User Input Search - Custom Motion Estimation
Algorithm Optimized for UAVs

J. Benjak, D. Hofman
Faculty of Electrical Engineering and Computing / Department of Control and Computer Engineering, Zagreb, Croatia
jakov.benjak @fer.hr, daniel.hofman@fer.hr

Abstract—Unmanned aerial vehicle technology is growing
rapidly as it finds its application in the various industries,
including military & defense, agriculture, logistics, trans-
portation, healthcare, entertainment and many others. One
of the fastest growing industries including drones is the
entertainment industry. More specifically, First Person View
(FPV) piloting has become a popular sport which attracts
huge masses. In FPV systems, the pilot wears FPV goggles
and controls the drone using a controller, and the drone
transmits video data to the goggles in real time. Since
drones usually fly very quickly, the video quality in terms of
resolution, compression artefacts and end-to-end delay must
be maintained. This paper explores the idea of optimizing
the Motion Estimation (ME) algorithm of existing High
Efficiency Video Coding (HEVC) algorithms by utilizing
user input from the controller. For example, if the drone
is directed to hover to the left, then it would make sense to
search for the most similar blocks in the previous video frame
only on the left side of the referent block. For the purpose of
this research, a HEVC video coder was customized to receive
additional input besides the video data — the user input from
the controller, or in other words, drone movement directions.
We call this ME algorithm User Input Search (UIS). Our UIS
algorithm is compared with the standard ME algorithms and
its efficiency is tested.

Keywords—High Efficiency Video Coding, Custom Motion
Estimation, Video Coding, Data Compression

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), commonly known
as drones, have witnessed a massive growth in their
application in various industries [1]]. The entertainment
industry, in particular, has embraced the use of drones
with First Person View (FPV) piloting systems. In FPV
systems, the pilot controls the drone using a controller
and receives real-time video data through FPV goggles.
Such systems are commonly used in drone races and
film making. Drone racing is a popular sport in which
pilots control UAVs to compete in races through obstacle
courses, and the goal is to complete the course as fast as
possible, without crashing. However, such systems have
their limitations which are yet to be solved. Due to the
rapid movement of drones, maintaining high video quality,
including resolution, low end-to-end delay and hiding
compression artifacts is challenging.

To address this issue, this paper presents a novel ap-
proach to optimizing the Motion Estimation (ME) algo-
rithms in existing High Efficiency Video Coding (HEVC)
video coders. Our User Input Search (UIS) algorithm

MIPRO 2023/CTI

involves incorporating user input from the controller to im-
prove the efficiency of the ME process. The main idea is to
search for the most similar blocks only in the direction of
the drone movement. For example, if the drone hovers to
the left, UIS would only search for the most similar blocks
on the current block’s left side in the previous frame. UIS
results in less searches, which means less operations in
the encoding process. This optimization should maintain
the video quality, but increase the encoding speed, or in
other words, reduce latency.

This paper tests this idea only on the drone footage,
but the idea can be expanded to other machines as well.
For example, land vehicles like remotely controlled trucks,
machines for remote medical procedures, remote security
cameras, etc. Basically, any kind of remotely controlled
device which transmits video. Another yet to be researched
topic is using this idea on mobile phone cameras, by
using the information from mobile phone’s accelerometer
in order to estimate device motion.

The UIS algorithm was implemented on an open-source
High Efficiency Video Coding (HEVC) encoder and tested
on several drone sequences. All sequences were filmed
by the author’s associates. At the end of this research,
a performance comparison of our UIS algorithm and the
standard ME algorithms is given.

II. RELATED WORK

Because ME can be the most power and time consuming
part of the entire coding process, a lot of researchers tried
optimizing it. Authors in [2] developed a low-complexity,
adaptive fractional-pixel ME skipped algorithm for the
HEVC encoder. Their algorithm reduced ME encoding
time by an average of 63.22%, with encoding efficiency
maintained. A method for optimizing the number of pixels
in the current search window has been proposed in [3]].
Their proposed method can save 56% of computations in
comparison with the Test Zone Search (TZS) scheme -
the default HEVC search scheme, with negligible decrease
of coding quality. TZSearch algorithm improvements and
other optimized ME algorithms have also been success-
fully implemented in [4], S]], [[6]. Some more recent works
implement artificial intelligence into ME algorithms in
order to improve them. One example of optimizing an
existing HEVC ME algorithm has been proposed in [7].

557

None of the above mentioned researches considered
utilizing user input from any sort of input device. To
the best of the authors knowledge, there are no published
researches which discuss and implement custom ME al-
gorithms which leverage user input from the controller.

ITII. USER INPUT SEARCH IMPLEMENTATION

For the purpose of this research, an open source HEVC
video encoder Kvazaar [8] was upgraded to include our
custom ME algorithm, UIS. Kvazaar source code includes
a few different ME algorithms, such as TZS, Diamond
Search (DS) and Hexagon Search (HS). UIS was imple-
mented by tweaking the DS algorithm. DS aims to find the
best prediction block from the previous frame for each
block in the current frame by searching for the closest
match. The search pattern forms a diamond shape where
the center of the diamond is initially set to the location
dependant on the search step, and the four points on the
diamond correspond to candidate blocks. The four points
are points above and below the center, and to the right
and to the left of the center. The algorithm checks the
cost of each candidate block in the diamond and moves
the center of the diamond to the candidate with the lowest
cost. The cost function is usually the Sum of Absolute
Differences (SAD) or the Mean Square Error (MSE).
SAD simply sums up all the absolute values of pixels
differences between the current block and the candidate
block. MSE squares each pixel difference and performs the
mean operation afterwards. This process continues until
no better candidate can be found or a stopping criterion is
met (e.g., a maximum number of search steps). The best
motion vector found during the search process is stored in
the variable and returned as the result of the algorithm.

UIS, on the other hand, works similarly to the DS, but
checks only for one candidate in each step, in the direction
of the drone movement. For example, if the drone moves
upwards, the DS would calculate the cost for all four
candidates, in every direction, while the UIS would only
calculate the cost for the upward candidate. This would
be repeated until the best match is in the center, or the
maximum number of search steps is reached. However,
the maximum number of search steps was removed while
performing tests.

Test were performed on four sequences, filmed using
a DJI ZENMUSE X5S camera on a DJI Inspire 2 drone.
Camera output was a set of .DNG frames, which were later
losslessly compiled into a .yuv video using FFMpeg [9].
In each sequence, the drone moved or rotated straight in
one direction, either upwards, left or right. Each sequence
was different in terms of spatial complexity, meaning
that obstacles - such as houses, bushes, trees, etc., were
at different distances and generally the number of such
obstacles was different in each sequence. and
Figure 2| display sequences which were used for testing.
Each sequence was exactly 240 frames long. During
encoding, only I and P frames were used, because in real-
time encoding, B frames do not make sense. However,

558

some test were made using B frames as well, to show the
UIS true advantages which can be used when coding any
kind of drone footage which had a controlled movement,
and which doesn’t require ultra-low latency real-time
encoding.

By inspecting the encoded video in the Elecard Stream-
Eye software [10], it was very clearly seen that most of
the motion vectors were indeed following the direction of
the drone movement, when using the DS algorithm. This
was the case with all the tested sequences. Of course, the
results were the same when using the UIS algorithm. An
example is shown in the and it can be seen that
the generated motion vectors are very similar, which is
exactly the result we were hoping for.

Moving
UPWARDS

Moving
RIGHT

_

Fig. 1: Drone movement in the st and the 2nd sequence

Rotating
LEFT

—_

Fig. 2: Drone movement in the 3rd and the 4th sequence

IV. EXPERIMENTAL RESULTS

All the test were performed on a 64-bit Windows
personal computer with 16GB of RAM, 11th Gen In-
tel(R) Core(TM) i5-11400F @ 2.60GHz processor and
an NVIDIA GeForce GTX 1650 graphics card. While
performing the tests, no other processes were purposely
started on the computer. Since some processes can start
unnoticed during the encoding process, in order to do the
UIS performance evaluation more precisely, we used the
Intel VTune Profiler software [11]]. To check exactly how

MIPRO 2023/CTI

Motion vectors generated by the
Diamond Search algorithm

!I
f

|

i

Motion vectors generated by the
User Input Search algorithm

I

ol

1
i
i
,ll".

I
u

Fig. 3: Motion vectors generated by the DS and the UIS algorithms

much processor time each function had used, we used
the VTune’s Hotspots analysis and the Flame Graph
[ure 4). Using the Flame Graph tool, we were able to ex-
tract only the diamond_search and the user_input_search
functions which perform the DS and the UIS algorithms.
represents crucial data in form of a table. Search
time refers only to the CPU time that was taken by
the diamond_search and the user_input_search functions.
The obtained data shows that the goal was accomplished
and that the UIS algorithm indeed improves the overall
encoding process. The encoded file sizes were in a very
close range, with the biggest difference being in the first
sequence (10.2MB for DS, and 10.3MB for UIS). PSNR
values were the same in all cases, but the search time was
reduced significantly.

Fig. 4: VTune’s Flame Graph from the Hotspots analysis

An noteworthy point is that the search time does not
occupy a significant portion of the total encoding process
time. The biggest percentage of the total encoding time
was in case of the second sequence, where the search func-
tion took 1.4% of the total encoding time when using DS,
and 0.4% when using UIS. This observation is visualised
in|Figure S|and|Figure 6| where the search function is high-
lighted with the pink color. The main reason behind the
small percentage is because all sequences were encoded
using the Kvazaar’s default Group Of Pictures (GOP)
structure, which is Ip-g4d3tl, a low-delay p-frame only
GOP. In such structure, each frame references only one
frame, the previous frame. [Figure 7] and [Figure 8| display
a Flame Graph of the second sequence, encoded using
GOP 8: B-frame pyramid of length 8. In such structure,
each frame references up to four frames, which results
in much more total searches, but in better compression
as well. When using this structure, UIS shows it’s real
power, because the search function took 11.9% of the total
encoding time when using DS, and only 2.7% when using

MIPRO 2023/CTI

UIS. In this case, UIS shortened the total encoding time by
roughly 6.5%, while preserving video quality (in terms of
PSNR), and increasing the encoded video file size by only
0.9%. In some cases, other than saving time, UIS resulted
with video files of less size than the files generated using
the DS algorithm.

Fig. 5: DS algorithm portion of the total encoding
process time (pink color)

0id * (__cdect')void *) void *>,0,1>

Fig. 6: Figure 5. zoomed-in

itd-invoke=void * (__cdect)(void)void >
itd:thread::_Invoke<std:tuple<void * (__cdeci"}void *)void *>,0,1>
nc@0x180074be0.

saseThreadintThunk

UserThreadstart

Fig. 7: DS algorithm portion of the total encoding
process time (pink color), with using B frames

559

Algorithm Sequence | Encoded video | Search time [CPU s] PSNR [dB]
gorl number file size [MB] (less is better) (more is better)
1 10.2 1.53 45.36
DS 2 38.1 38.70 43.08
3 19.7 1.11 43.68
4 9.87 12.37 44,92
1 10.3 0.37 45.36
2 38.1 11.32 43.08
UIS 3 19.7 0.39 43.68
4 9.89 3.58 44,92

TABLE I: Comparison of encoded file size, encoding time and encoded file PSNR for DS and UIS algorithms

kvz. kvz_s. sat.
oz satd 8 sat
quant satd s] search_frac
fz_. search_frac sea.
‘search_pu_inter searc...
. vz_search_ou_inter z_s... | search_cu
search_cu
a0 search cu
sa0.. search_cu
kvz_sa... kvz_search_lcu
ncoder_state_orker_encode_lcu
hreadueue._worker
dinvoke=void * (_cdec?)void) void >
e thread_Invoketd:tuple<void* __cdeck)(oid void = 01>
UNC@OX1800740e0
JaseThreaditThunk
WbserThrsadStar

search_p.
search_pu_inter search.
kvz_search_cu_inter kvz_se..

Fig. 8: UIS algorithm portion of the total encoding
process time (pink color), with using B frames

V. CONCLUSIONS AND FUTURE WORK

This paper presents an optimization of the ME algorithm
in the HEVC encoder Kvazaar by utilizing user input from
the controller. An additional ME algorithm was imple-
mented as part of the Kvazaar encoder, which we called
UIS. Our results show that the UIS algorithm is more
efficient compared to the standard DS algorithm. Video
compression rate and quality is preserved, but the encoding
speed is increased. When using the default Kvazaar’s GOP
structure, ME process was up to 4.14 times faster, and
when using the GOP structure 8, which includes B-type
frames, the ME process was 4.72 times faster.

Future work includes modifying other ME algorithms
besides DS, like HS or TZS. UIS algorithm could be
upgraded in terms of number of search directions. Cur-
rently it offers only four directions, but could easily be
expanded to also include diagonal directions. Besides
hovering and rotation, UIS could be expanded to consider
drone’s forward and backward movement. Directions are
not the only input the encoder receives from the user, it
also receives the information regarding drone movement
speed. Movement speed could be included in the UIS as
well, to affect the search distance parameter. When the
drone moves faster, it is expected that similar blocks will
be a little more further in comparison when the drone
moves slower. Of course, this is just a general rule which
would have to be tested, because obstacles can always be
either far or close to the drone. UIS could be implemented
on the x264 encoder as well, since for some cases, it
showed decent results in comparison with HEVC [12]. It
could also be integrated in a system which offloads video
encoding energy to the decoder side, performing ME only
on the video G (green) component, instead of Y [13]].

560

In summary, this research presents a promising solution
to enhance video encoding speed controlled-camera video
systems, offering ample potential for future research and
growth.

VI. ACKNOWLEDGEMENT

This work has been supported in part by the project
KK.01.2.1.02.0054 Razvoj uredaja za prijenos video sig-
nala ultra niske latencije (Development of ultra low latency
video signal transmission device), financed by the EU from
the European Regional Development Fund.

REFERENCES

[1] N. S. Labib, M. R. Brust, G. Danoy, and P. Bouvry, “The rise of
drones in internet of things: A survey on the evolution, prospects
and challenges of unmanned aerial vehicles,” IEEE Access, vol. 9,
pp. 115466-115487, 2021.

[2] Z. Pan, J. Lei, Y. Zhang, and F. L. Wang, “Adaptive fractional-
pixel motion estimation skipped algorithm for efficient heve motion
estimation,” ACM Transactions on Multimedia Computing, Commu-
nications and Applications, vol. 14, 1 2018.

[3] L. Gao, S. Dong, W. Wang, R. Wang, and W. Gao, “A novel integer-
pixel motion estimation algorithm based on quadratic prediction,”
Proceedings - International Conference on Image Processing, ICIP,
vol. 2015-December, pp. 2810-2814, 12 2015.

[4] Z. Pan, Y. Zhang, S. Kwong, X. Wang, and L. Xu, “Early
termination for tzsearch in hevc motion estimation,” ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Process-
ing - Proceedings, pp. 1389-1393, 10 2013.

[5] H. Kibeya, F. Belghith, H. Loukil, M. A. B. Ayed, and N. Mas-
moudi, “Tzsearch pattern search improvement for heve motion esti-
mation modules,” 2014 Ist International Conference on Advanced
Technologies for Signal and Image Processing, ATSIP 2014, pp.
95-99, 2014.

[6] P. Nalluri, L. N. Alves, and A. Navarro, “Complexity reduction
methods for fast motion estimation in hevc,” Signal Processing:
Image Communication, vol. 39, pp. 280-292, 11 2015.

[71 E. M. Ibrahim, E. Badry, A. M. Abdelsalam, I. L. Abdalla,
M. Sayed, and H. Shalaby, “Neural networks based fractional pixel
motion estimation for hevc,” Proceedings - 2018 IEEE Interna-
tional Symposium on Multimedia, ISM 2018, pp. 110-113, 1 2019.

[8] M. Viitanen, A. Koivula, A. Lemmetti, A. Y14-Outinen, J. Vanne,
and T. D. Hiaméldinen, “Kvazaar: Open-source hevce/h.265
encoder,” MM 2016 - Proceedings of the 2016 ACM Multimedia
Conference, pp. 1179-1182, 10 2016. [Online]. Available:
https://dl.acm.org/doi/10.1145/2964284.2973796

[9] “FFmpeg,” https://www.ftmpeg.org/, accessed: 2023-02-04.

[10] “Video analysis software, mpeg analyzer for video quality
tests automation, batch execution | elecard: Video compression
guru,” |https://www.elecard.com/products/video-analysis/streameye,
accessed: 2023-02-04.

“Fix performance bottlenecks with intel® vtune™ profiler,”
https://www.intel.com/content/www/us/en/developer/tools/oneapi/
vtune-profiler.html#gs.ohbul3, accessed: 2023-02-04.

(11]

MIPRO 2023/CTI

https://dl.acm.org/doi/10.1145/2964284.2973796
https://www.ffmpeg.org/
https://www.elecard.com/products/video-analysis/streameye
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.ohbu13
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.ohbu13

[12] J. Benjak, D. Hofman, J. Knezovi¢, and M. Zagar, /Iwww.mdpi.com/2076-3417/12/13/6386
“Performance comparison of h.264 and h.265 encoders in

a 4k fpv drone piloting system,” Applied Sciences 2022, [13] D. Hofman and J. Benjak, “Offloading video encoding energy

Vol. 12, Page 6386, vol. 12, p. 6386, 6 2022. [Online]. consumption to the decoder,” 2022 7th International Conference
Available: https://www.mdpi.com/2076-3417/12/13/6386/htmhttps: on Smart and Sustainable Technologies, SpliTech 2022, 2022.
MIPRO 2023/CTI

561

https://www.mdpi.com/2076-3417/12/13/6386/htm https://www.mdpi.com/2076-3417/12/13/6386
https://www.mdpi.com/2076-3417/12/13/6386/htm https://www.mdpi.com/2076-3417/12/13/6386

