
RFID Inventory Management System Sampling

Optimization Based on Zebra Android

Framework

I. Benke, I. Heđi and E. Ciriković

Virovitica University of Applied Sciences, Virovitica, Croatia

ivan.benke@vuv.hr, ivan.hedi@vuv.hr, enes.cirikovic@vuv.hr

Abstract - In services with a high rate of input and output

of items, the inventory data collection process often imposes

high demands on staff in terms of reliable evidencing and

overall repeatability. Certain business services, such as on-site

laundry facilities in public hospitals, provide a good platform

for the ad-hoc implementation of custom ICT (Information

and Communication Technology) inventory management

solutions, especially if they have already partially implemented

proven technologies like RFID. Considering the relatively low

cost and ease of design, development, and implementation of

such systems in public institutions or other industry segments

where accurate and reliable daily-based item inventory is

crucial, it offers a viable alternative to commercially available

inventory management systems. Processing operations for

data elements are essential components of any information

system. These operations are optimized with a focus on speed

and reliability to meet the timing requirements of RFID

sampling. This includes improvements to the database scheme,

as well as the application and adaptation of existing

algorithms for retrieving duplicate elements from data sets.

Keywords – RFID; inventory; algorithms; optimization

(key words)

I. INTRODUCTION

A. Data collection and processing in general

Data collection and processing using inventory means
are common in work organizations, whether manual or
automated. Inventory assets are marked with inventory
codes, such as barcodes or QR codes, or more advanced
RFID (Radio Frequency Identification) transponders. The
interface to the database is typically realized through a
screen form, where fields can be filled out using electronic
readers or by entering inventory codes directly. However,
the latter method is not suitable for recording a large
number of inventory assets due to its inefficiency. In
contrast, using electronic devices and supporting
technologies, such as RFID, offers advantages in terms of
speed, reliability, and mobility of the system. The basic
architecture of an RFID-based system for recording
inventory assets consists of a fixed or mobile RFID reader
with an associated antenna and a remote transponder
attached to the inventory asset. The codes of inventory
assets are stored in the transponders' memory, such as the
Electronic Product Code (EPC) memory or the Tag ID
(TID) memory. The RFID reader sends an
electromagnetic wave to the transponder, which powers
the transponder to send back a response with the unique

product code. The data is then saved on the RFID reader
or sent to a remote terminal for further processing. The
paper is structured as follows: it will describe the general
system components and architecture, touch on basic
implementation aspects of management system
architecture and searching algorithms in a data structure
after the short introduction.

B. Related work

RFID technology is well-known term described in
many papers. Technology has been widely applied in
inventory management, logistics tracking, identity
recognition and so on. Most of papers focused on tag
searching in large warehouses. In [1] authors highlight
two major challenges in tag searching, one is how to
exclude the interference caused by unexpected local tags,
and the other is how to utilize the known IDs of wanted
tags to improve the searching efficiency. They proposed a
Bloom filter based tag searching protocol called
BFSearch, which consists of two phases: non-wanted tag
deactivation phase and target tag verification phase.
Bloom filters also applied in [2]. Tags that carry similar
information can be grouped into a category. To collect
such information, most existing works have to query all
tags in each category, which is time-consuming. In [3]
authors proposed a new solution called arithmetic coding
based sampling (ACS) protocol. They construct a sparse
vector to sample only a subset of tags from each category,
which can not only avoid repetitive information collection
but also reduce interference from unsampled tags.
Problem that occurs during RFID data capturing is false
positives (i.e., tags that are accidentally detected by the
reader but not of interest to the business process). In [4]
machine learning algorithms described to filter false
positives.

RFID scanner identifies all visible tags in each time
interval. However, more than 90 percent of tag serial
numbers are duplicates if you perform multiple scanning.
These serial numbers need to be eliminated. Our problem
is how to efficiently and quickly compare the field of
existing tag serial numbers with the field of newly read tag
serial numbers during each scan in order to obtain unique
values. This problem specifically applies on our test
device which is described in next chapter. Multiple
scanning in one position is applied to ensure that all tags
on a single stack are read.

MIPRO 2023/CTI 515

II. ZEBRA RFID READER AND APPLICATION SUPPORT

The RFID reader is an essential component of RFID
systems and comes in different versions, including fixed
and portable types. The first type is mostly associated with
industry and production plants where products or their
components are moved through the reading zones of
fixed-installed readers. A similar application can also be
recognized in retail chains, where fixed detection systems
at the entrances of stores are used to protect against item
theft. Portable readers are used in applications where
mobility is required, such as warehouses and other
facilities. One such application of RFID reader used refers
to hospital laundry management services, where incoming
and outgoing articles of clothing, bed linen, and other
laundry factory-marked with RFID transponders in the
form of sewn-in labels are recorded and entered into the
central management system. As part of the solution
presented in this paper, the mobile RFID reader RFD40
manufactured by Zebra was used (Fig. 1).

Figure 1. Zebra RFD40 RFID UHF reader with Zebra TC21
management unit

In addition, the Zebra TC21 smart mobile device with
the Android 10 system was also used as part of the control
module, as shown in Fig. 1. Given that the said mobile
device is part of the manufacturer's accessory equipment,
it is added to the RFID reader using the appropriate
integrated compatible docking station. Although the
reader can be operated independently, without the
additional element TC21, complete mobility of the entire
system and extension of functions is possible only by
using the entire package as shown in Fig. 1. The reader
itself is designed to work in the UHF frequency range
(865-868MHz) and is based on EPC Class 1 Gen 2 and
EPC Gen2 V2 wireless access protocols. [5]
Communication with the computer is provided via the
USB-C interface, which provides the possibility for direct
synchronization with management application solutions
on the host computer side. In contrast, the built-in system
memory buffer, according to the manufacturer, provides
temporary storage of up to 40000 read RFID tags and thus
enables excellent system autonomy and mobility. The
RFID reader also has a built-in battery with a capacity of
7000 mAh, a reading speed of over 1300 RFID tags per
second, and a range of about 6 m. It supports Windows,
Android, and iOS development environments, and offers
open support for upgrading and developing software
solutions based on the offered source code and application
programming interfaces (APIs). Ready-made applications
such as 123RFID Desktop and Mobile provide
functionality for searching and recognizing nearby or

directly connected RFID readers, as well as antenna
parameter adjustments, among others. [6] Both versions of
the 123RFID application provide the functionality of
searching and recognizing nearby or directly connected
RFID readers as well as antenna parameters adjustment,
and the latest firmware updates. The central applicative
module of the system is responsible for managing the
readings of RFID tags. This includes various tasks such as
filtering, sorting, grouping, graphical presentation, and
exporting raw data, as shown in Figure 2. The module also
displays information such as the total number of readings,
which is proportional to the default frequency or read rate,
and the time of sampling or read time.

One important piece of information displayed in
Figure 2 is the number of unique RFID tag values that
have been read. This information is particularly valuable
in inventory asset record-keeping systems. Keeping track
of uniquely read tag values allows for accurate inventory
management, as it helps identify individual items or assets
that have been tagged and read by the system. This can be
useful in tracking the movement of inventory, identifying
missing or misplaced items, and reconciling inventory
records with actual stock levels. By providing the number
of unique RFID tag values, the system can offer a
comprehensive overview of the inventory status, helping
to streamline inventory management processes and
improve overall operational efficiency.

Figure 2. 123RFID application Rapid module window used for RFID
tags display [7]

As part of the presented application, there are also
options for writing unique identifiers on corresponding
RFID transponders using the Tag Write program module,
as well as the possibility of locating single or multiple
RFID transponders according to the given identifier
values. Regardless of the tag reading mode, all readings
are written to a CSV file located in the previously created
root directory of the Android operating system.

516 MIPRO 2023/CTI

Figure 3. Scanned RFID tags displayed in corresponding CSV file

In the RFID Settings application module, there are
specific options related to the operation of the reader's
antenna and the type of communication link. In the
Profiles configuration group, there are options for manual
control of parameters such as the transmitted power of the
reader (Power Level) expressed in units of dBm, and the
link profile parameter (Link Profile) which determines the
product of the symbol transmission rate and the Miller
number of senders per symbol (2, 4, or 8), as indicated by
the symbols shown in Figure 4.

The choice of the link profile affects the system's
ability to successfully detect passive RFID tags, and it
involves finding a compromise between data transfer
speed, signal-to-noise ratio, and the number of incorrectly
detected bits in relation to the number of transmitted ones.
For example, the M2 320K profile was chosen for testing
and production environment, as it proved to be the most
reliable under the given conditions. This choice is based
on the EPC Gen2 V2 standard and specific requirements
of local regulators for electronic communications.

Furthermore, the system allows defining the Pulse
Interval Encoding (PIE) and Type A Reference Interval
(Tari) of the symbols of the discrete modulation procedure
PR-ASK (Phase Reversal Amplitude Shift Keying),
following the standards and requirements mentioned
above [8]. These settings are important for ensuring
compatibility with relevant standards and regulations, and
for optimizing the performance of the RFID system in
different operating environments.

Figure 4. The display of available Zebra RFID reader communication

parameters in 123RFID application [7]

The continuation of this paper will present a complete

software solution that is based on the described hardware

Zebra RFID platform and utilizes the freely available

Zebra RFID Software Development Kit (SDK) package

for Android systems.

III. MANAGEMENT SYSTEM ARCHITECTURE

Management system architecture like multilayered

architecture is shown on Fig. 5. At the bottom of the

system architecture is an RFID handheld scanner used for

wirelessly scanning tags at a rate of more than 1000 tag

reads per second. The RFID handheld scanner is

controlled by a mobile device with an Android operating

system and Zebra SDK. The Zebra Scanner SDK is

integrated with a mobile application for Android, enabling

cordless scanners to be connected and controlled by a

tablet or smartphone without using a cradle, after pairing

over Bluetooth. Scanning a pairing barcode that appears

on a tablet or smartphone display will pair the device and

connect it with the application. Each tag is identified by a

24-character string with numbers and capital letters,

known as the serial number.

T
C

P
/IP

 n
e

tw
o
rk

Item #1 Item #2 Item #3 Item #4 Item #5

RFID scanner

Bussiness logic

Mobile device

Item

groups

Remove

duplicates

API

HTTPs

DB

Presentation layer

HTTPs

Zebra SDK

Bluetooth

Figure 5. Management system architecture

An example of a serial number written on an RFID tag
is:

 “300ED89F335000B99A421245”.

Given that the sampling frequency is 1kHz, the RFID
scanner identifies all visible tags in each time interval.
However, more than 90 percent of tag serial numbers are
duplicates that need to be eliminated. This action is
implemented in the Business logic layer, also known as
the mediation layer, which is implemented in the mobile
application. The main functions of the mediation layer
include data collection from tags, aggregation of collected
data on a low level, and preparation for storage in a real-
time data warehouse. By removing duplicate values, every
HTTP request of the API (Application Programming
Interface) becomes lightweight and faster. The storage of
the read data in the SQL Server Express database,
processing of the results, and the complete web solution
are located on a separate remote server location. The
prepared data is then sent to the system backend for

MIPRO 2023/CTI 517

further processing. Regardless of the tag reading mode, all
readings are written to a CSV file located in the previously
created root directory of the Android operating system.
Our solution uses direct readings from the RFID reading
device shared memory. To send data, it is only necessary
to call a function in the API with data stored in JSON
structure.

The published message looks like this:

{

"datetime": 1581700066476,

"operator": 1,

"warehouse": 1,

"direction": 1

"serials": [300ED89F335000B99A421245,…],

}

The direction attribute is used to set if selected tags are
coming to the warehouse or from the warehouse. The
serials attribute is an array of unique values of serial
numbers.

The RFID scanner and the mobile device are two
interconnected objects with the ability to transfer data to
the Internet. When devices are connected to the Internet,
they can communicate with other devices or deliver
information to specific endpoints [9]. These devices can
connect to the Internet directly using standard
technologies such as 3G, 4G, and 5G, or they can connect
to a local area network that is connected to the Internet.
On the other hand, devices can form M2M (Machine to
Machine) networks, where devices are connected using
radio communication standards and protocols such as Wi-
Fi (based on the IEEE 802.11 standard), Bluetooth (based
on the IEEE 802.15.1 standard), Zigbee (based on the
IEEE 802.15.4 standard), or 6LowPAN over Zigbee (IPv6
over Low Power Personal Area Networks). In most cases,
application layer protocols are used for handling
communication. Some of the most representative
application layer protocols are CoAP (Constrained
Application Protocol), MQTT (Message Queue Telemetry
Transport), XMPP (Extensible Messaging and Presence
Protocol), RESTFUL Services (Representational State
Transfer), AMQP (Advanced Message Queuing Protocol),
and web socket [10].

If devices are connected to the Internet, there are
several cloud providers that offer connectivity between
devices and the cloud, such as AWS IoT (Amazon
Internet of Things). The primary function of an IoT
platform is to act as a middleware layer to connect devices
or applications from one end to another end [11].

The top layer of a given architecture is the presentation
layer. The presentation layer consists of various reports
for controlling item flow. A high level of detection of
inconsistency is an algorithm for generating item groups.
Several types of serial numbers can form one group in one
direction. If there is a group that is not complete, there is a
high probability that something was not detected, or items
were lost.

The most important problem in this architecture is the

causal relationship between the sampling frequency and

the speed of duplicates search. If the sampling frequency

is increased due to a large number of items, optimization

for duplicates search becomes necessary.

IV. SEARCHING ALGORITHMS IN DATA STRUCTURES

A search algorithm is an algorithm that provides a
solution to a problem after evaluating a set of possible
solutions. The set of all possible solutions to the problem
is called the "search space" [12]. In data structures, two
search algorithms are commonly used: sequential and
binary. Sequential search is the simplest form of searching
and is used on small, unsorted data sets. It goes through
every element of the array, making it the slowest search
algorithm with a worst case complexity of O(n).
Sequential search can also have some subvariants, such as
Probability Search, Sentinel Search, or Ordered List
Search [13]. An example of sequential search is shown in
Fig. 6

Figure 6. Sequential search

Binary search is a more advanced and faster search
algorithm compared to sequential search. The search starts
by testing the element in the middle of the array. The
middle element is obtained as the average value of the first
and last index of the array, mid = (fi+li)/2. If the middle
element is the required element, the search ends. If the
requested element is smaller than the middle, the search
continues in the first part of the field, while the second
part of the field is eliminated from further consideration,
and vice versa. A simple example is shown in Fig. 7. The
worst case complexity of the binary algorithm is O(log n).
To use binary search, the main condition is that the array
must be sorted. Since the elements of the array are not
necessarily arranged according to some criteria, array
indexing is used to make search and record sorting faster.
Array indexing occurs when adding a new record to the
array, and the main disadvantage of this search is worse
performance in the case of a large number of additions.
There are different variations of binary search (triple
search, exponential search, Fibonacci search), and their
effectiveness depends on the size of the array being
searched.

Figure 7. Binary search

A graphical overview of the measured performances
of these two types of searches is shown in Fig. 8.

518 MIPRO 2023/CTI

Figure 8. Statistical data comparison

The frequency of sampling serial numbers of tags in a
time frame of 1000 ms limited the choice of algorithm in
terms of speed. Therefore, binary search was found to be
advantageous compared to sequential search. Even though
sorting the existing serial numbers was required for binary
search, it turned out to be 40% more efficient.

V. CONCLUSION

RFID technology has been widely adopted for
recording inventory goods due to its benefits such as good
industrial support, usage flexibility, and widespread
standard adoption. The basic architecture of an RFID-
based inventory recording system consists of a fixed or
mobile RFID reader with an associated antenna, and
remote transponders physically attached to the inventory
assets. Codes of inventory assets, unambiguously
associated with individual transponders, are generated
based on a preset sampling frequency. The use of
algorithms for handling large data sets is necessary to
ensure efficient system performance. In conditions of high
sampling frequency of RFID tag serial numbers, it has
been demonstrated that the binary search algorithm can
save enough time to meet strict time frame requirements
before the arrival of a new set of data. Furthermore, given
the technical limitations of the HTTP protocol, the

application of more modern solutions, such as the MQTT
protocol, could further optimize the system in terms of
reliability and reading speed, which are critical
parameters.

REFERENCES

[1] Na Yan, Honglong Chen, Kai Lin, Zhichen Ni, Zhe Li, Huansheng
Xue, BFSearch: Bloom filter based tag searching for large-scale
RFID systems, Ad Hoc Networks,Volume 139, 2023

[2] Z. An, Q. Lin, L. Yang, W. Lou and L. Xie, "Acquiring Bloom
Filters Across Commercial RFIDs in Physical Layer," in
IEEE/ACM Transactions on Networking, vol. 28, no. 4, pp. 1804-
1817, Aug. 2020

[3] J. Liu, S. Chen, Q. Xiao, M. Chen, B. Xiao and L. Chen, "Efficient
Information Sampling in Multi-Category RFID Systems," in
IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp. 159-
172, Feb. 2019

[4] G. Alfian, M. Syafrudin, B. Yoon, and J. Rhee, “False Positive
RFID Detection Using Classification Models,” Applied Sciences,
vol. 9, no. 6, p. 1154, Mar. 2019

[5] https://www.zebra.com/us/en/products/rfid/rfid-
handhelds/rfd40.html (21.01.2023.)

[6] https://www.zebra.com/us/en/support-
downloads/software/demo/123rfid-mobile.html

[7] Signal Coding in Physical Layer Separation for RFID, Tag
Collision, Yi Li1, , Haifeng Wu1, and Yu Zeng1

[8] https://www.zebra.com/content/dam/zebra_new_ia/en-
us/manuals/rfid/rfd40/rfd40-prg-en.pdf (15.01.2023.)

[9] F. Xia, L. T. Yang, L. Wang and A. Vinel, “Internet of Things”,
International Journal of Communication Systems, Vol. 25, pp.
1101-1102, 2012.

[10] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego and J.
AlonsoZarate „A Survey on Application Layer Protocols for the
Internet of Things“, Transaction on IoT and Cloud Computing
2015.

[11] O. Jukić, I. Špeh and I. Heđi, “Cloud-based services for the
Internet of Things”, Proceedings of the 41st International
Convention MIPRO 2018, pp. 407-412, MIPRO, Opatija, 2018.

[12] N. Pavković, D. Marjanović, N. Bojčetić, Programiranje i
algoritmi, skripta II, Zagreb, 2005.

[13] https://aits-tpt.edu.in/wp-content/uploads/2018/08/DS-UNIT-5.pdf
(16.02.2023.)

MIPRO 2023/CTI 519

