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B. The idea of formal logic systems and approaches to 
their study 
 

      The idea of a formal logic system in the modern sense 
(approached via syntax) was created by abstracting the 
corresponding models. An example everyone is familiar 
with is standard planar geometry, which, as an axiomatic 
theory, was presented (and partially developed) by Euclid. 
It is less known that the abandonment of the standard axiom 
of parallels (through a point outside of a straight line passes 
only one straight line parallel to it) gives two new axiomatic 
systems of geometry, hyperbolic (through a point outside of 
a straight line passes an infinite number of lines parallel to 
it) known as the geometry of Lobachevsky (well suited for 
Einstein's theory of relativity, for example), or elliptic 
geometry (in special cases, sphere geometry (no line 
parallel with a straight line passes through a point outside 
of that straight line), well suited for managing satellite 
navigation in Earth's orbit, aircraft navigation, etc.). 

Formal logic systems (calculi), and here we are talking 
about the central currents of research, not about the fair 
number of “pathological” situations, can only be 
considered from the point of view of syntax, either solely 
from the point of view of semantics (content), or from both. 

The approach from the standpoint of semantics 
presupposes the notion of truth. According to the results of 
the Polish mathematician and logician A. Tarski, the very 
concept of  truth is not definable in the context of so-called 
Peano arithmetic2  (Tarski's weak theorem). Nor can it be 
defined within even the much wider range of logic calculi 
which recognize the logical not as a logical connective and 
exhibit some form of self-referentiality, sufficient to 
establish Goedel's diagonal lemma (Tarski's strong 
theorem). Self-referentiality leads to paradoxes like the 
paradox of the liar. In a recent paper [6], M. Hsiung 
developed the theory of so-called Boolean paradoxes. Its 
potential consequences for paradox-free mathematics aren't 
as yet visible, but they most certainly will be. 

The approach to studying logic calculi through syntax 
(superficially) presupposes an abandonment of the notion 
of truth, and thus of semantics. It is a kind of logic 
deduction game, and (for some time) a logic refutation 
game. Through using a formally defined language, a class 
of syntactically valid objects (“formulae”) of the logic 
calculi are defined. From this set, a subset of formulae 
called axioms is extracted. Axioms are, as a rule, language 
formulae that are true in all possible models (although this 
is an “public secret” within the syntactic approach). With 
the help of a logic deduction rule, the axioms and the 
original set of formulae, the deduction of a specific formula 
can be defined. In the so-called Hilbert formulations, the 
most common deduction rule is Modus Ponens, while the 
so-called Gentzen style natural deduction systems know 
multiple deduction rules (one rule “introducing” a given 
logic connective and an another rule “eliminating” it). 
Formulae which can be derived from an empty set of 
formulae (using axioms only) are called theorems. 

2  Common, school arithmetic (but axiomatized) with an 
induction scheme as a means of proving arithmetic 
formulae. 

The concept of logic deduction in the semantic 
approach is based on the notion of interpretation that 
includes the notion of truth. In this context, a given 
“formula” is a logical consequence of a given set of 
“formulae” if, and only if, it is true in all interpretations in 
which all formulae of the given set are true. Of course, such 
a definition of the notion of logical consequence goes 
beyond the framework of the logic calculus itself. It returns 
to it via so-called theorems of characterization of the notion 
of logical consequence at the level of semantics. One of 
these two theorems relies on the notion of tautology, while 
the other relies on the notion of contradiction. 

C. Deduction through Syntax or through Semantics? 
For the purposes of automated deduction, especially 

with regards to industrial level applications a semantic 
approach is more appropriate. This is in accordance with 
the famous saying “A lie has no legs.” The specific reasons 
for this are the following: 

i. Modelling “practical” problems necessarily involves 
“semantics” of a particular problem area 

ii. Logic calculus formulae represent binary trees in terms 
of their data structure. Such a structure, in terms of the 
requirements of logical deduction, is very rigid. Thus, 
for instance, the proof of each formula implying itself 
is trivial at the level of semantics (being an immediate 
consequence of the definition), while such proof at the 
level of syntax requires particular, not entirely trivial 
“juggling” in terms of matching the formulas 
participating in the deduction according to the Modus 
Ponens rule pattern. 

iii. Furthermore, the semantic approach, as a result of so-
called primitive normal forms, especially conjunctive, 
and with the subsequent removal of the logical 
connective and, on the one hand enables the 
linearization of the structure of the formulas that are 
being operated with (so-called disjuncts). On the other 
hand, according to most of the references in the 
literature, the standard rule of logical deduction in this 
context, the so-called resolution rule, originally 
defined in 1965 in J. Robinson's paper [8] turned out 
to be “grupoidal” (it again produced disjuncts as 
logical consequences of the disjuncts on which it 
operated) and complete. Through its consecutive 
application, it is always possible to deduct an identical 
false or contradictory disjunct from a contradictory set 
of disjuncts). 

iv. The resolution rule can be very successfully 
expanded from propositional logic calculi to 
predicate calculi, preferably of the first and second 
order. 

v. Incorporating the resolution rule (often modified in 
accordance with certain ideas about reducing the 
number of generated resolvents, with the 
preservation of the completeness) into appropriate 
algorithmic “wrappers” (algorithms or heuristics) 
such as the level saturation method, the Davis-
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Putnam method, the DPLL method (the generalized 
Davis-Putnam method), the recursive backtracking, 
proved to be extremely effective in solving the 
problem of automatic deduction. 

 

D.  Some basic types of automated deduction problem 
for the classical propositional calculus (and beyond) 
The types of logic deduction problems for the classical 

propositional calculus (of refutation, as well as the 
satisfiability type) are now well-classified (see, for 
example, [9]). In addition to the classical SAT problem, by 
assigning weighted coefficients to propositional variables 
one at a time when it is true or false in a given interpretation 
(problem model), it is possible to define the cost of the 
solution of the SAT problem. The total cost of such a 
solution is measured by the total sum of the values of 
weighted coefficients of propositional variables. When an 
attempt is made to minimize this sum, the MINSAT 
problem occurs. 

By making different additional requirements on the 
subsets of the clauses of a given (un)satisfiability problem 
and the very same propositional variables from which the 
clauses are constructed, a whole series of SAT or MINSAT 
problem variants arises, such as MAXCLS SAT, MINCLS 
UNSAT, MAXVAR SAT, MINVAR UNSAT. MINSAT 
type problems are dual problems of the MAXSAT type. 

From a theoretical point of view, compared to the still 
unresolved problem (P = NP)? the so-called 3SAT problem 
is crucial. It is specific in that each of its clauses contains 
exactly three literals (a literal is a propositional variable or 
its negation). It turns out that the 3SAT problem is in NP, 
and since it is at the same time NP-complete, it is also NP-
hard. For details see, for example, [10]. 

By allowing the action of the universal quantifier “for 
all” and existential quantifier “there exists” on the 
propositional variables of the CNF or DNF formula, the so-
called quantified Boolean formula problem (QBF) arises 
[11]. 

There are at least two important logic calculi, which 
deserve special mention, that are actually fragments (in 
terms of being embedded) into the classical propositional 
calculus. These are the calculus of the functional and 
multivalent dependencies of the relational data model. 
These two logic calculi provide the relational data model 
with complete semantics, partially expressed through 
commonly known normal forms. For details, see, for 
example, [12]. 

E. Some non-classical (non-Hilbertian) propositional 
logic calculi. 
 
Non-classical propositional calculi are generated by 

varying the different parameters of the definition of the 
classical propositional calculus. This also refers to the 
number of truth values, new logical operators 
(connectives), or the choice of axioms. In a situation where 
the propositional calculus knows more than two values of 
truth, we speak of multivalued or multiple-valued calculus. 
Such propositional calculi can be discrete or continuous. 
Today there is a multitude of such propositional calculi, 

amongst which the best known are the so-called 
Lukasiewizc logics (both variants exist, discrete, as well as 
continuous, and both are still being intensively developed). 
Another type of such propositional calculi are the so-called 
Post logics, with the characteristic (circular) definition of 
the connective “not”. 

 Between the Lukasiewicz and the Post logics there is a 
somewhat strange (one could say even magical or mystical) 
connection which at the same time characterizes the very 
notion of the prime number: Number n is a prime number 
if, and only if, Lukasievicz logic Fn+1 (meaning it supposes 
exactly n+1 truth values) is precomplete in Post's logic Pn+1. 
Being precomplete in this concrete case means that the set 
of valid formulae of Lukasiewicz logic Fn+1, being 
embedded (interpreted) in Post's logic Pn+1, needs to 
“borrow” just one propositional function from the logic 
Pn+1, which doesn't belong to it in order to be able to 
represent (via composition operation) every logic function 
from the logic Pn+1. For a general exposition of this result 
and Lukasiewicz logics see e.g. [13] - [15]. For tableaux 
based methods of automatic deduction in the context of 
multiple-valued logics see [16]. For an advanced exposition 
of the theory of multiple-valued algebras see [17]. 

In close connection with Lukasiewicz' propositional 
logics, to the extent that some are interpreted in others, 
there are so-called propositional fuzzy logics. Fuzzy logics 
are likely the most popular type of logics which from the 
very beginning of their development have found many 
practical applications on an industrial scale They are today 
managing smart household devices, robots and entire 
industrial facilities. Hundreds of thousands of papers and 
thousands of books have been written about them. 

A recent query to the Google Scholar service of the 
keyphrase “fuzzy logic” resulted in almost a million links. 
So, what are then fuzzy logics and what makes them so 
applicable? 

One could imagine fuzzy logic as a kind of a contextual 
domain logic. The context of a specific domain consists of 
objects with attributes (linguistic variables) which can 
assume values from some continuous numeric interval. The 
dynamics of the changes of values of those linguistic 
variables are “stable” at sufficiently large intervals of 
values where their behaviour can be, for example, in the 
case of the “level of movement” of an object, characterized 
as “fast” “slow”, “too fast”, “too slow”, “not too fast”, 
“could be a bit faster” etc. Those levels of membership are 
described with the so called membership functions, which 
are then used to interpret standard logical operators 
(connectives). A good introduction into fuzzy set theory 
and fuzzy logic is [18]. 

To a certain extent, fuzzy logic can be compared to the 
so-called discrete linear control systems theory whose 
behaviour is described by systems of so-called difference 
equations (see e.g. [19], or by the theory of continuous 
linear control systems whose behaviour is described by 
systems of linear differential (and integral) equations (see 
e.g. [20]). 

Among the propositional logics that, in addition to the 
standard (Boolean) logical connectives, know additional 
connectives are the so-called modal propositional calculi 
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(logics). There are two additional logical connectives: 
“necessary” and “possible”. If modal logic calculi are 
observed from the syntax point of view, they are, according 
to the axioms and inference rules that they “add” to the 
axioms of the classic propositional calculus, divided into a 
variety of specific systems, such as S1, S2, S3, S4, S4.2, 
S4.3, S5, K (an another label is Kr), D, M, T, ... A reader 
not specialised in modal logic will immediately think of 
how the notions of interpretation, truth and logical 
consequence are defined in that environment. Here, the so-
called Kripke models that assume the object domain (set of 
worlds) and the so-called accessibility relation are of use. 
For details, see e.g. [21] – [24]. 

The propositional modal logics have become the 
theoretical basis of the so-called knowledge reasoning 
systems, populated by agents (most often software). 
Among the axioms of an agent's knowledge is the so-called 
axiom of positive introspection: If an agent knows the 
knowledge (formula), then he knows that he knows that 
knowledge (formula); then the axiom of negative 
introspection: If an agent does not know some knowledge, 
then he knows that he doesn't know that knowledge; axiom 
of knowledge: If an agent knows some knowledge, then this 
knowledge is valid .... A very comprehensive view of 
reasoning on knowledge in the context of multi-agent 
systems is given in the monograph [25]. 

In addition to the axiomatic approach (most commonly 
of Hilbert's or Gentzen's type), the classical propositional 
calculi, as well as many non-classical, such as Lukasiewicz 
logics, are also considered from the so-called functional 
standpoint. As such, the logic formulae are represented 
through functions of the domain and co-domain of the 
identical set of truth values. Subclasses of such functions 
(recent terminology knows them as clones) are then studied 
with regard to different properties (monotonicity, 
symmetry, preservation of individual truth values ...) and 
their attributes. Furthermore, the problems of decompo-
sition and synthesis of such functions are studied. 
Monographs [26] and [27] are very comprehensive and 
instructive in this regard. 

Furthermore, logic calculi (not just the propositional 
ones) are often interpreted in other mathematical theories 
and structures. In this context, it is particularly worth 
mentioning linear algebra (see [28]) and semi-tensor logic 
(see [29]), polynomial algebra, as well as different types of 
algebraic structures such as rings and fields (see e.g. [30] - 
[33]). A special emphasis on the algorithmic efficiency of 
logical deduction is placed by the so-called positional (it is 
not a lapsus calami) logic of M. I. Telpiz (see [34] and 
[35]). 

F. Some applications of propositional logic calculi 
When talking about applications of propositional logic 

calculi, we should first mention their limitations in terms of 
problem modelling. This is especially in relation to the 
impossibility (due to limitations of their languages) of 
modelling “structural” relationships (of the type “to be a 
parent”, “to be a child”, “to be a relative”), reinterpreting 
discourse domains with functions or general mappings, as 

3 The author himself considers the patenting of algorithms 
to be very problematic and this will be discussed later. 

well as quantifying variables (except for quantified 
propositional calculi that are not “real” propositional 
calculi). Nevertheless, there are many applications of 
propositional logic calculi, ranging from, conditionally 
speaking, “academic” to industrial on a large scale. 

 A good part of the application of classic propositional 
logic calculi and fuzzy propositional calculi refers to so-
called propositional expert systems (see [36] and [38]), 
solving various combinatorial problems of practical value 
that can be formulated as SAT type problems, such as sports 
scheduling problems (like the Round Robin problem), see 
[39], planning problems (see [40]), and combinatorial 
designs problems (see [41]). The functional approach to 
studying classical propositional calculi using methods of 
classical analysis (differentiation, integration, Fourier 
expansion...) has opened the way to a multitude of 
applications related to the decomposition and synthesis of 
logical circuits. More about this range of topics can be 
found in e.g. [42]. 

As far as the application of modal propositional calculi 
is concerned, it is particularly visible through its 
interpretation in so-called epistemic logics (logics of 
knowledge, see, for example, [43] and [44]). Epistemic 
logics (including the so-called logics of beliefs) are very 
applicable in modelling games in multi-agent systems, 
including living agents (humans) – see e.g. [25], modelling 
social games (card games – see e.g. [45] and [46]), solving 
the problem of retrograde chess analysis (see e.g. [47]), 
demonstrating the validity of strategies for playing chess 
endings (see e.g. [48] and [49]), modelling IT safety, 
reasoning about security-critical information flow among 
humans and computers, [51], modelling authentication, 
[52] and [53], etc. 

G. Stälmarck’s method 
The applications of propositional logic calculi on an 

industrial scale aren't that many, but we shall indeed 
mention one that is very valuable. This is the so-called 
Stälmarck's proof procedure for propositional logic. It is  
widely known because it is patented (USPTO, Patent 
number: 5276897, January 4, 1994: System for determining 
propositional logic theorems by applying values and rules 
to triplets that are generated from Boolean formula,)3. At 
the same time, it is also extremely successful in solving the 
problem of verifying very large logic models of railway 
traffic management in marshalling yards and other types of 
railway infrastructure. Of course, the application domain of 
Stälmarck's method is not limited to this specific area of 
modelling.  

In the case of Stälmarck's method, we are dealing with 
a kind of implicational propositional calculus in Gentzen's 
style, in conjunction with the specific execution of the 
tableaux method (which uses only the connectives  (not) 

and → (implies) and logical constants  (contradiction) 
and ⊤ (tautology)). The original proposition is decomposed 
into a sequence of so-called triplets, where in the triplet    
(bi, ci, di) bi being the name of the implication ci→di which 
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also represents some subformula of the original formula, 
while the triplet alone represents the formula bi ↔(ci→di). 
The proof of a formula is performed by the proof of 
contradiction of its negation with the help of the 
corresponding deduction rules, such as  

(0, , )( 1) ,/1  z/0
y zr y  

actually meaning that the implication y → z is false, if and 
only if, y is true and z is false. A terminal triplet is one that 
is contradictory, for example (1,1,0). There is a sum total of 
seven deduction rules like rule (r1) and they are called 
simple rules. Since there are propositional formulae of 
Stälmarck's propositional calculus that cannot be proven by 
using only simple rules, a rule of branching is introduced 
which “cashes in on” the value of a given variable, 
branching the proof to the branch for which the value of 
that variable is 1 and the branch for which the value of that 
variable is 0. This rule is known as the Dilemma rule. 

1 2

1 2

[ /1]   T[x/0]
           

[ ]     [ ]   
[ ]

T
T x

D D
US V S

T S

 

According to [54], on page 26, it writes formulas “D1 
and D2 are derivations (or proofs). D1 starts from the set of 
triplets T and the assumption that x is true. D2 starts from T 
and the assumption that x is false. If one of these derivations 
gives a terminal triplet, then the result of applying this rule 
is the result of the other derivation. If neither D1 nor D2 lead 
to a contradiction, then the resulting substitution (or 
variable instantiation) S is the intersection of S1 and S2. Any 
information gained both from assuming that x is true and 
from assuming that it is false must hold independent of the 
value of x.” 

And further, on page 28, it says “The proof system M 
consisting of the simple rules r1 to r7 and the dilemma rule 
is sound and complete for formulas made from variables 
and implication. Any Boolean formula can be translated to 
such a formula in linear time by a procedure described by 
Stälmarck [34]4.” 

So the system M is sound and complete for full 
propositional logic. 
 

We turn the proof system into a proof method by 
making a sequence of increasingly more powerful 
subsystems of M. M0 is M without the dilemma rule. Mi+1 is 
M in which the derivations in the two branches of the 
dilemma rule are restricted to be Mi derivations. So, proofs 
in M1 have, at most, one open assumption about the value 
of a variable, proofs in M2 have at most two simultaneous 
assumptions, and so on. 

Stälmarck’s method can be seen as a family of 
algorithms that efficiently search for short proofs in Mi for 
a given i. One can find a proof in M0 in linear time; this is 
just the closure of the simple rules. The time required to 

4[55] in References 

exhaustively search for a proof in Mk is O(n2k+1)   where n is 
the size of the formula. 

We say that a valid formula is i-hard if it is provable in 
Mi, but not provable in Mj for any j < i. This notion of 
formula hardness is important, and we will return to it. For 
now, it is sufficient to note that many industrial verification 
problems give rise to formulas whose hardness degree is 0 
or 1. The formulas may be large, but the method is much 
more sensitive to the hardness degree of a formula than to 
its size in terms of a number of variables or connectives.5 
This means that the method is applicable for industrial 
verification, even on a large scale.” 

One other very important notion related to Stälmarck's 
method is the notion of the k-saturated relation, [50], page 
39: 

 “A relation R is k-saturated if and only if for every 
Dilemma derivation with it? holds that R = S. In other 
words, proofs of depth k or less add no new equivalences 
between subformulas. The k-saturation procedure exha-
ustively searches for a proof of depth k. If a relation R has 
a hardness degree k, then saturate(R,k) must be explicitly 
contradictory, and k-saturation finds a disproof of R. The 
procedure is defined recursively. 

0-saturation applies the propagation rules to a relation 
until no more rules are applicable. It chooses a compound 
subformula, applies a related simple rule and then continues 
to apply simple rules on those triplets whose variables were 
affected by the result of the first rule. 

The process continues until no further simple rules can 
be applied.” 

It refers to the notion of a formula relation, [54], page 
34: 

“The complement of a formula A, written A', is B if 
A=B and is A otherwise. Let S(X) be the set containing all 
the subformulas of X (including⊤) and their complements.  

  A formula relation  on X is an equivalence relation 
with domain S(X), with the constraint that if  A  B then      
A'  B'. If  A  B, that means that A and B are in the same 
equivalence class and must have the same truth value. 
Working with S(X), which includes the complements of 
subformulas of X, allows us to encode both equalities and 
inequalities between subformulas  is encoded as A'  B.”            

H. To patent or not to patent? 
The purpose of offering this short presentation of the 

Stälmarck’s method is not to acquaint the reader with the 
very method itself, but to gain a certain perception of the 
subject of that particular patent.   

There are plenty of methods of logic deduction 
comparable to Stälmark’s. The SDLFN resolution method 
is an example and is lies in the foundations of logic 
programming language, such as Prolog or Warren's abstract 
machine. It represents a model of procedural realization of 
declarative logic programs, so-called deductive spreadsheet 
theory (see [56]), interpreting and implementing Excel like 
spreadsheets calculus in the so-called Datalog as a fragment 

5Marked by the author 
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of the first order predicate calculus. Then there is the entire 
technology on which Knuth's TEX rests as a platform for 
writing mathematical texts, etc. None of these are patented, 
and in this author's opinion they shouldn't be, even though 
in his opinion there are more convincing reasons for 
patenting TEX or deductive spreadsheets, than for patenting 
Stälmarck’s method. The authors of such methods and 
algorithms should be sufficiently compensated with profits 
from concrete implementations and appropriate software 
solutions. The exceptionally principled Professor Knuth 
relinquished even this. Furthermore, the original 
Stälmarck's method is still developing not only in the 
original propositional logic environment (see e.g. [57]), but 
also in the first order logic environment (see e.g. [58]). 
Connected to this, the question arises as to whether the 
original patent “covers” the new, modified and improved 
algorithms, as well as the question of who should be the 
holder of these “new” patent rights.    

Unfortunately, Stälmarck's patent isn't the only one of 
its kind. Recently, we are witnessing a number of patents 
that patent some elementary set theory, dressed up in the 
“clothes” of relational algebra, for the needs of “big data 
management.” Even worse, we have a patent that has not 
even patented the results of the scientific research of the 
patent owners themselves, but the results of the scientific 
research of completely different authors. The theory in 
question is known as “logic decision tables” theory and was 
recently patented for the purpose of modeling business 
rules. In concluding this short review of patenting logical 
deduction methods and algorithms, the author is compelled 
to state that the scientific community should, while it is still 
not too late (and even this may seem an illusory proposition 
to some), open a wide public debate on this subject in order 
to determine what can and what cannot be subjected to such 
patents. 

III.      FIRST ORDER PREDICATE CALCULI 

A. The first order predicate calculus, some of its 
fragments and extensions 

Propositional logic calculi aren't very capable of fully 
modelling problems from the so-called real world due to 
the pretty limited language that they have, and even when 
they are, to a certain extent, capable of modelling somewhat 
more complex problems, this is achieved with great effort 
and a multitude of “tricks.” This situation has changed 
fundamentally with the discovery of the so-called first-
order predicate calculus (which, fortunately, isn't patented 
(yet)). The classical (I would call it Frege's) first order 
predicate calculus is the result of several thousands of years 
of development of symbolic logic that can be traced starting 
with Aristotle (silogistics), and continuing with W. 
Shyreshwood (the first half of the thirteenth century) and 
G.W. Leibnitz (seventeenth century), to its contemporary 
formulation (with the additional advance of the 
improvement of language syntax) in the works of G. Frege 
(the very end of the nineteenth century). It represents a far-
reaching generalization of the classical propositional 
calculus, with a language that implements predicates as a 

6A formal system is consistent if it contains no statement 
where the statement itself and its negation are both 
derivable in the system. 

generalization of relations to which it attributes the property 
of truth, variables and functions over object domains, as 
well as quantifiers. There is a large amount of literature on 
different presentation levels that deals with the first order 
predicate calculus (see e.g. [59] - [63]). 

 Numerous mathematicians and logicians have 
contributed to the development of the first order predicate 
calculus, among which prominent places belong to B. 
Russell, A. Tarski and K. Gödel. In 1931, K. Gödel proved 
the so-called incompleteness theorems (of arithmetic and 
related systems). Though they are not directly concerned 
with the logical methods used in AI, they most certainly 
have far-reaching consequences in understanding the scope 
of axiomatic modelling of “reality” and one should be well 
aware of them. According to [64]:  

GÖDEL'S FIRST INCOMPLETENESS THEOREM 
 
Any consistent6 formal system F within which a certain 

amount of elementary arithmetic can be carried out is 
incomplete; i.e., there are statements of the language of F 
which can neither be proved nor disproved in F. 

“The sentence in question is a relatively simple 
statement of number theory, a purely universal arithmetical 
sentence” (ibidem) 

    GÖDEL'S SECOND INCOMPLETENESS THEOREM 

    For any consistent system F within which a certain 
amount of elementary arithmetic can be carried out, the 
consistency of F cannot be proved in F itself. 

“Gödel's second incompleteness theorem concerns the 
limits of consistency proofs (ibidem).” 

There is a multitude of literature on Gödel’s 
incompleteness theorems, from introductory and more 
technically oriented in character [65] to quite advanced and 
more philosophically oriented in character [66]. 

Like the classical propositional calculus, the classical 
first order predicate calculus also encompasses its 
fragments such as the already mentioned Datalog (see e.g. 
[67]), the calculus of positively constructed formulae (see 
e.g. [68]), the Horn clause calculus, etc. There are also 
predicate calculi of the second (and higher) order which, 
sometimes even without certain limitations, allow for each 
language term to play the role of a predicate or a function. 
Here, I would mention HiLog (see e.g. [69] and [70]), 
which is in terms of its syntax a higher order language, 
while its semantics is still first order semantics, also F-
Logic (object oriented frame logic, see [71] and [72]) and 
the situation calculus (see e.g. [73]). 

Of course, the first order predicate calculus interests us 
from the point of view of the possibility of automated 
(mechanical) deduction. For these purposes, it would be 
good to have an analogue of the propositional calculus 
disjuncts, as well as an analogous of a resolution rule as a 
logical deduction rule. 
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This deductive framework has been successfully 
developed with the efforts of mathematicians and logicians 
such as T. Skolem and J. Herbrand. Skolem's achievement 
is the theory and algorithm of elimination of existential 
quantifiers from the primitive normal form of a formula, 
whilst preserving its Skolem form being contradictory in a 
case when the starting formula was also a contradictory 
one. This is more than enough for the purposes of automatic 
deduction, and besides that it allows for the separation of 
the prefix (a series of universal quantifiers) from the matrix 
(an analogue of proposition) of a formula. However, it 
wouldn't be of much use if J. Herbrand had not proven that, 
in order to prove the contradiction of the original formula 
in general, and of the Skolem formula in particular, it was 
sufficient to prove it being false in all of the so-called 
Herbrand interpretations. A very good introduction of 
lasting value into this topic is [74]. 

B. Logic and related programming languages and 
development environments 

R. Kowalski (at the theoretical level, see [75]) and A. 
Colmerauer and P. Roussel (around 1972 at the 
implementation level) have shown that a first-order 
predicate calculus fragment, known as Horn clause calculus 
(a special kind of disjunct with only one positive literal) can 
be interpreted and implemented as (logic) programming 
language. Somewhat later, more precisely in 1983, D. 
Warren has created a compiler model for Prolog, which is 
now known as WAM (Warren Abstract Machine, see e.g.  
[76]). One somewhat newer, but much less widely used 
alternative to WAM is the so-called Vienna Abstract 
Machine, [77]. The basis of the deductive mechanism of 
Prolog and the logic programming languages derived from 
it lies in the so-called SLDNF resolution, which treats the 
negation as the finite (ultimate) failure (in the so-called 
closed worlds model). It should be said that Prolog is a 
proven universal (Turing complete) programming 
language, see [78]. It is also the subject of ISO / IEC 13211-
1, 1995. certificate 

Today Prolog is implemented on all major computing 
platforms and operating systems, most often in synthesis 
with other programming paradigms (especially the 
functional and object-oriented ones), so it can be said that 
“clean” implementations of Prolog are less common today. 
Among modern designs one should mention the Visual 
Prolog (Borland Turbo Prolog's successor), which 
represents a combination of logical and object-oriented 
paradigms and has a visual interface of the Microsoft Visual 
Basic type; SWI Prolog that contains specially developed 
predicate libraries (command analogues) for the semantic 
Web, relational databases, constraint handling, ...; 
Extremely Advanced XSB Prolog + Flora2 + Hilog 
programming development environment, which unifies the 
Prolog standard with a tabling mechanism, an 
implementation of F-logic (Frame Logic) of M. Kifer and 
G. Lausen (see eg [79]) and Higher Order Logic (which, 
roughly speaking, say 

“every syntactically valid HOL language construct 
could be a predicate,” see e.g. [80]), very suitable for many 

7Information from 1458 pages SICStus Prolog User’s 
Manual, December 2017.   

types of non-monotone reasoning, supported by 
corresponding “background” semantics;  Amzi! Prolog + 
Logic ServerTM, logic programming environment 
embedded in Eclipse IDE, which includes full interfaces for 
both calling in and calling out from Prolog from a wide 
variety of development environments including C, C++, 
Java, Delphi, .NET, VB; SICStus Prolog, fully compliant 
with the International Standard ISO/IEC 132111 (PRO-
LOG: Part 1General Core)7; Mercury, a purely declarative,  
strongly typed, modular programming language, which 
supports higherorder programming,  including lambda 
expressions (thus implementing functional programming 
paradigm), WINPROLOG from Logic Programming 
Associates and numerous other implementations.  

There is a large amount of literature about Prolog that 
also present the syntax and semantics of the language itself, 
as well as its application, among other things. to solving 
problems in the AI field. I would particularly mention [81] 
and [82]. 

The synthesis between logic programming and linear 
programming, developed for the optimization of linear 
functions with constraints expressed by sets of linear 
equations and inequations, resulted in the so-called 
constraint logical programming languages. These 
languages are especially intended for modelling and 
solving a wide range of combinatorial optimization 
problems on an industrial scale, including planning, 
scheduling, crew management, etc. Although most of the 
modern Prolog implementations incorporate some form of 
SAT and constraint solvers, there are programming 
languages and programming environments that have been 
developed for modelling and solving these specific types of 
problems, among which the most famous is the ECLiPSe 
Constraint Programming System (not to be confused with 
the Eclipse IDE system). The current version is ECLiPSe 
7.0 from February of this year. Three very informative titles 
of monographic character on the subject of constraint logic 
programming in general and partially on the ECLiPSe 
system itself are [83]  [85]. Other systems worth mentio-
ning are MiniZinc, FlatZinc and recently Picat CP/SAT. 

C. Curry–Howard correspondence and its 
consequences 

Declarative programming languages essentially 
differentiate their declarative semantics, that is, the 
contents of the logical program, most often described by 
some fixed point model, from its procedural semantics 
which deals with its procedural efficiency (for both see e. 
g. [86]), to the measure expressed by the syntagm: 

PROGRAMMING = LOGIC + CONTROL 

However, between the years 1934 and 1969 an idea 
gradually matured that has been attributed to H. Curry and 
W. A. Howard, and after them it was named the Curry-
Howard correspondence or equivalence (see e.g. [87] and 
[88]). Nevertheless, L. E. J. Brouwer, A. Heyting and A. 
Kolmogorov are also credited for its development. The 
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Curry–Howard correspondence establishes a direct 
relationship between computer programs and mathematical 
proofs using syntagms proofs-as-programs and 
propositions/formulae-as-types.  

To cite Wikipedia: “In other words, the Curry–Howard 
correspondence is the observation that two families of 
seemingly unrelated formalisms—namely, the proof 
systems on one hand, and the models of computation on the 
other—are in fact the same kind of mathematical objects.”   

Nowadays, there are several implementations of this 
correspondence, both at the theoretical and at the 
implementational level. One of the most successful is the 
so-called Calculus of Inductive Constructions (see example 
[87]) and its realisation Coq (see e.g. [90] and [91]). The 
program development environment Coq has been 
developed for over three decades by the famous French 
informatics institute, Inria. The latest version is 8.7.2. Coq 
can model almost all kinds of theories, and express, prove 
and verify their theorems. For some of the applications see 
e.g. [92] and [93]. 

 

D. On the coming synthesis of machine learning 
methods and logic methods 

The last few years have indicated a new developmental 
wave of the “second half” of AI, which uses discrete 
mathematics, in particular the theory of graphs and 
combinatorics, probability theory, statistics and mathe-
matical analysis, and studies disciplines such as pattern 
recognition, artificial neural net architectures, machine 
learning and most recently so-called deep learning. This 
new wave of interest in machine learning, with the 
emphasis on deep learning was initiated by Google when it 
opened up its TensorFlow tool for modelling neural 
network architecture with a focus on deep learning. (see e.g. 
[94] - [96]). 

Shortly thereafter, F. Cholett has developed a library of 
functions / modul Keras (see e.g. [95]) that envelops Tensor 
Flow and allows the construction of artificial neural nets for 
deep learning purposes such as building (everything) with 
Lego bricks. In the words of F. Chollet himself, a great 
synthesis of classical methods of machine learning and 
formal logic methods is on the horizon. For initial examples 
of this synthesis see e.g.  [98] and [99]. 

 
 One possibility, which for now is a purely hypothetical 

application of this synthesis, and one the author sees could 
be called theorem statement mining, and would mean that a 
neural network, trained previously in a broad class of 
theorems of a given mathematical theory, “guesses” the 
evidence of new potential theorems. Whether the hit was 
valid or not could then be proven (or reasons could be found 
for the opposite) with tools like Coq. If he were alive, 
success would surely please the famous German 
mathematician B. Riemann, to whom the phrase “Just give 
me a theorem, I will prove it somehow!” was attributed. 

 

E. Some Problems with Accepting and Using Logic 
Formalisms 

 

Formal (symbolic, mathematical) logic today is to some 
extent studied at faculties of mathematics, electrical 

engineering and information technology. For example, 
there are two study programs in the Mathematics 
Department of the Faculty of Science at the University of 
Zagreb, Croatia, where it is possible to enrol in courses 
related to formal logic and computability theory. One of 
them is a study program in theoretical mathematics, and 
another is a computer science and mathematics program. 
The first offers two elective courses, mathematical logic 
and computability, both in the graduate part of the study 
program, as an obligatory one semester course. The second, 
also at the graduate level of studies and also obligatory, 
offers courses in mathematical logic, artificial intelligence, 
mathematical logic for computer science, and formal 
methods for computer science. For the purposes of an 
introduction to the field this is a solid offering (although it 
could be better structured in terms of content), but it 
remains very limited due to the Bologna model of studying. 
This model has abolished earlier postgraduate studies that 
offered extensions to the content of graduate studies and 
introduced doctoral studies. These studies are to a much 
greater extent specialized and oriented towards completing 
a doctoral dissertation, rather than expanding and 
deepening knowledge in the wider context of a particular 
scientific area. 

A somewhat broader range of courses of the same 
“conceptual orientation” exists at the Computer Science 
Faculty of Electrical Engineering and Computing at the 
University of Zagreb, but without, for example, a course 
such as Logic Programming. 

 
      At the Faculty of Organization and Informatics of 
Varaždin, Zagreb University, Croatia, there is the study 
program  of Data and Knowledge Bases with courses such 
as Introduction to Formal Methods, Advanced Formal 
Methods, Logic Programming, Multi-agent Systems, 
Databases I, Databases II, Theory of Databases,  while the 
PhD studies encompass courses such as Selected chapters 
of artificial intelligence, Selected chapters of the logic of 
conflict, Selected chapters of knowledge management and 
Pattern recognition. 

The author is of the opinion that there already exists a 
growing need for more comprehensive study programs that 
will cover both the “numerical” and “symbolic” approaches 
to AI, ranging from undergraduate to doctoral level. 

IV. SCIENTIFIC PRODUCTION 
The production of scientific papers in the field of 

artificial intelligence is immense and the production of 
papers on the subject of symbolic logic and its applications, 
including applications in solving problems in the area of AI 
is no exception. A considerable list of books is given in the 
references, even though it is actually very short when one 
compares it to the total production. 

 Among the many journals, and not just those in the 
English language, I would mention the Journal of Symbolic 
Logic, Journal of Automated Reasoning, Journal of 
Symbolic Computation, Notre Dame Journal of Formal 
Logic, Studia Logica, Logical Methods of Computer 
Science, Journal of Logical and Algebraic Methods in 
Programming, Journal of Applied Non-Classical Logics, 
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Journal of Artificial Intelligence, Applied Artificial 
Intelligence Journal of Machine Learning Research,… 

The list of conferences that cover the area of symbolic 
logic and its applications is also very long. A considerable 
number of them are held annually, such as NASA Formal 
Methods, Computer Science Logic, Logics in Artificial 
Intelligence, Logic Programming, Theorem Proving in 
Higher Order Logic, Logic Programming and 
Nonmonotonic Reasoning, Artificial Intelligence and 
Symbolic Computation, Formal Ontology in Information 
Systems, and many others.  

V.      CONCLUSION 
The author is painfully aware of the fact that for a more 

complete, more structured and generally more convenient 
presentation of formal logic systems that are of interest to 
the field of artificial intelligence, ranging from their 
theoretical foundations through to their design and 
implementation in the form of programming languages and 
development environments as well as tools for specific 
needs, even a text hundred times more extensive would 
hardly be exhaustive. 

Of course, such an exhaustive presentation was not 
what the author had in mind. Instead, the author's wish was 
to introduce engineers of different profiles to some of the 
achievements of contemporary formal logic systems and 
the possibilities of their application in solving problems in 
(but not only) the field of artificial intelligence. In his mind, 
there is no doubt that formal methods will very soon enter 
the pores of all scientific research and become irreplaceable 
research tools.  

In particular, the author hopes that the choice of 
literature which intentionally emphasizes books, often 
monographic in character, as opposed to papers, will allow 
the reader to gain a broader insight into the entire subject 
matter. 
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