
https://www.linkedin.com/pulse/%20artificial-
https://www.linkedin.com/pulse/%20artificial-

B. The idea of formal logic systems and approaches to
their study

 The idea of a formal logic system in the modern sense
(approached via syntax) was created by abstracting the
corresponding models. An example everyone is familiar
with is standard planar geometry, which, as an axiomatic
theory, was presented (and partially developed) by Euclid.
It is less known that the abandonment of the standard axiom
of parallels (through a point outside of a straight line passes
only one straight line parallel to it) gives two new axiomatic
systems of geometry, hyperbolic (through a point outside of
a straight line passes an infinite number of lines parallel to
it) known as the geometry of Lobachevsky (well suited for
Einstein's theory of relativity, for example), or elliptic
geometry (in special cases, sphere geometry (no line
parallel with a straight line passes through a point outside
of that straight line), well suited for managing satellite
navigation in Earth's orbit, aircraft navigation, etc.).

Formal logic systems (calculi), and here we are talking
about the central currents of research, not about the fair
number of “pathological” situations, can only be
considered from the point of view of syntax, either solely
from the point of view of semantics (content), or from both.

The approach from the standpoint of semantics
presupposes the notion of truth. According to the results of
the Polish mathematician and logician A. Tarski, the very
concept of truth is not definable in the context of so-called
Peano arithmetic2 (Tarski's weak theorem). Nor can it be
defined within even the much wider range of logic calculi
which recognize the logical not as a logical connective and
exhibit some form of self-referentiality, sufficient to
establish Goedel's diagonal lemma (Tarski's strong
theorem). Self-referentiality leads to paradoxes like the
paradox of the liar. In a recent paper [6], M. Hsiung
developed the theory of so-called Boolean paradoxes. Its
potential consequences for paradox-free mathematics aren't
as yet visible, but they most certainly will be.

The approach to studying logic calculi through syntax
(superficially) presupposes an abandonment of the notion
of truth, and thus of semantics. It is a kind of logic
deduction game, and (for some time) a logic refutation
game. Through using a formally defined language, a class
of syntactically valid objects (“formulae”) of the logic
calculi are defined. From this set, a subset of formulae
called axioms is extracted. Axioms are, as a rule, language
formulae that are true in all possible models (although this
is an “public secret” within the syntactic approach). With
the help of a logic deduction rule, the axioms and the
original set of formulae, the deduction of a specific formula
can be defined. In the so-called Hilbert formulations, the
most common deduction rule is Modus Ponens, while the
so-called Gentzen style natural deduction systems know
multiple deduction rules (one rule “introducing” a given
logic connective and an another rule “eliminating” it).
Formulae which can be derived from an empty set of
formulae (using axioms only) are called theorems.

2 Common, school arithmetic (but axiomatized) with an
induction scheme as a means of proving arithmetic
formulae.

The concept of logic deduction in the semantic
approach is based on the notion of interpretation that
includes the notion of truth. In this context, a given
“formula” is a logical consequence of a given set of
“formulae” if, and only if, it is true in all interpretations in
which all formulae of the given set are true. Of course, such
a definition of the notion of logical consequence goes
beyond the framework of the logic calculus itself. It returns
to it via so-called theorems of characterization of the notion
of logical consequence at the level of semantics. One of
these two theorems relies on the notion of tautology, while
the other relies on the notion of contradiction.

C. Deduction through Syntax or through Semantics?
For the purposes of automated deduction, especially

with regards to industrial level applications a semantic
approach is more appropriate. This is in accordance with
the famous saying “A lie has no legs.” The specific reasons
for this are the following:

i. Modelling “practical” problems necessarily involves
“semantics” of a particular problem area

ii. Logic calculus formulae represent binary trees in terms
of their data structure. Such a structure, in terms of the
requirements of logical deduction, is very rigid. Thus,
for instance, the proof of each formula implying itself
is trivial at the level of semantics (being an immediate
consequence of the definition), while such proof at the
level of syntax requires particular, not entirely trivial
“juggling” in terms of matching the formulas
participating in the deduction according to the Modus
Ponens rule pattern.

iii. Furthermore, the semantic approach, as a result of so-
called primitive normal forms, especially conjunctive,
and with the subsequent removal of the logical
connective and, on the one hand enables the
linearization of the structure of the formulas that are
being operated with (so-called disjuncts). On the other
hand, according to most of the references in the
literature, the standard rule of logical deduction in this
context, the so-called resolution rule, originally
defined in 1965 in J. Robinson's paper [8] turned out
to be “grupoidal” (it again produced disjuncts as
logical consequences of the disjuncts on which it
operated) and complete. Through its consecutive
application, it is always possible to deduct an identical
false or contradictory disjunct from a contradictory set
of disjuncts).

iv. The resolution rule can be very successfully
expanded from propositional logic calculi to
predicate calculi, preferably of the first and second
order.

v. Incorporating the resolution rule (often modified in
accordance with certain ideas about reducing the
number of generated resolvents, with the
preservation of the completeness) into appropriate
algorithmic “wrappers” (algorithms or heuristics)
such as the level saturation method, the Davis-

1094 MIPRO 2018/CIS

Putnam method, the DPLL method (the generalized
Davis-Putnam method), the recursive backtracking,
proved to be extremely effective in solving the
problem of automatic deduction.

D. Some basic types of automated deduction problem
for the classical propositional calculus (and beyond)
The types of logic deduction problems for the classical

propositional calculus (of refutation, as well as the
satisfiability type) are now well-classified (see, for
example, [9]). In addition to the classical SAT problem, by
assigning weighted coefficients to propositional variables
one at a time when it is true or false in a given interpretation
(problem model), it is possible to define the cost of the
solution of the SAT problem. The total cost of such a
solution is measured by the total sum of the values of
weighted coefficients of propositional variables. When an
attempt is made to minimize this sum, the MINSAT
problem occurs.

By making different additional requirements on the
subsets of the clauses of a given (un)satisfiability problem
and the very same propositional variables from which the
clauses are constructed, a whole series of SAT or MINSAT
problem variants arises, such as MAXCLS SAT, MINCLS
UNSAT, MAXVAR SAT, MINVAR UNSAT. MINSAT
type problems are dual problems of the MAXSAT type.

From a theoretical point of view, compared to the still
unresolved problem (P = NP)? the so-called 3SAT problem
is crucial. It is specific in that each of its clauses contains
exactly three literals (a literal is a propositional variable or
its negation). It turns out that the 3SAT problem is in NP,
and since it is at the same time NP-complete, it is also NP-
hard. For details see, for example, [10].

By allowing the action of the universal quantifier “for
all” and existential quantifier “there exists” on the
propositional variables of the CNF or DNF formula, the so-
called quantified Boolean formula problem (QBF) arises
[11].

There are at least two important logic calculi, which
deserve special mention, that are actually fragments (in
terms of being embedded) into the classical propositional
calculus. These are the calculus of the functional and
multivalent dependencies of the relational data model.
These two logic calculi provide the relational data model
with complete semantics, partially expressed through
commonly known normal forms. For details, see, for
example, [12].

E. Some non-classical (non-Hilbertian) propositional
logic calculi.

Non-classical propositional calculi are generated by

varying the different parameters of the definition of the
classical propositional calculus. This also refers to the
number of truth values, new logical operators
(connectives), or the choice of axioms. In a situation where
the propositional calculus knows more than two values of
truth, we speak of multivalued or multiple-valued calculus.
Such propositional calculi can be discrete or continuous.
Today there is a multitude of such propositional calculi,

amongst which the best known are the so-called
Lukasiewizc logics (both variants exist, discrete, as well as
continuous, and both are still being intensively developed).
Another type of such propositional calculi are the so-called
Post logics, with the characteristic (circular) definition of
the connective “not”.

 Between the Lukasiewicz and the Post logics there is a
somewhat strange (one could say even magical or mystical)
connection which at the same time characterizes the very
notion of the prime number: Number n is a prime number
if, and only if, Lukasievicz logic Fn+1 (meaning it supposes
exactly n+1 truth values) is precomplete in Post's logic Pn+1.
Being precomplete in this concrete case means that the set
of valid formulae of Lukasiewicz logic Fn+1, being
embedded (interpreted) in Post's logic Pn+1, needs to
“borrow” just one propositional function from the logic
Pn+1, which doesn't belong to it in order to be able to
represent (via composition operation) every logic function
from the logic Pn+1. For a general exposition of this result
and Lukasiewicz logics see e.g. [13] - [15]. For tableaux
based methods of automatic deduction in the context of
multiple-valued logics see [16]. For an advanced exposition
of the theory of multiple-valued algebras see [17].

In close connection with Lukasiewicz' propositional
logics, to the extent that some are interpreted in others,
there are so-called propositional fuzzy logics. Fuzzy logics
are likely the most popular type of logics which from the
very beginning of their development have found many
practical applications on an industrial scale They are today
managing smart household devices, robots and entire
industrial facilities. Hundreds of thousands of papers and
thousands of books have been written about them.

A recent query to the Google Scholar service of the
keyphrase “fuzzy logic” resulted in almost a million links.
So, what are then fuzzy logics and what makes them so
applicable?

One could imagine fuzzy logic as a kind of a contextual
domain logic. The context of a specific domain consists of
objects with attributes (linguistic variables) which can
assume values from some continuous numeric interval. The
dynamics of the changes of values of those linguistic
variables are “stable” at sufficiently large intervals of
values where their behaviour can be, for example, in the
case of the “level of movement” of an object, characterized
as “fast” “slow”, “too fast”, “too slow”, “not too fast”,
“could be a bit faster” etc. Those levels of membership are
described with the so called membership functions, which
are then used to interpret standard logical operators
(connectives). A good introduction into fuzzy set theory
and fuzzy logic is [18].

To a certain extent, fuzzy logic can be compared to the
so-called discrete linear control systems theory whose
behaviour is described by systems of so-called difference
equations (see e.g. [19], or by the theory of continuous
linear control systems whose behaviour is described by
systems of linear differential (and integral) equations (see
e.g. [20]).

Among the propositional logics that, in addition to the
standard (Boolean) logical connectives, know additional
connectives are the so-called modal propositional calculi

MIPRO 2018/CIS 1095

(logics). There are two additional logical connectives:
“necessary” and “possible”. If modal logic calculi are
observed from the syntax point of view, they are, according
to the axioms and inference rules that they “add” to the
axioms of the classic propositional calculus, divided into a
variety of specific systems, such as S1, S2, S3, S4, S4.2,
S4.3, S5, K (an another label is Kr), D, M, T, ... A reader
not specialised in modal logic will immediately think of
how the notions of interpretation, truth and logical
consequence are defined in that environment. Here, the so-
called Kripke models that assume the object domain (set of
worlds) and the so-called accessibility relation are of use.
For details, see e.g. [21] – [24].

The propositional modal logics have become the
theoretical basis of the so-called knowledge reasoning
systems, populated by agents (most often software).
Among the axioms of an agent's knowledge is the so-called
axiom of positive introspection: If an agent knows the
knowledge (formula), then he knows that he knows that
knowledge (formula); then the axiom of negative
introspection: If an agent does not know some knowledge,
then he knows that he doesn't know that knowledge; axiom
of knowledge: If an agent knows some knowledge, then this
knowledge is valid A very comprehensive view of
reasoning on knowledge in the context of multi-agent
systems is given in the monograph [25].

In addition to the axiomatic approach (most commonly
of Hilbert's or Gentzen's type), the classical propositional
calculi, as well as many non-classical, such as Lukasiewicz
logics, are also considered from the so-called functional
standpoint. As such, the logic formulae are represented
through functions of the domain and co-domain of the
identical set of truth values. Subclasses of such functions
(recent terminology knows them as clones) are then studied
with regard to different properties (monotonicity,
symmetry, preservation of individual truth values ...) and
their attributes. Furthermore, the problems of decompo-
sition and synthesis of such functions are studied.
Monographs [26] and [27] are very comprehensive and
instructive in this regard.

Furthermore, logic calculi (not just the propositional
ones) are often interpreted in other mathematical theories
and structures. In this context, it is particularly worth
mentioning linear algebra (see [28]) and semi-tensor logic
(see [29]), polynomial algebra, as well as different types of
algebraic structures such as rings and fields (see e.g. [30] -
[33]). A special emphasis on the algorithmic efficiency of
logical deduction is placed by the so-called positional (it is
not a lapsus calami) logic of M. I. Telpiz (see [34] and
[35]).

F. Some applications of propositional logic calculi
When talking about applications of propositional logic

calculi, we should first mention their limitations in terms of
problem modelling. This is especially in relation to the
impossibility (due to limitations of their languages) of
modelling “structural” relationships (of the type “to be a
parent”, “to be a child”, “to be a relative”), reinterpreting
discourse domains with functions or general mappings, as

3 The author himself considers the patenting of algorithms
to be very problematic and this will be discussed later.

well as quantifying variables (except for quantified
propositional calculi that are not “real” propositional
calculi). Nevertheless, there are many applications of
propositional logic calculi, ranging from, conditionally
speaking, “academic” to industrial on a large scale.

 A good part of the application of classic propositional
logic calculi and fuzzy propositional calculi refers to so-
called propositional expert systems (see [36] and [38]),
solving various combinatorial problems of practical value
that can be formulated as SAT type problems, such as sports
scheduling problems (like the Round Robin problem), see
[39], planning problems (see [40]), and combinatorial
designs problems (see [41]). The functional approach to
studying classical propositional calculi using methods of
classical analysis (differentiation, integration, Fourier
expansion...) has opened the way to a multitude of
applications related to the decomposition and synthesis of
logical circuits. More about this range of topics can be
found in e.g. [42].

As far as the application of modal propositional calculi
is concerned, it is particularly visible through its
interpretation in so-called epistemic logics (logics of
knowledge, see, for example, [43] and [44]). Epistemic
logics (including the so-called logics of beliefs) are very
applicable in modelling games in multi-agent systems,
including living agents (humans) – see e.g. [25], modelling
social games (card games – see e.g. [45] and [46]), solving
the problem of retrograde chess analysis (see e.g. [47]),
demonstrating the validity of strategies for playing chess
endings (see e.g. [48] and [49]), modelling IT safety,
reasoning about security-critical information flow among
humans and computers, [51], modelling authentication,
[52] and [53], etc.

G. Stälmarck’s method
The applications of propositional logic calculi on an

industrial scale aren't that many, but we shall indeed
mention one that is very valuable. This is the so-called
Stälmarck's proof procedure for propositional logic. It is
widely known because it is patented (USPTO, Patent
number: 5276897, January 4, 1994: System for determining
propositional logic theorems by applying values and rules
to triplets that are generated from Boolean formula,)3. At
the same time, it is also extremely successful in solving the
problem of verifying very large logic models of railway
traffic management in marshalling yards and other types of
railway infrastructure. Of course, the application domain of
Stälmarck's method is not limited to this specific area of
modelling.

In the case of Stälmarck's method, we are dealing with
a kind of implicational propositional calculus in Gentzen's
style, in conjunction with the specific execution of the
tableaux method (which uses only the connectives  (not)

and → (implies) and logical constants  (contradiction)
and ⊤ (tautology)). The original proposition is decomposed
into a sequence of so-called triplets, where in the triplet
(bi, ci, di) bi being the name of the implication ci→di which

1096 MIPRO 2018/CIS

also represents some subformula of the original formula,
while the triplet alone represents the formula bi ↔(ci→di).
The proof of a formula is performed by the proof of
contradiction of its negation with the help of the
corresponding deduction rules, such as

(0, ,)(1) ,/1 z/0
y zr y

actually meaning that the implication y → z is false, if and
only if, y is true and z is false. A terminal triplet is one that
is contradictory, for example (1,1,0). There is a sum total of
seven deduction rules like rule (r1) and they are called
simple rules. Since there are propositional formulae of
Stälmarck's propositional calculus that cannot be proven by
using only simple rules, a rule of branching is introduced
which “cashes in on” the value of a given variable,
branching the proof to the branch for which the value of
that variable is 1 and the branch for which the value of that
variable is 0. This rule is known as the Dilemma rule.

1 2

1 2

[/1] T[x/0]

[] []
[]

T
T x

D D
US V S

T S

According to [54], on page 26, it writes formulas “D1
and D2 are derivations (or proofs). D1 starts from the set of
triplets T and the assumption that x is true. D2 starts from T
and the assumption that x is false. If one of these derivations
gives a terminal triplet, then the result of applying this rule
is the result of the other derivation. If neither D1 nor D2 lead
to a contradiction, then the resulting substitution (or
variable instantiation) S is the intersection of S1 and S2. Any
information gained both from assuming that x is true and
from assuming that it is false must hold independent of the
value of x.”

And further, on page 28, it says “The proof system M
consisting of the simple rules r1 to r7 and the dilemma rule
is sound and complete for formulas made from variables
and implication. Any Boolean formula can be translated to
such a formula in linear time by a procedure described by
Stälmarck [34]4.”

So the system M is sound and complete for full
propositional logic.

We turn the proof system into a proof method by
making a sequence of increasingly more powerful
subsystems of M. M0 is M without the dilemma rule. Mi+1 is
M in which the derivations in the two branches of the
dilemma rule are restricted to be Mi derivations. So, proofs
in M1 have, at most, one open assumption about the value
of a variable, proofs in M2 have at most two simultaneous
assumptions, and so on.

Stälmarck’s method can be seen as a family of
algorithms that efficiently search for short proofs in Mi for
a given i. One can find a proof in M0 in linear time; this is
just the closure of the simple rules. The time required to

4[55] in References

exhaustively search for a proof in Mk is O(n2k+1) where n is
the size of the formula.

We say that a valid formula is i-hard if it is provable in
Mi, but not provable in Mj for any j < i. This notion of
formula hardness is important, and we will return to it. For
now, it is sufficient to note that many industrial verification
problems give rise to formulas whose hardness degree is 0
or 1. The formulas may be large, but the method is much
more sensitive to the hardness degree of a formula than to
its size in terms of a number of variables or connectives.5
This means that the method is applicable for industrial
verification, even on a large scale.”

One other very important notion related to Stälmarck's
method is the notion of the k-saturated relation, [50], page
39:

 “A relation R is k-saturated if and only if for every
Dilemma derivation with it? holds that R = S. In other
words, proofs of depth k or less add no new equivalences
between subformulas. The k-saturation procedure exha-
ustively searches for a proof of depth k. If a relation R has
a hardness degree k, then saturate(R,k) must be explicitly
contradictory, and k-saturation finds a disproof of R. The
procedure is defined recursively.

0-saturation applies the propagation rules to a relation
until no more rules are applicable. It chooses a compound
subformula, applies a related simple rule and then continues
to apply simple rules on those triplets whose variables were
affected by the result of the first rule.

The process continues until no further simple rules can
be applied.”

It refers to the notion of a formula relation, [54], page
34:

“The complement of a formula A, written A', is B if
A=B and is A otherwise. Let S(X) be the set containing all
the subformulas of X (including⊤) and their complements.

 A formula relation  on X is an equivalence relation
with domain S(X), with the constraint that if A  B then
A'  B'. If A  B, that means that A and B are in the same
equivalence class and must have the same truth value.
Working with S(X), which includes the complements of
subformulas of X, allows us to encode both equalities and
inequalities between subformulas is encoded as A'  B.”

H. To patent or not to patent?
The purpose of offering this short presentation of the

Stälmarck’s method is not to acquaint the reader with the
very method itself, but to gain a certain perception of the
subject of that particular patent.

There are plenty of methods of logic deduction
comparable to Stälmark’s. The SDLFN resolution method
is an example and is lies in the foundations of logic
programming language, such as Prolog or Warren's abstract
machine. It represents a model of procedural realization of
declarative logic programs, so-called deductive spreadsheet
theory (see [56]), interpreting and implementing Excel like
spreadsheets calculus in the so-called Datalog as a fragment

5Marked by the author

MIPRO 2018/CIS 1097

of the first order predicate calculus. Then there is the entire
technology on which Knuth's TEX rests as a platform for
writing mathematical texts, etc. None of these are patented,
and in this author's opinion they shouldn't be, even though
in his opinion there are more convincing reasons for
patenting TEX or deductive spreadsheets, than for patenting
Stälmarck’s method. The authors of such methods and
algorithms should be sufficiently compensated with profits
from concrete implementations and appropriate software
solutions. The exceptionally principled Professor Knuth
relinquished even this. Furthermore, the original
Stälmarck's method is still developing not only in the
original propositional logic environment (see e.g. [57]), but
also in the first order logic environment (see e.g. [58]).
Connected to this, the question arises as to whether the
original patent “covers” the new, modified and improved
algorithms, as well as the question of who should be the
holder of these “new” patent rights.

Unfortunately, Stälmarck's patent isn't the only one of
its kind. Recently, we are witnessing a number of patents
that patent some elementary set theory, dressed up in the
“clothes” of relational algebra, for the needs of “big data
management.” Even worse, we have a patent that has not
even patented the results of the scientific research of the
patent owners themselves, but the results of the scientific
research of completely different authors. The theory in
question is known as “logic decision tables” theory and was
recently patented for the purpose of modeling business
rules. In concluding this short review of patenting logical
deduction methods and algorithms, the author is compelled
to state that the scientific community should, while it is still
not too late (and even this may seem an illusory proposition
to some), open a wide public debate on this subject in order
to determine what can and what cannot be subjected to such
patents.

III. FIRST ORDER PREDICATE CALCULI

A. The first order predicate calculus, some of its
fragments and extensions

Propositional logic calculi aren't very capable of fully
modelling problems from the so-called real world due to
the pretty limited language that they have, and even when
they are, to a certain extent, capable of modelling somewhat
more complex problems, this is achieved with great effort
and a multitude of “tricks.” This situation has changed
fundamentally with the discovery of the so-called first-
order predicate calculus (which, fortunately, isn't patented
(yet)). The classical (I would call it Frege's) first order
predicate calculus is the result of several thousands of years
of development of symbolic logic that can be traced starting
with Aristotle (silogistics), and continuing with W.
Shyreshwood (the first half of the thirteenth century) and
G.W. Leibnitz (seventeenth century), to its contemporary
formulation (with the additional advance of the
improvement of language syntax) in the works of G. Frege
(the very end of the nineteenth century). It represents a far-
reaching generalization of the classical propositional
calculus, with a language that implements predicates as a

6A formal system is consistent if it contains no statement
where the statement itself and its negation are both
derivable in the system.

generalization of relations to which it attributes the property
of truth, variables and functions over object domains, as
well as quantifiers. There is a large amount of literature on
different presentation levels that deals with the first order
predicate calculus (see e.g. [59] - [63]).

 Numerous mathematicians and logicians have
contributed to the development of the first order predicate
calculus, among which prominent places belong to B.
Russell, A. Tarski and K. Gödel. In 1931, K. Gödel proved
the so-called incompleteness theorems (of arithmetic and
related systems). Though they are not directly concerned
with the logical methods used in AI, they most certainly
have far-reaching consequences in understanding the scope
of axiomatic modelling of “reality” and one should be well
aware of them. According to [64]:

GÖDEL'S FIRST INCOMPLETENESS THEOREM

Any consistent6 formal system F within which a certain

amount of elementary arithmetic can be carried out is
incomplete; i.e., there are statements of the language of F
which can neither be proved nor disproved in F.

“The sentence in question is a relatively simple
statement of number theory, a purely universal arithmetical
sentence” (ibidem)

 GÖDEL'S SECOND INCOMPLETENESS THEOREM

 For any consistent system F within which a certain
amount of elementary arithmetic can be carried out, the
consistency of F cannot be proved in F itself.

“Gödel's second incompleteness theorem concerns the
limits of consistency proofs (ibidem).”

There is a multitude of literature on Gödel’s
incompleteness theorems, from introductory and more
technically oriented in character [65] to quite advanced and
more philosophically oriented in character [66].

Like the classical propositional calculus, the classical
first order predicate calculus also encompasses its
fragments such as the already mentioned Datalog (see e.g.
[67]), the calculus of positively constructed formulae (see
e.g. [68]), the Horn clause calculus, etc. There are also
predicate calculi of the second (and higher) order which,
sometimes even without certain limitations, allow for each
language term to play the role of a predicate or a function.
Here, I would mention HiLog (see e.g. [69] and [70]),
which is in terms of its syntax a higher order language,
while its semantics is still first order semantics, also F-
Logic (object oriented frame logic, see [71] and [72]) and
the situation calculus (see e.g. [73]).

Of course, the first order predicate calculus interests us
from the point of view of the possibility of automated
(mechanical) deduction. For these purposes, it would be
good to have an analogue of the propositional calculus
disjuncts, as well as an analogous of a resolution rule as a
logical deduction rule.

1098 MIPRO 2018/CIS

This deductive framework has been successfully
developed with the efforts of mathematicians and logicians
such as T. Skolem and J. Herbrand. Skolem's achievement
is the theory and algorithm of elimination of existential
quantifiers from the primitive normal form of a formula,
whilst preserving its Skolem form being contradictory in a
case when the starting formula was also a contradictory
one. This is more than enough for the purposes of automatic
deduction, and besides that it allows for the separation of
the prefix (a series of universal quantifiers) from the matrix
(an analogue of proposition) of a formula. However, it
wouldn't be of much use if J. Herbrand had not proven that,
in order to prove the contradiction of the original formula
in general, and of the Skolem formula in particular, it was
sufficient to prove it being false in all of the so-called
Herbrand interpretations. A very good introduction of
lasting value into this topic is [74].

B. Logic and related programming languages and
development environments

R. Kowalski (at the theoretical level, see [75]) and A.
Colmerauer and P. Roussel (around 1972 at the
implementation level) have shown that a first-order
predicate calculus fragment, known as Horn clause calculus
(a special kind of disjunct with only one positive literal) can
be interpreted and implemented as (logic) programming
language. Somewhat later, more precisely in 1983, D.
Warren has created a compiler model for Prolog, which is
now known as WAM (Warren Abstract Machine, see e.g.
[76]). One somewhat newer, but much less widely used
alternative to WAM is the so-called Vienna Abstract
Machine, [77]. The basis of the deductive mechanism of
Prolog and the logic programming languages derived from
it lies in the so-called SLDNF resolution, which treats the
negation as the finite (ultimate) failure (in the so-called
closed worlds model). It should be said that Prolog is a
proven universal (Turing complete) programming
language, see [78]. It is also the subject of ISO / IEC 13211-
1, 1995. certificate

Today Prolog is implemented on all major computing
platforms and operating systems, most often in synthesis
with other programming paradigms (especially the
functional and object-oriented ones), so it can be said that
“clean” implementations of Prolog are less common today.
Among modern designs one should mention the Visual
Prolog (Borland Turbo Prolog's successor), which
represents a combination of logical and object-oriented
paradigms and has a visual interface of the Microsoft Visual
Basic type; SWI Prolog that contains specially developed
predicate libraries (command analogues) for the semantic
Web, relational databases, constraint handling, ...;
Extremely Advanced XSB Prolog + Flora2 + Hilog
programming development environment, which unifies the
Prolog standard with a tabling mechanism, an
implementation of F-logic (Frame Logic) of M. Kifer and
G. Lausen (see eg [79]) and Higher Order Logic (which,
roughly speaking, say

“every syntactically valid HOL language construct
could be a predicate,” see e.g. [80]), very suitable for many

7Information from 1458 pages SICStus Prolog User’s
Manual, December 2017.

types of non-monotone reasoning, supported by
corresponding “background” semantics; Amzi! Prolog +
Logic ServerTM, logic programming environment
embedded in Eclipse IDE, which includes full interfaces for
both calling in and calling out from Prolog from a wide
variety of development environments including C, C++,
Java, Delphi, .NET, VB; SICStus Prolog, fully compliant
with the International Standard ISO/IEC 132111 (PRO-
LOG: Part 1General Core)7; Mercury, a purely declarative,
strongly typed, modular programming language, which
supports higherorder programming, including lambda
expressions (thus implementing functional programming
paradigm), WINPROLOG from Logic Programming
Associates and numerous other implementations.

There is a large amount of literature about Prolog that
also present the syntax and semantics of the language itself,
as well as its application, among other things. to solving
problems in the AI field. I would particularly mention [81]
and [82].

The synthesis between logic programming and linear
programming, developed for the optimization of linear
functions with constraints expressed by sets of linear
equations and inequations, resulted in the so-called
constraint logical programming languages. These
languages are especially intended for modelling and
solving a wide range of combinatorial optimization
problems on an industrial scale, including planning,
scheduling, crew management, etc. Although most of the
modern Prolog implementations incorporate some form of
SAT and constraint solvers, there are programming
languages and programming environments that have been
developed for modelling and solving these specific types of
problems, among which the most famous is the ECLiPSe
Constraint Programming System (not to be confused with
the Eclipse IDE system). The current version is ECLiPSe
7.0 from February of this year. Three very informative titles
of monographic character on the subject of constraint logic
programming in general and partially on the ECLiPSe
system itself are [83]  [85]. Other systems worth mentio-
ning are MiniZinc, FlatZinc and recently Picat CP/SAT.

C. Curry–Howard correspondence and its
consequences

Declarative programming languages essentially
differentiate their declarative semantics, that is, the
contents of the logical program, most often described by
some fixed point model, from its procedural semantics
which deals with its procedural efficiency (for both see e.
g. [86]), to the measure expressed by the syntagm:

PROGRAMMING = LOGIC + CONTROL

However, between the years 1934 and 1969 an idea
gradually matured that has been attributed to H. Curry and
W. A. Howard, and after them it was named the Curry-
Howard correspondence or equivalence (see e.g. [87] and
[88]). Nevertheless, L. E. J. Brouwer, A. Heyting and A.
Kolmogorov are also credited for its development. The

MIPRO 2018/CIS 1099

Curry–Howard correspondence establishes a direct
relationship between computer programs and mathematical
proofs using syntagms proofs-as-programs and
propositions/formulae-as-types.

To cite Wikipedia: “In other words, the Curry–Howard
correspondence is the observation that two families of
seemingly unrelated formalisms—namely, the proof
systems on one hand, and the models of computation on the
other—are in fact the same kind of mathematical objects.”

Nowadays, there are several implementations of this
correspondence, both at the theoretical and at the
implementational level. One of the most successful is the
so-called Calculus of Inductive Constructions (see example
[87]) and its realisation Coq (see e.g. [90] and [91]). The
program development environment Coq has been
developed for over three decades by the famous French
informatics institute, Inria. The latest version is 8.7.2. Coq
can model almost all kinds of theories, and express, prove
and verify their theorems. For some of the applications see
e.g. [92] and [93].

D. On the coming synthesis of machine learning
methods and logic methods

The last few years have indicated a new developmental
wave of the “second half” of AI, which uses discrete
mathematics, in particular the theory of graphs and
combinatorics, probability theory, statistics and mathe-
matical analysis, and studies disciplines such as pattern
recognition, artificial neural net architectures, machine
learning and most recently so-called deep learning. This
new wave of interest in machine learning, with the
emphasis on deep learning was initiated by Google when it
opened up its TensorFlow tool for modelling neural
network architecture with a focus on deep learning. (see e.g.
[94] - [96]).

Shortly thereafter, F. Cholett has developed a library of
functions / modul Keras (see e.g. [95]) that envelops Tensor
Flow and allows the construction of artificial neural nets for
deep learning purposes such as building (everything) with
Lego bricks. In the words of F. Chollet himself, a great
synthesis of classical methods of machine learning and
formal logic methods is on the horizon. For initial examples
of this synthesis see e.g. [98] and [99].

 One possibility, which for now is a purely hypothetical

application of this synthesis, and one the author sees could
be called theorem statement mining, and would mean that a
neural network, trained previously in a broad class of
theorems of a given mathematical theory, “guesses” the
evidence of new potential theorems. Whether the hit was
valid or not could then be proven (or reasons could be found
for the opposite) with tools like Coq. If he were alive,
success would surely please the famous German
mathematician B. Riemann, to whom the phrase “Just give
me a theorem, I will prove it somehow!” was attributed.

E. Some Problems with Accepting and Using Logic
Formalisms

Formal (symbolic, mathematical) logic today is to some
extent studied at faculties of mathematics, electrical

engineering and information technology. For example,
there are two study programs in the Mathematics
Department of the Faculty of Science at the University of
Zagreb, Croatia, where it is possible to enrol in courses
related to formal logic and computability theory. One of
them is a study program in theoretical mathematics, and
another is a computer science and mathematics program.
The first offers two elective courses, mathematical logic
and computability, both in the graduate part of the study
program, as an obligatory one semester course. The second,
also at the graduate level of studies and also obligatory,
offers courses in mathematical logic, artificial intelligence,
mathematical logic for computer science, and formal
methods for computer science. For the purposes of an
introduction to the field this is a solid offering (although it
could be better structured in terms of content), but it
remains very limited due to the Bologna model of studying.
This model has abolished earlier postgraduate studies that
offered extensions to the content of graduate studies and
introduced doctoral studies. These studies are to a much
greater extent specialized and oriented towards completing
a doctoral dissertation, rather than expanding and
deepening knowledge in the wider context of a particular
scientific area.

A somewhat broader range of courses of the same
“conceptual orientation” exists at the Computer Science
Faculty of Electrical Engineering and Computing at the
University of Zagreb, but without, for example, a course
such as Logic Programming.

 At the Faculty of Organization and Informatics of
Varaždin, Zagreb University, Croatia, there is the study
program of Data and Knowledge Bases with courses such
as Introduction to Formal Methods, Advanced Formal
Methods, Logic Programming, Multi-agent Systems,
Databases I, Databases II, Theory of Databases, while the
PhD studies encompass courses such as Selected chapters
of artificial intelligence, Selected chapters of the logic of
conflict, Selected chapters of knowledge management and
Pattern recognition.

The author is of the opinion that there already exists a
growing need for more comprehensive study programs that
will cover both the “numerical” and “symbolic” approaches
to AI, ranging from undergraduate to doctoral level.

IV. SCIENTIFIC PRODUCTION
The production of scientific papers in the field of

artificial intelligence is immense and the production of
papers on the subject of symbolic logic and its applications,
including applications in solving problems in the area of AI
is no exception. A considerable list of books is given in the
references, even though it is actually very short when one
compares it to the total production.

 Among the many journals, and not just those in the
English language, I would mention the Journal of Symbolic
Logic, Journal of Automated Reasoning, Journal of
Symbolic Computation, Notre Dame Journal of Formal
Logic, Studia Logica, Logical Methods of Computer
Science, Journal of Logical and Algebraic Methods in
Programming, Journal of Applied Non-Classical Logics,

1100 MIPRO 2018/CIS

Journal of Artificial Intelligence, Applied Artificial
Intelligence Journal of Machine Learning Research,…

The list of conferences that cover the area of symbolic
logic and its applications is also very long. A considerable
number of them are held annually, such as NASA Formal
Methods, Computer Science Logic, Logics in Artificial
Intelligence, Logic Programming, Theorem Proving in
Higher Order Logic, Logic Programming and
Nonmonotonic Reasoning, Artificial Intelligence and
Symbolic Computation, Formal Ontology in Information
Systems, and many others.

V. CONCLUSION
The author is painfully aware of the fact that for a more

complete, more structured and generally more convenient
presentation of formal logic systems that are of interest to
the field of artificial intelligence, ranging from their
theoretical foundations through to their design and
implementation in the form of programming languages and
development environments as well as tools for specific
needs, even a text hundred times more extensive would
hardly be exhaustive.

Of course, such an exhaustive presentation was not
what the author had in mind. Instead, the author's wish was
to introduce engineers of different profiles to some of the
achievements of contemporary formal logic systems and
the possibilities of their application in solving problems in
(but not only) the field of artificial intelligence. In his mind,
there is no doubt that formal methods will very soon enter
the pores of all scientific research and become irreplaceable
research tools.

In particular, the author hopes that the choice of
literature which intentionally emphasizes books, often
monographic in character, as opposed to papers, will allow
the reader to gain a broader insight into the entire subject
matter.

REFERENCES

[1] D. M. Gabbay, J. Woods (eds.), Handbook of the
History of Logic, vol. 1, Greek, Indian and Arabic
Logic, Elsevier, 2004.

[2] V. K. Bulitko, “A possible origin of logic,”
arXiv:math/0005050v1 [math.GM] 5 May 2000.

[3] R. Goldblatt, TOPOI: The categorical analysis of logic.
Amsterdam: North-Holland, 1989.

[4] G. Mazzola, The Topos of Music: Geometric Logic of
Concepts, Theory, and Performance. Birkhäuser, 2002.

[5] Univalent Foundations Program (“author”).
Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Studies,
Princeton, USA, work in progress
(https://homotopytypetheory.org/book).

[6] M. Hsiung, “Boolean paradoxes and revision periods,”
Studia Logica, 105 (5), 2017.

[7] M. D'Agostino, Dov M. Gabbay, R. Hähnle, J. Posegga
(eds.), Handbook of Tableau Methods. Springer, 1999.

[8] J. A. Robinson, J. A. “A machine oriented logic based
on the resolution principle,” J. ACM 12, No. 1, pp. 23-
41, 1965.

[9] K. Truemper. Design of Logic-based Intelligent
Systems.Wiley, 2004.

[10] M. R. Garey, D. S. Johnson. Computers and
Intractability. W.H.Freeman & Co Ltd, 1979.

[11] U. Bubeck, Quantified Boolean Formulas.
https://www-old.cs.uni-paderborn.de/fileadmin/
Informatik/AG-Kleine-Buening/files/ss16/pps/qbf-
slides1.pdf

[12] D. Maier. The Theory of Relational Databases.
Computer Science Press, Inc., 1983.

[13] A. Karpenko. Lukasiewicz Logics and Prime
Numbers. Luniver Press, 2006.

[14] D. M. Miller. Multiple Valued Logic: Concepts and
Representations. Morgan and Claypool Publishers,
2008.

[15] R. S. Stankovic, J. T. Astola, C. Moraga.
Representation of Multiple-Valued Logic Functions,
Morgan and Claypool Publishers, 2012.

[16] R. Hähnle. Automated deduction in multiple-valued
logics. Clarendon Press, 1983.

[17] D. Mundici. Advanced Łukasiewicz calculus and MV-
algebras. Springer Netherlands, 2011.

[18] B. Bede. Mathematics of Fuzzy Sets and Fuzzy Logic.
Springer, 2013.

[19] A. B. Bishop, J. W. Schmidt, Introduction to Discrete
Linear Controls. Theory and Application. Elsevierm
1975.

[20] S. P. Bhattacharyya, A. Datta, L. H. Keel, Linear
Control Theory: Structure, Robustness, and
Optimization, CRC Press, 2009.

[21] N. B. Cocchiarella. M. A. Freund. Modal Logic: An
Introduction to Its Syntax and Semantics. Oxford
University Press, 2008.

[22] G. E. Hughes, M. J. Cresswel. A New Introduction to
Modal Logic. Routledge, 1998.

[23] J. W. Garson. Modal Logic for Philosophers, 2nd ed.,
Cambridge University Press, 2013.

[24] O. Gasquet, A. Herzig, B. Said, F. Schwarzentruber,
Kripke’s World. An Introduction to Modal Logics via
Tableaux, Springer Basel AG, 2014.

[25] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi,
Reasoning about Knowledge. MIT Press, 2003.

[26] D. Lau, Function Algebras on Finite Sets: A Basic
Course on Many-Valued Logic and Clone Theory.
Springer, 2006.

[27] A. V. Gorbatov, Characterization theory of the
synthesis of functional decompositions in k-valued
logics. ACT Publishers, 2000. (in russian)

[28] R.G. Jeroslow, Logic-Based Decision Support: Mixed
Integer Model Formulation, North Holland, 1989.

MIPRO 2018/CIS 1101

[29] D. Cheng, H. Qi, Z. Li, Analysis and Control of
Boolean Networks: A Semi-tensor Product Approach,
Springer 2011.

[30] W. Carnielli, “Polynomial Ring Calculus for Many-
Valued Logics,” ISMVL’05 Proceedings, 2005.

[31] W. Carnielli. “A polynomial proof system for
Lukasiewicz logics,” in Second Principia International
Symposium. August 6-10, 2001 Florianpolis, SC,
Brazil.

[32] A. Yakub. “On certain finite rings and ring-logics,”
Pacific J. Math. Volume 12, Number 2 (1962), pp. 785-
790.

[33] A. Yakub, “On the Theory of Ring-Logics,” Canad. J.
Math., 8(1956), pp. 323-328.

[34] M. I. Telpiz, Principle of positionality for enumerating
and calculating functions (in Russian), volume 1.
Institute of Cosmic Research of the Russian Academy
of Sciences (IKI RAN), 2001.

[35] M. I. Telpiz, “Sigma-Notation and the Equivalence of
P and NP Classes,” Journal of information and
organizational sciences, Volume 29, Number 2, 2005,
pp. 2-12.

[36] R. M. Colomb. “Representation of propositional
expert systems as partial functions,” Artificial
Intelligence, vol. 109, Issues 1–2, June 1999, pp. 187-
209.

[37] R. M. Colomb. C. Y. C. Chung. “Strategies for building
propositional expert systems,” International Journal of
Intelligent Systems, vol. 10, Issue 3,1995, pp. 295–
328.

[38] W. Siler, J. J. Buckley. Fuzzy Expert Systems and
Fuzzy Reasoning. Wiley, 2005.

[39] R. Bejar, F. Manya. “Solving the Round Robin
Problem Using Propositional Logic,” in AAAI-00
Proceedings, 2000.

[40] H. A. Kautz, B. Selman. “Pushing the envelope:
Planning, propositional logic, and stochastic search,”
in Proceedings of the 14th National Conference on
Artificial Intelligence, AAAI’96, Portland/OR, USA,
pp. 1194–1201, 1996.

[41] H. Zhang. “Combinatorial Designs by SAT Solvers,”
In Handbook of Satisfiability, IOS Press, 2009, pp. 533
– 564.

[42] R. O’Donnell. Analysis of Boolean Functions,
Cambridge University Press, 2014.

[43] J. van Benthem. Logic in Games. The MIT Press,
2014.

[44] J. van Benthem, S. Ghosh, R. Verbrugge (eds.).
“Models of Strategic Reasoning: Logics, Games, and
Communities.” LNCS 8972, Springer, 2015.

[45] M. Maliković, M. Čubrilo. “Modeling epistemic
actions in dynamic epistemic logic using Coq.” In:
CECIIS 2010, 2010.

[46] M. Maliković, M. Čubrilo. Reasoning about epistemic
actions and knowledge in multi-agent systems using
Coq. Comput. Technol. Appl. 2(8), pp. 616–627, 2011.

[47] M. Maliković, M. Čubrilo. “What Were the Last
Moves?” International Review on Computers and
Software (IRECOS) (1828-6003) 5 (2010), 1; pp. 59-
70.

[48] M. Maliković, M. Čubrilo, P. Janičić. “Formal
Analysis of Correctness of a Strategy for the KRK
Chess Endgame.” Fifth Workshop on Formal and
Automated Theorem Proving and Application,
Belgrade, Serbia, 2012.

[49] F. Marić, P. Janičić, M. Maliković. “Proving
Correctness of a KRK Chess Endgame Strategy by
Using Isabelle/HOL and Z3.” In Amy P. Felty and Aart
Middeldorp, editors, International Conference on
Automated Deduction, CADE 25, Berlin, Germany,
Proceedings, volume 9195 of Lecture Notes in
Computer Science, pp. 256-271. Springer, 2015.

[50] R. van der Meyden. “Two Applications of Epistemic
Logic in Computer Security.” In J. van Benthem, A.
Gupta, R. Parikh (eds.). Proof, computation and
agency: Logic at the crossroads. Synthese Library 352,
Springer, 2011.

[51] S. Ahrenbach. “Reasoning About Safety-Critical
Information Flow Between Pilot and Computer.” In
NASA Formal Methods Proceedings, NFM 2017,
Moffett Field, CA, USA, May 16-18, 2017.

[52] M. Barrows, M. Abadi. “A Logic of Authentication.”
ACM Transactions on Computer Systems (TOCS),
Volume 8 Issue 1, Feb. 1990, pp. 18-36.

[53] P. Syverson, I. Cervesato. “The Logic of
Authentication Protocols.” In: Focardi R., Gorrieri R.
(eds.) Foundations of Security Analysis and Design.
FOSAD 2000. Lecture Notes in Computer Science, vol
2171. Springer, Berlin, Heidelberg, 2001.

[54] M. Sheeran, G. Stalmarck. “A Tutorial on Stalmarck's
Procedure for Propositional Logic.” Formal Methods
in System Design, 16, pp. 23-58, 2000.

[55] G. Stalmarck, “A note on the computational
complexity of the pure classical implication calculus,”
Information Processing Letters, Vol. 31, pp. 277–278,
June 1989.

[56] I. Cervesato. The Deductive Spreadsheet. Springer,
2013.

[57] M. Ben-Ari. Mathematical logic for computer science.
Springer, 2012, 3rd edition.

[58] A. Thakur, T. W. Reps, A Generalization of
Stålmarck’s Method. In 19th International Symposium
on Static Analysis (SAS), Springer, 2012, pages 334-
351.

[59] M. Björk. First Order Stålmarck, Journal of Automated
Reasoning, January 2009, Volume 42, Isssue 1, pages
99–122.

[60] Y. I. Manin, A course in Mathematical Logic. Springer,
1997.

1102 MIPRO 2018/CIS

https://cms.math.ca/cjm/
https://cms.math.ca/cjm/
https://cms.math.ca/cjm/v8/

[61] R. M. Smullyan, A Beginner's Guide to Mathematical
Logic. Dover Publications, 2014.

[62] R. M. Smullyan, A Beginner's Further Guide to
Mathematical Logic. World Scientific, 2016.

[63] J. R. Shoenfield, Mathematical Logic. A. K. Peters,
2001.

[64] P Raatikainen. “Gödel's Incompleteness Theorems,”
Stanford Encyclopedia of Philosophy. Accessed March
16, 2018.

[65] P. Smith, An Introduction to Gödel's Theorems. Oxford
University Press. 2007.

[66] T. Franzen, Gödel's Theorem: An Incomplete Guide to
Its Use and Abuse. A K Peters, 2005.

[67] S. Greco, C. Molinaro, Datalog and Logic Databases,
Morgan & Claypool Publishers, 2016.

[68] A. V. Davydov, A. A. Larionov, E. A. Cherkashin. “On
the calculus of positively constructed formulas for
automated theorem proving,” Automatic Control and
Computer Sciences, vol. 45, Issue 7, pp. 402–407,
2011.

[69] W. Chen, M. Kifer, D. S. Warren, “HiLog: A
foundation for higher-order logic programming”.
Journal of Logic Programming. 15 (3): pp. 187–230,
1993.

[70] W. Chen, M. Kifer, D. S. Warren. “HiLog: a first order
semantics for higher-order logic programming
constructs,” Proc. North American Logic
Programming Conference, 1989.

[71] Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of ACM, May 1995.

[72] M. Kifer, G. Lausen. “F-logic: a higher-order language
for reasoning about objects, inheritance, and scheme,”
in SIGMOD '89 Proceedings, pp. 134-146, 1989.

[73] R. Reiter, Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

[74] C. Chang, R. Char-Tung Lee, Symbolic Logic and
Mechanical Theorem Proving. Elsevier, 1997.

[75] R. Kowalski, Logic for Problem Solving. Elsevier,
1979.

[76] H. Aït-Kaci, Warren's Abstract Machine: A Tutorial
Reconstruction. MIT Press, 1991.

[77] A. Krall, U. Neumerkel, “The Vienna Abstract
Machine,” in PLILP 1990 Proceedings, pp. 121-135,
1990.

[78] S. Tarnlund, “Horn Clause Computability,” BIT 17,
1977., pp. 215-226.

[79] M. Kifer, G. Lausen, “Logical Foundations of Object-
Oriented and Frame-Based Languages,” Journal of
ACM, May 1995.

[80] W. Chen, M. Kifer, D. S. Warren, “HiLog: A
Foundation for Higher-Order Logic Programming,”
Journal of Logic Programming, 1993., pp. 142.

[81] I. Bratko, Prolog Programming for Artificial
Intelligence (4th Edition). Pearson Education Canada,
2011.

[82] N. C. Rowe, Artificial Intelligence Through Prolog.
Prentice-Hall, 1988.

[83] K. Apt, M. Wallace, Constraint Logic Programming
using ECLiPSe. Cambridge University Press, 2006.

[84] K. Mariott, P. Stuckey, Programming with Constraints:
an Introduction. MIT Press, 1998.

[85] A. Niederlinski, A Gentle Guide to Constraint Logic
Programming via ECLiPSe. 3rd edition, 2014.
(http://www.anclp.pl/)

J. W. Lloyd, Foundations of Logic Programming. Springer,
1987.
[86] M. H. Sørensen, P. Urzyczyn, Lectures on the Curry–

Howard isomorphism. Studies in Logic and the
Foundations of Mathematics, 149, Elsevier Science,
2006.

[87] R. J. G. B. de Queiroz, A. G. de Oliveira, D. M.
Gabbay, The Functional Interpretation of Logical
Deduction. World Scientific, 2011.

[88] C. Paulin-Mohring, “Introduction to the Calculus
of Inductive Constructions,” in B. Woltzenlogel
Paleo, D. Delahaye (eds.), All about Proofs, Proofs
for All. College Publications, 2015.

[89] Y. Bertot, P. Castéran, Interactive Theorem Proving
and Program Development: Coq’Art: The Calculus of
Inductive Constructions. Springer, 2004.

[90] A. Chlipala, Certified Programming with Dependent
Types: A Pragmatic Introduction to the Coq Proof
Assistant. MIT Press, 2013.

[91] Y Hirai, Ethereum Virtual Machine for Coq (v0.0.2).
Published online on 5 March 2017.

[92] X. Yang, Z. Yang, H. Sun, Y. Fang, J. Liu, J. Song.
„Formal Verification for Ethereum Smart Contract
Using Coq,” World Academy of Science. Engineering
and Technology International Journal of Information
and Communication Engineering,vol. 12, No.6, 2018.
(unpublished)

[93] S. Pattanayak, Pro Deep Learning with TensorFlow: A
Mathematical Approach to Advanced Artificial
Intelligence in Python. Apress, 2017.

[94] N. Shukla, Machine Learning with TensorFlow.
Manning Publications, 2018.

[95] S. Abrahams, D. Hafner, E. Erwitt, A. Scarpinelli,
TensorFlow for Machine Intelligence: A Hands-On
Introduction to Learning Algorithms. Bleeding Edge
Press, 2016.

[96] F. Chollet, Deep Learning with Python. Manning,
2018. (4)

[97] G. Irving, C. Szegedy, A. A. Alemi, N. Een, F.s Chollet,
J. Urban, “Deepmath-deep sequence models for
premise selection,” in Advances in Neural Information
Processing Systems 29, 2016, pp. 2235-2243. (5)

MIPRO 2018/CIS 1103

http://www.cs.sunysb.edu/~kifer/TechReports/flogic.pdf
http://www.cs.sunysb.edu/~kifer/TechReports/flogic.pdf
http://www.cs.sunysb.edu/~kifer/TechReports/hilog.pdf
http://www.cs.sunysb.edu/~kifer/TechReports/hilog.pdf

[98] C. Kaliszyk, F. Chollet, C. Szegedy, “Holstep: A
machine learning dataset for higher-order logic
theorem proving,” arXiv:1703.00426, 2017, 12 pp. (6)

[99] A. Thakur, T. W. Reps, A Generalization of
Stålmarck’s Method. In 19th International Symposium
on Static Analysis (SAS), Springer, 2012, pages 334-
351.

1104 MIPRO 2018/CIS

