the immense potential of diffusion models
in generating images was displayed, the interest shifted
further towards exploiting their benefits and extending
their application to other challenging generative tasks.
Naturally, this includes the common challenge of natural
language processing (NLP) - text generation. Text gen-
eration spans over a large portion of popular NLP tasks
including machine translation, building conversational sys-
tems, and abstractive text summarization. Text generation
is a type of language modeling problem that aims to
produce plausible and coherent natural language texts by
automatically learning from data.

Autoregressive models currently dominate the field of
language modeling. The biggest advance in their develop-
ment was the Transformer architecture, presented in [3].
Imposing results are later achieved with GPT-3 [4] on

a wide range of text generation tasks. However, despite
their extensive capabilities, the fixed generation order
limits the autoregressive (AR) models’ flexibility in many
controllable settings, specifically those that require both
left and right context [5]. Instead of causal attention in AR
models, diffusion models can leverage bidirectionality by
predicting all tokens in a sequence at once and potentially
lead to more coherent samples [6].

The main challenge that emerges in applying diffusion
models to text generation is the discrete nature of textual
data. The existing solutions are built and specialized in
the continuous data domain which involves generating
images, audio, and video. Multiple design modifications
are required to make these models suitable for natural
language modeling. Previous work in this field was mainly
developed in one of the following two directions. The first
involves defining text diffusion models in the discrete state
space whereas the second focuses on continuous diffusion
models. Discrete diffusion models corrupt sentences and
refine them on the token level or switch from one discrete
value to another. Some of these models attain strong
results on several language modeling tasks, but they still
fall behind AR models in terms of coherence due to
the inability to model semantic correlation [6]. Diffusion
models for continuous domain were first introduced in
[5] where they explain the approach of embedding the
discrete text into a continuous latent space. By preserving
the continuity of the input, we keep important properties
such as classifier-free guidance and the ability to represent
uncertainty at individual token level. However, due to the
different nature of data, modifications are necessary to
apply existing diffusion models to textual data.

The paper is organized as follows. Sect. II introduces
related surveys in the diffusion domain. Sect. III includes
the formal and mathematical definition of diffusion mod-
els. The aforementioned two leading lines of work are
discussed in detail in Sect. IV and Sect. V by presenting
the development of diffusion models in discrete and con-
tinuous space, respectively. Conclusion and discussion of
possible future research directions are given in Sect. VI.

II. RELATED WORK

Given the rapid increase in interest and development
in the research of diffusion models, surveys have begun
to emerge that aim to give an overview of the latest
occurrences in the research field and state-of-the-art results
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as well as point out current dominant applications along
with the remaining challenges and limitations. The most
comprehensive and extensive surveys to date are given by
Cao et al. [7] and Yang et al. [8]. Both of these surveys
mention natural language processing as one of the key
areas for application and further work, but only briefly
discuss the current works in the field.

Following the successes achieved with diffusion models
in computer vision and the numerous papers focused on
the task, surveys such as [9] and [10] attempt to give
an overview and categorize the different approaches and
design choices as well as to identify their contributions
and limitations. More specialized surveys have begun to
appear such as [11] where the focus lies on the medical
domain by providing an extensive overview of diffusion
models used for medical image analysis.

We believe this to be the first survey that specifically
concentrates on diffusion models for text generation.

III. DIFFUSION MODELS

The idea of diffusion models as generative models was
first introduced in [12]. They present a novel perspective
derived from non-equilibrium statistical physics instead
of standard variational Bayesian methods. The proposed
algorithm consists of a forward inference diffusion process
and a reverse generative process. The forward trajectory
converts any complex data distribution q(x0) into a simple,
tractable distribution by gradually adding Gaussian noise
to the data according to a variance schedule β1, ..., βT

[13]:

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1), (1)

with each transition xt−1 → xt parametrized by:

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (2)

The reverse process predicts the noise of current time
step t and denoises to previous state xt−1. It is defined as
a Markov chain with learned Gaussian transitions starting
at p(xT ) = N (xT ;0, I) [13]:

p(x0:T ) := p(xT )
T∏

t=1

pθ(xt−1|xt). (3)

Each denoising transition xt−1 → xt is parametrized by
the model:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

The variational lower bound (VLB) is tractable and
differentiable with respect to θ on log pθ(x0) [5]:

L(x0) = E
q(x1:T |x0)

[
log

q(xT |x0)

pθ(xT )
+

T∑
t=2

log
q(xt−1|x0,xt)

pθ(xt−1|xt)
− log pθ(x0|x1)

]
.

(5)

Sohl-Dickstein et al. [12] also show that we can rewrite
the training objective in terms of KL divergences and
entropies [5]:

L = E
q(x0)

[
DKL[q(xT |x0)||p(xT )]+

T∑
t=2

E
q(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]
−

E
q(x1|x0)

[logpθ(x0|x1)]

]
.

(6)

However, Ho et al. [13] show that better results are
obtained by simplifying the training objective. To avoid
the potential instability, they suggest a simplified training
objective that expands and reweights each KL-divergence
term in Eq. 6 to obtain the sum of mean-squared errors
between the ground truth and its estimates [5]:

L(x0) =
T∑

t=1

E
q(xt|x0)

||µθ(xt, t)− µ̂(xt,x0)||2, (7)

where µ̂(xt,x0) is the mean of the posterior
q(xt−1|x0,xt) which is a closed form Gaussian,
and µθ(xt, t) is the predicted mean of pθ(xt−1|xt)
computed by a neural network.

IV. DIFFUSION MODELS IN DISCRETE SPACE

Discrete diffusion models build on categorical distri-
butions where each token has some probability to be
corrupted [14]. Diffusion models with discrete state spaces
were first considered in [12] and applied to binary ’heart-
beat’ data. They train a probabilistic model on simple
binary sequences of length 20, where a 1 occurs in every
fifth bin, and the remainder of the bins are 0. The proposed
binary sequence learning via binomial diffusion process
was nearly perfect.

Hoogeboom et al. [15] go on to introduce multinomial
diffusion modeled directly on categorical random variables
with transition matrices characterized by uniform probabil-
ities [16]. The same form was described in [17] although
with no empirical evaluations. Furthermore, Austin et
al. [16] generalize the approach from [15] with a more
structured categorical corruption process. They shape data
generation and embed structure or domain knowledge into
transition matrices used by the forward process without re-
laxing or embedding discrete data into continuous spaces.
They explore several structured transition matrices in their
experiments. One of them is a transition matrix with an
absorbing state where each token either stays the same or
transitions to a special mask token with some probability
allowing for the corrupted tokens to be distinguished from
the original ones. They explore using similarity in an em-
bedding space to guide the forward process and construct a
transition matrix that transitions more frequently between
tokens that have similar embeddings while maintaining
a uniform stationary distribution. This work shows the
importance of transition matrix choice by outperforming
various non-autoregressive baselines for text generation on
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character-level text generation as well as scaling discrete
diffusion models to large vocabularies and long sequence
lengths. However, this D3PM class of models remains
inferior in comparison to leading autoregressive models
for text generation such as Transformer XL.

None of the aforementioned works have incorporated
pre-trained language models in their proposed work on
diffusion models for text generation. He et al. [18] bring to
attention that pre-trained language models such as BERT
[19] and BART [20] are pre-trained with denoising objec-
tives and explores discrete diffusion models to integrate
the pre-trained language model. They use the transition
matrix with an absorbing state for BERT introduced in
[16]. It is more challenging to control the degree of
noise added in the discrete domain than it is in the
continuous. It is important to take into consideration the
linguistic differences among tokens in addition to avoiding
generating the most frequently appearing tokens only to
achieve a higher likelihood. They introduce a spindle
schedule that generates noise for xt conditioned on both
xt−1 and x0. By experimenting with several methods
of incorporating the time step into pre-trained language
models, the time-agnostic decoding method examines the
best results. Experiments are conducted on unconditional
text generation where DiffusionBERT outperforms [5],
a nominal work described in Sect. V, and additionally
proves its incompatibility with BERT. Results prove the
efficiency of the spindle noise schedule that is independent
for each token and depends on the token’s frequency in the
dataset. DiffusionBERT achieves significant improvement
in perplexity results, but still falls behind competitive
autoregressive models.

Qian et al. [21] propose a non-Markovian diffu-
sion process where modalities are gradually added as
the diffusion step t decreases. Additionally, to achieve
smoother modality learning, the generative process uses
a non-autoregressive process with residual glancing sam-
pling [22]. Experiments are conducted on tasks of ma-
chine translation, paraphrase generation and image cap-
tion where DiffGLAT, combined with Directed-Acyclic-
Transformer [23], manages to outperform the autoregres-
sive Transformer in both accuracy and efficiency on top
of several other high-performing works outlined in Sect.
V, including [14], [24], [25]. Their method significantly
reduces the decoding iterations when compared to a strong
prior discrete diffusion model known as SUNDAE [26].
In [26], Savinov et al. present an unrolled denoising
technique where they unroll the chain by sampling from
the transition distribution and feed samples back into the
input during training.

A different angle is taken in [27] by introducing an edit-
based generative model for text generation which is based
on the diffusion denoising method. Both corruption and
denoising processes are based on Levenshtein operations:
insert, delete, replace, and keep. Diffuser demonstrates
results comparable to AR models on machine translation,
summarization, and style transfer tasks. They also show

that Diffuser is complementary with token-level autore-
gressive methods outperforming autoregressive baselines.

V. DIFFUSION MODELS IN CONTINUOUS SPACE

The development of diffusion models for text genera-
tion has gradually shifted from models in discrete space
presented in Sect. IV to continuous diffusion models
which induce continuous latent representations. The idea
is to preserve the advantages of high-quality continuous
diffusion models while adjusting to a new data domain
and thus get closer to AR models’ results.

The first to pursue this type of architecture were Li
et al. [5] by introducing multiple modifications to the
standard diffusion model. They start by defining an em-
bedding function that maps discrete text into a contin-
uous space to enable direct application of a continuous
diffusion model to discrete text. Embedding function
EMB(wi) maps each word in sequence w of length n to:
EMB(x) = [EMB(w1), ..., EMB(wn)] ∈ Rnd, where
d is the number of dimensions. Furthermore, based on
conducted experiments, they propose a new design of the
training objective Eq. 5 that jointly learns the diffusion
model’s parameters and word embeddings. The novelties
to the original diffusion models include an additional
Markov transition between discrete words w and x0. In the
forward process, this transition marks the embedding pro-
cess, parametrized by qϕ(x0|w) = N (EMB(w), σoI).
A proper method is required for the inverse process of
rounding a predicted continuous x0 back to discrete text.
They accomplish rounding by choosing the most probable
word for each position following argmax pθ(w|x0) =∏n

i=1 pθ(wi|xi), where pθ(wi|xi) is a softmax distribu-
tion. They reparametrize the training objective to ensure
that the model predicts x0 in every term with x0 lying
directly on a word embedding. Diffusion-LM performs
control by running iterative gradient updates with flu-
ency regularization and multiple gradient steps on the
continuous latent variables which improve performance
and fluency of the text along with speeding up decod-
ing. Diffusion-LM demonstrates successful control for six
control tasks, including text infilling where it achieves
results competitive with a fine-tuned autoregressive model
for this task [28]. However, the authors point out several
weaknesses of the model, namely high perplexity, slower
decoding and slower training convergence.

Following the same line of work that conducts dif-
fusion directly in a continuous token embedding space,
but focusing on a wider scope of application and more
diverse textual data, Strudel et al. [6] introduce their Self-
conditioned Embedding Diffusion (SED) model. Unlike Li
et al. [5], they do not learn the embedding matrix E due
to the discovered empirical instability, potential unigram
entropy drops and limited applicability. Thus, the train-
ing objective depends only on trainable readout weights.
Their model is based on the self-conditioning technique
introduced by Chen et al. [29] which adapts x̃0 estimates
by passing the estimate obtained at the previous sampling
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step as the input to the denoising network instead of only
xt. Dieleman et al. [30] point out the resemblance of
the self-conditioning technique to the unrolled denoising
strategy [26]. SED also allows conditional text generation
by applying the span masking strategy for infilling tasks
and classifier-free guidance [31] on text data to alleviate
the need for a separately-trained guide model. Although
AR baselines of similar capacities outperform SED, the
model still performs strongly and comparably. Authors
point out limitations which include limited model tuning,
sampling efficiency, relying on another model for diffusion
in a pre-trained embedding space as well as the lack of
appropriate metrics and baselines for certain tasks.

Dieleman et al. [30] explore continuous diffusion for
categorical data by following the formalism from [32]
to describe the corruption and the reverse process using
differential equations. The proposed framework, Contin-
uous diffusion for categorical data (CDCD), is based on
the diffusion framework in [33]. Similarly to prior works
in this section, they embed the discrete input into a
continuous space and directly apply continuous diffusion
to the embeddings. The proposed CDCD framework re-
places the standard score matching function with score
interpolation for diffusion model training allowing the
use of familiar categorical cross-entropy loss function for
training. They go on to learn the embeddings and the
diffusion model jointly to embed the discrete input into
a continuous space, as seen in [5]. The final component
that makes up the CDCD framework is an active learning
strategy called time warping which automatically adapts
the distribution of noise levels sampled during training
to maximize efficiency. Experiments have shown that the
CDCD model can produce compelling samples for prompt
completion and infilling, but overall lower performance
on machine translation with autoregressive models of the
same size.

The focus in [14] lies in conducting a study of chal-
lenges connected to embedding discrete textual data and
utilizing continuous diffusion models to generate it. Unlike
images and audio that have a fixed data space during
training, the embedding space is learnable for discrete
textual data which may cause a collapse of the denoising
loss function and bring instability to the training of the
model. They find that the rounding loss used by Li et al.
[5] and Gong et al. [24] is not sufficient for alleviating
this issue. Secondly, because of the imbalanced frequency
of tokens in textual datasets, the learning of token em-
beddings diverges. Considering the diverse embedding
scale of different words, it is suboptimal to add the same
amount of noise to different embeddings. Lastly, when
denoising an embedding from noise sampled from the
normal Gaussian prior, the generation process may be dis-
tracted by other embeddings that are near the noise. Their
proposed model, named Difformer, solves the described
challenges by implementing the following methods. First,
they propose an anchor loss training objective that uses
the model prediction x̂0 as input instead of the noisy
embedding x0 and successfully regularizes embeddings

and prevents loss collapse. The solution to the imbalanced
embedding scales is implemented in the form of a layer
normalization module on the top of the embedding layer
which guarantees the uniform scale of tokens. As for the
potential distraction in the diverse process, it is eliminated
by adding an increasing scale of noise at each step.
Experiments conducted on the tasks of machine translation
and text summarization show the Difformer outperforming
concurrent diffusion-based models including those pre-
sented in [5] and [30] as well as achieving comparable
results with the autoregressive Transformer model.

Gong et al. [24] go on to extend the framework from
[5] to a more generalized sequence-to-sequence setting,
a key NLP aspect that covers various downstream tasks.
The proposed DiffuSeq model introduces partial noising in
the forward process by imposing noise only on the target
sequence, but not on the source sequence. The reverse pro-
cess can therefore impose the input as the condition when
denoising. Since no additional classifiers are required to
control the denoising process, it is considered classifier-
free. Experiments are conducted on four sequence-to-
sequence tasks: open domain dialogue, question genera-
tion, text simplification and paraphrase. DiffuSeq achieves
comparable or higher quality results than competitive AR,
iterative non-autoregressive, and large-scale pre-trained
models, specifically demonstrating its ability to generate
diverse, and hence high-quality sequences.

Yuan et al. [25] continue the research on diffusion
models for sequence-to-sequence text generation. Unlike
the encoder-only Transformers with partial denoising used
in [24], their SeqDiffuSeq model is based on an encoder-
decoder Transformers architecture with self-conditioning
[29] and a token-level adaptive noise schedule. The
encoder-decoder architecture has computational advan-
tages during inference because the input sequences require
only one forward computation through the encoder during
the whole reverse process. They improve sequence-to-
sequence text generation by introducing a heuristic that the
difficulty of predicting the sample should increase linearly
with respect to time steps. Their suggested noise schedule
is different from the previous proposals including those
in DiffusionBERT [18] and CDCD [30]. SeqDiffuSeq
achieves significant acceleration in inference speed com-
pared to DiffuSeq. Seq2Seq proves its generation quality
by surpassing both DiffuSeq and several autoregressive
baseline models on text simplification and paraphrase.
On question generation, it is comparable with DiffuSeq
whereas for open domain dialogue and machine translation
it demonstrates poorer results than the AR baseline.

GENIE [34] can be considered a semi-non-
autoregressive model and the first large-scale pre-trained
language model based on diffusion. A new approach
is proposed that combines the diffusion model and
Transformers. They present a pre-training task named
continuous paragraph denoise which predicts the noise
added to continuous paragraphs in the current time
step based on the paragraph context information and
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the noisy paragraph information. Experiments show the
effectiveness of the large scale pre-training by achieving
comparable results to a pre-trained AR model on task of
text summarization.

Another line of work includes employing the continuous
process on surrogate representations of discrete data such
as analog bits [29] and simplex [35]. Chen et al. [29]
design a simple and generic approach to enable continuous
state diffusion models to generate discrete data. The idea
lies in representing the discrete data as binary bits which
are then modeled into analog bits by continuous diffusion
models. Analog bits are real numbers that share the same
bimodal values as binary bits that represent discrete data.
This process requires no discrete space or re-formulation
of the continuous diffusion process. For sampling, the
process is the same as in continuous diffusion models with
the additional step of applying a thresholding operation
which decodes the generated analog bits that are then
converted into original discrete variables. They introduce
the self-conditioning technique previously described in
this section and often used in the following work. Their
model achieves comparable results to an autoregressive
Transformer baseline on the task of image captioning.

The SSD-LM presented in [35] introduces a different
approach that aims to bring together the advantages of
autoregressive and diffusion models by proposing a semi-
autoregressive solution. It maintains the ability to train and
generate variable-length sequences in addition to allowing
refinement within the token block, thus maintaining the
advantages of both autoregressive and diffusion models.
Unlike the representation in [29] which can lead to
extremely long sequences, they keep a subword based
vocabulary with each token represented as a sequence
of manually defined logits. SSD-LM is comparable to
or outperforms competitive autoregressive baselines such
as GPT-2 both in quality and diversity on unconstrained
text generation. Still, several limitations of the model
in comparison to autoregressive models are pointed out
including lower sample efficiency, slower decoding speed
and inflexibility of the decoding schedule.

VI. CONCLUSION

This paper gives a comprehensive overview of research
conducted in the field of text generation using diffusion
models. Following the impressive achievements of diffu-
sion models in image generation, the desire to extend their
application to other domains has grown rapidly. However,
language modeling itself represents a challenging task due
to the complexity and diversity of the natural language.
Furthermore, the high-performing image generation mod-
els were designed for continuous data space, requiring
significant modification to generate discrete textual data.
We presented the most notable advancements in their
development and how they compare to the current state-
of-the-art autoregressive models.

We considered works developed in both discrete and
continuous data domains, ranging from those focused on

controllable text generation to unconditional and condi-
tional text generation as well as sequence-to-sequence
tasks. Although many of them examine respectable results,
they are still mostly limited to either a specific task domain
or language structure in order to perform comparably to
autoregressive models.

Diffusion models offer a more flexible approach by
abandoning the sequential generation of autoregressive
models and generating simultaneous outputs through it-
erative refinement. However, they struggle to catch up
with AR models’ inference speed and efficiency. There
are still multiple open questions addressed in many of the
considered works, such as defining the noise schedule and
the embedding space.

Finally, this is an active area of research aspiring to
reach the breakthrough seen in the field of image gen-
eration. It is yet to be seen whether such performance
is feasible, especially considering the existing state-of-
the-art autoregressive models that are already capable of
generating high-quality diverse texts. Another issue in
this field is the lack of appropriate metrics and baselines
for certain tasks, such as infilling. The discussed works
show promising directions for diffusion models in text
generation that are yet to be extended to their full potential.

REFERENCES

[1] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen,
“Hierarchical text-conditional image generation with clip latents,”
2022. [Online]. Available: https://arxiv.org/abs/2204.06125

[2] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton,
S. K. S. Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes,
T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic
text-to-image diffusion models with deep language understanding,”
2022. [Online]. Available: https://arxiv.org/abs/2205.11487

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are few-shot learners,” 2020.
[Online]. Available: https://arxiv.org/abs/2005.14165

[5] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B.
Hashimoto, “Diffusion-lm improves controllable text generation,”
2022. [Online]. Available: https://arxiv.org/abs/2205.14217

[6] R. Strudel, C. Tallec, F. Altché, Y. Du, Y. Ganin, A. Mensch,
W. Grathwohl, N. Savinov, S. Dieleman, L. Sifre, and R. Leblond,
“Self-conditioned embedding diffusion for text generation,” 2022.
[Online]. Available: https://arxiv.org/abs/2211.04236

[7] H. Cao, C. Tan, Z. Gao, G. Chen, P.-A. Heng, and S. Z. Li, “A
survey on generative diffusion model,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.02646

[8] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao,
Y. Shao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models:
A comprehensive survey of methods and applications,” 2022.
[Online]. Available: https://arxiv.org/abs/2209.00796

[9] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah,
“Diffusion models in vision: A survey,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.04747

1098 MIPRO 2023/DC-CPS



[10] A. Ulhaq, N. Akhtar, and G. Pogrebna, “Efficient diffusion
models for vision: A survey,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.09292

[11] A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz,
I. Hacihaliloglu, and D. Merhof, “Diffusion models for medical
image analysis: A comprehensive survey,” 2022. [Online].
Available: https://arxiv.org/abs/2211.07804

[12] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and
S. Ganguli, “Deep unsupervised learning using nonequilibrium
thermodynamics,” CoRR, vol. abs/1503.03585, 2015. [Online].
Available: http://arxiv.org/abs/1503.03585

[13] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 6840–6851.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

[14] Z. Gao, J. Guo, X. Tan, Y. Zhu, F. Zhang, J. Bian,
and L. Xu, “Difformer: Empowering diffusion model on
embedding space for text generation,” 2022. [Online]. Available:
https://arxiv.org/abs/2212.09412

[15] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré, and M. Welling,
“Argmax flows and multinomial diffusion: Learning categorical
distributions,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp.
12 454–12 465. [Online]. Available: https://proceedings.neurips.cc/
paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf

[16] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den
Berg, “Structured denoising diffusion models in discrete state-
spaces,” in Advances in Neural Information Processing Systems,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., 2021. [Online]. Available: https://openreview.net/forum?id=
h7-XixPCAL

[17] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit
models,” 2020. [Online]. Available: https://arxiv.org/abs/2010.
02502

[18] Z. He, T. Sun, K. Wang, X. Huang, and X. Qiu, “Diffusionbert:
Improving generative masked language models with diffusion
models,” 2022. [Online]. Available: https://arxiv.org/abs/2211.
15029

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” 2018. [Online]. Available: https://arxiv.org/abs/
1810.04805

[20] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising
sequence-to-sequence pre-training for natural language generation,
translation, and comprehension,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.13461

[21] L. Qian, M. Wang, Y. Liu, and H. Zhou, “Diff-glat: Diffusion
glancing transformer for parallel sequence to sequence learning,”
2022. [Online]. Available: https://arxiv.org/abs/2212.10240

[22] L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang,
Y. Yu, and L. Li, “Glancing transformer for non-autoregressive
neural machine translation,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, Aug. 2021, pp. 1993–2003. [Online].
Available: https://aclanthology.org/2021.acl-long.155

[23] F. Huang, H. Zhou, Y. Liu, H. Li, and M. Huang, “Directed
acyclic transformer for non-autoregressive machine translation,”
2022. [Online]. Available: https://arxiv.org/abs/2205.07459

[24] S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, “Diffuseq:
Sequence to sequence text generation with diffusion models,”
2022. [Online]. Available: https://arxiv.org/abs/2210.08933

[25] H. Yuan, Z. Yuan, C. Tan, F. Huang, and S. Huang, “Seqdiffuseq:
Text diffusion with encoder-decoder transformers,” 2022. [Online].
Available: https://arxiv.org/abs/2212.10325

[26] N. Savinov, J. Chung, M. Binkowski, E. Elsen, and A. v. d. Oord,
“Step-unrolled denoising autoencoders for text generation,” 2021.
[Online]. Available: https://arxiv.org/abs/2112.06749

[27] M. Reid, V. J. Hellendoorn, and G. Neubig, “Diffuser: Discrete
diffusion via edit-based reconstruction,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.16886

[28] C. Donahue, M. Lee, and P. Liang, “Enabling language models to
fill in the blanks,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 2492–2501. [Online].
Available: https://aclanthology.org/2020.acl-main.225

[29] T. Chen, R. Zhang, and G. Hinton, “Analog bits: Generating
discrete data using diffusion models with self-conditioning,” 2022.
[Online]. Available: https://arxiv.org/abs/2208.04202

[30] S. Dieleman, L. Sartran, A. Roshannai, N. Savinov, Y. Ganin,
P. H. Richemond, A. Doucet, R. Strudel, C. Dyer, C. Durkan,
C. Hawthorne, R. Leblond, W. Grathwohl, and J. Adler,
“Continuous diffusion for categorical data,” 2022. [Online].
Available: https://arxiv.org/abs/2211.15089

[31] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” 2022.
[Online]. Available: https://arxiv.org/abs/2207.12598

[32] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, “Score-based generative modeling through stochastic
differential equations,” 2020. [Online]. Available: https://arxiv.org/
abs/2011.13456

[33] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating
the design space of diffusion-based generative models,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.00364

[34] Z. Lin, Y. Gong, Y. Shen, T. Wu, Z. Fan, C. Lin, W. Chen,
and N. Duan, “Genie: Large scale pre-training for text
generation with diffusion model,” 2022. [Online]. Available:
https://arxiv.org/abs/2212.11685

[35] X. Han, S. Kumar, and Y. Tsvetkov, “Ssd-lm: Semi-autoregressive
simplex-based diffusion language model for text generation and
modular control,” 2022. [Online]. Available: https://arxiv.org/abs/
2210.17432

MIPRO 2023/DC-CPS 1099




